And Pendrin Are Expressed Differently in Hot and Cold Nodules of Thyroid

Total Page:16

File Type:pdf, Size:1020Kb

And Pendrin Are Expressed Differently in Hot and Cold Nodules of Thyroid European Journal of Endocrinology (2001) 145 591±597 ISSN 0804-4643 CLINICAL STUDY Sodium/iodide symporter (NIS) and pendrin are expressed differently in hot and cold nodules of thyroid toxic multinodular goiter Diego Russo, Stefania Bulotta, Rocco Bruno2, Franco Arturi1, Paolo Giannasio2, Michael Derwahl5, Jean-Michel Bidart3, Martin Schlumberger4 and Sebastiano Filetti1 Dipartimento di Scienze Farmacobiologiche and 1Dipartimento di Medicina Sperimentale e Clinica, UniversitaÁ di Catanzaro, 88100 Catanzaro, 2Ospedale Civile di Tinchi-Pisticci, Matera, Italy, 3Departments of Clinical Biology and 4Nuclear Medicine, Institut Gustave-Roussy, 94805 Villejuif, France and 5Department of Medicine, Division of Endocrinology, St Hedwig Hospital and Humboldt University, 10115 Berlin, Germany (Correspondence should be addressed to Sebastiano Filetti, Dipartimento di Medicina Sperimentale e Clinica, UniversitaÁ degli Studi di Catanzaro, Via T. Campanella, 115, 88100 Catanzaro, Italy; Email: ®[email protected]) Abstract Objective: The expression of two iodide transporters, the sodium/iodide symporter (NIS) and pendrin, was analyzed in thyroid tissues of patients with toxic multinodular goiter (TMNG) and non-toxic multinodular goiter (MNG). Methods: The levels of NIS and pendrin proteins were analyzed in total protein extracts from nodular and non-nodular tissues by Western blot. Results: In tissue samples from TMNG, we found an increased expression of NIS (2.5-fold) in the hot nodules, and similar levels between cold nodules and non-nodular tissues. In contrast, the levels of pendrin were slightly increased in both hot and cold nodules from TMNG, and decreased (about twofold) in cold nodules from MNG. We also noticed that there was no relationship between NIS and pendrin expression. Conclusions: Our data demonstrate that hot nodules from TMNG express a higher number of iodide transporters (mainly NIS), whereas cold nodules from TMNG, but not from MNG, show levels of the two proteins comparable with normal tissue, suggesting a role in vivo of TSH in maintaining the expression of NIS and pendrin protein in normal thyroid tissue. Finally, different mechanisms are involved in the regulation of NIS and pendrin expression. European Journal of Endocrinology 145 591±597 Introduction For years, thyroid nodules have been characterized on the basis of their ability to concentrate radioiodine, Iodide uptake is the ®rst step in thyroid hormone thus considered functioning or non-functioning at 131I- production by thyroid follicles. Thyroidal iodide trap- scintiscan and named `hot' or `cold' respectively. Many ping and concentration from blood are achieved by an studies have shown abnormal expression of the NIS active, energy-dependent transport process across the gene in various thyroid disorders (reviewed in 10, 11), baso-lateral plasma membrane of the thyrocytes; iodide especially in thyroid malignancies. In contrast, few data is then transported trans-cellularly to the apical are available on PDS gene expression (8), or on the membrane, where it is organi®ed (1). The way to relationship between NIS and pendrin expression at the clarify the molecular mechanisms underlying iodide protein level (6±9, 12). transport in thyroid cells has been opened up as a result In this study, using Western blot analysis we of the cloning and expression studies of two proteins examined the expression of NIS and pendrin proteins mainly involved in this process, namely the sodium/ in a series of 25 thyroid nodules from ten unrelated iodide symporter (NIS) (2, 3) and pendrin (4, 5). NIS is patients with toxic multinodular goiter (TMNG), located in the baso-lateral plasma membrane of including both hot and cold nodules, in order to clarify thyrocytes (6, 7) and catalyzes active I2 uptake into the role of these two iodide transporters in the the cell, while pendrin, discovered as the defective functional behavior of the nodular lesions. Indeed, the protein in Pendred syndrome (PDS) (4), is a chloride/ simultaneous presence of hot and cold nodules in the iodide transporter expressed in the apical membrane (8, same patient makes this disease a good model for 9), presumably responsible for the I2 accumulation in excluding interference due to genetic and environmen- the colloid. tal factors. For the ®rst time, the protein expression q 2001 Society of the European Journal of Endocrinology Online version via http://www.eje.org Downloaded from Bioscientifica.com at 10/02/2021 04:05:42AM via free access 592 D Russo and others EUROPEAN JOURNAL OF ENDOCRINOLOGY (2001) 145 levels were compared with the normal, non-nodular another ®ve patients with MNG and non-nodular tissue of each patient. To evaluate the in¯uence of tissues from two patients with Graves' disease were thyroid-stimulating hormone (TSH), which is obviously also examined. Non-nodular, normal tissue from each suppressed in patients with TMNG, ®ve cold nodules patient was also investigated. All patients lived in an from patients with non-toxic multinodular goiter (MNG) area of moderate±severe iodine de®ciency. Informed who had detectable levels of TSH were also investigated. consent was obtained from all patients. A map of the nodules, as they appeared at scintiscan and ultrasound Materials and methods examination, was provided for the surgeon, so that nodules de®ned by scintiscan could be unequivocally Materials identi®ed post-operatively. Tissue specimens, obtained at the time of surgery, were frozen in liquid nitrogen. HEPES, sucrose, dithiothreitol (DTT), EDTA, phenyl- Toxic multinodular goiter was diagnosed on the basis of methylsulfonyl ¯uoride (PMSF), aprotinin, leupeptin clinical thyrotoxicosis, elevated serum levels of free and anti-human beta-actin monoclonal antibody were thyroid hormones, and undetectable TSH levels, asso- obtained from Sigma-Aldrich S.r.l. (Milan, Italy); ciated with a multinodular goiter presenting predomi- nitrocellulose membranes, horseradish peroxidase con- nant 131I uptake in one (or more) nodule(s) as shown jugated anti-rabbit or anti-mouse antibodies, auto- by 131I scanning. The thyroid nodules were classi®ed as radiography ®lm and enhanced chemiluminescence hot or cold according to the scintigraphic examination. (ECL-Plus) Western blotting detection reagents were All nodules were histologically classi®ed as adenomas from Amersham Pharmacia biotech (Milan, Italy); according to the WHO recommendations (13). The protein assay reagent, non-fat dry milk and molecular clinical features of the patients are shown in Table 1. weight markers were from Bio-Rad Laboratories This study was approved by the local ethical committee. (Segrate, Milan, Italy). Protein extraction and Western blot Patients Total proteins were extracted from thyroid tissues as A total of 25 nodules from ten unrelated patients with follows. Frozen tissue was thawed and homogenized in thyroid TMNG were studied. Five nodular tissues from 1 ml of buffer containing 250 mmol/l sucrose, Table 1 Clinical features of the patients with TMNG. Hormonal values were obtained at the time of diagnosis, when 131I scintiscan was performed. The patients were then treated with anti-thyroid drugs and operated on when a state of subclinical hyperthyroidism was reached. Normal values: TSH: 0.35±5.5; FT3 2.3±4.2; FT4: 0.8±1.5. 131 No. Sex/Age TSH (mIU/l) FT3 (pg/ml) FT4 (ng/dl) Nodules Diameter (mm) Ultra-sonography I scintiscan 1 F/51 0.01 4.38 1.5 1a 20 Mixed Cold 1b 25 Mixed Hot 1c 18 Mixed Hot 2 F/65 0.01 4.65 1.76 2a 15 Mixed Cold 2b 18 Mixed Cold 2c 20 Mixed Hot 3 F/60 0.01 4.1 1.2 3a 16 Mixed Cold 3b 18 Mixed Hot 4 F/81 0.1 3.51 1.01 4a 13 Mixed Cold 4b 13 Hypoechoic Hot 5 M/62 0.01 3.92 1.05 5a 70 Hypoechoic Cold 5b 27 Hypoechoic Hot 6 M/71 0.01 3.58 0.8 6a 20 Isoechoic Cold 6b 15 Mixed Cold 6c 30 Hypoechoic Cold 6d 50 Isoechoic Hot 7 F/71 0.38 7.15 1.23 7a 16 Isoechoic Cold 7b 17 Mixed Hot 7c 17 Mixed Hot 8 M/75 1.8* 3.78* 0.8* 8a 50 Mixed Cold 8b 25 Mixed Hot 9 F/54 0.01 5.40 21.2 9a 24 Hypoechoic Cold 9b 56 Hypoechoic Hot 10 F/43 0.07 9.0 3.04 10a 40 Mixed Cold 10b 40 Isoechoic Hot *Values obtained during treatment with anti-thyroid drugs. Almost all patients showed only a T3 thyrotoxicosis, as expected in an area of severe iodine de®ciency. FT3, free tri-iodothyronine; FT4, free thyroxine. www.eje.org Downloaded from Bioscientifica.com at 10/02/2021 04:05:42AM via free access EUROPEAN JOURNAL OF ENDOCRINOLOGY (2001) 145 NIS and pendrin in toxic multinodular goiter 593 10 mmol/l HEPES-KOH (pH 7.5), 1 mmol/l EDTA, 1 mmol/l PMSF, 10 mg/ml leupeptin, 10 mg/ml apro- tinin. The homogenate was centrifuged at 14 000 g (4 8C for 15 min) and the supernatant (which con- tained the whole cell lysate) was quanti®ed spectro- photometrically using the Bradford method. Fifty micrograms of protein were loaded onto a 4±20% gradient SDS polyacrylamide gel and subjected to electrophoresis at a constant voltage (120 V). Figure 1 Western blot analysis under reduced conditions of protein Electroblotting to a Hybond-P ECL nitrocellulose extracts from tissues of two patients with Graves' disease, NIH 3T3 membrane was performed for 2 h at 125 mA using a ®broblasts and normal and nodular tissues from two patients, using Mini Trans blot electroblotting system. Blocking was a polyclonal anti-NIS antibody (upper panel) and a monoclonal done using TTBS/milk (TBS, 1% Tween 20 and 5% anti-human beta-actin antibody (lower panel) (see Materials and methods). A representative of three separate experiments is non-fat dry milk) for 2 h at room temperature. The shown. Lanes 1 and 2=positive control (Graves' tissue); lane membrane was then incubated with a 1/1000 dilution 3=negative control (®broblasts); lanes 4, 5, 6=non-nodular of af®nity puri®ed rabbit anti-NIS (6) or 1/1500 (normal), hypofunctioning (cold) nodule and hyperfunctioning (hot) dilution of anti-pendrin (8) polyclonal antibody or a nodule from a patient with TMNG (no.
Recommended publications
  • Small-Molecule Inhibitors of Pendrin Potentiate the Diuretic Action of Furosemide
    BASIC RESEARCH www.jasn.org Small-Molecule Inhibitors of Pendrin Potentiate the Diuretic Action of Furosemide Onur Cil, Peter M. Haggie, Puay-wah Phuan, Joseph-Anthony Tan, and Alan S. Verkman Departments of Medicine and Physiology, University of California San Francisco, San Francisco, California ABSTRACT 2 2 Pendrin is a Cl /HCO3 exchanger expressed in type B and non-A, non-B intercalated cells in the distal 2 nephron, where it facilitates Cl absorption and is involved in Na+ absorption and acid-base balance. Pendrin-knockout mice show no fluid-electrolyte abnormalities under baseline conditions, although mice 2 with double knockout of pendrin and the Na+/Cl cotransporter (NCC) manifest profound salt wasting. Thus, pendrin may attenuate diuretic-induced salt loss, but this function remains unconfirmed. To clarify the physiologic role of pendrin under conditions not confounded by gene knockout, and to test the potential utility of pendrin inhibitors for diuretic therapy, we tested in mice a small-molecule pendrin inhibitor identified from a high-throughput screen. In vitro, a pyrazole-thiophenesulfonamide, PDSinh- 2 C01, inhibited Cl /anion exchange mediated by mouse pendrin with a 50% inhibitory concentration of 1–3 mM, without affecting other major kidney tubule transporters. Administration of PDSinh-C01 to mice at predicted therapeutic doses, determined from serum and urine pharmacokinetics, did not affect urine output, osmolality, salt excretion, or acid-base balance. However, in mice treated acutely with furosemide, + 2 administration of PDSinh-C01 produced a 30% increase in urine output, with increased Na and Cl ex- cretion. In mice treated long term with furosemide, in which renal pendrin is upregulated, PDSinh-C01 produced a 60% increase in urine output.
    [Show full text]
  • HER Inhibitor Promotes BRAF/MEK Inhibitor-Induced Redifferentiation in Papillary Thyroid Cancer Harboring BRAFV600E
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 12), pp: 19843-19854 Research Paper HER inhibitor promotes BRAF/MEK inhibitor-induced redifferentiation in papillary thyroid cancer harboring BRAFV600E Lingxiao Cheng1,*, Yuchen Jin1,*, Min Liu1, Maomei Ruan2, Libo Chen1 1Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China 2Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China *Co-first authors Correspondence to: Libo Chen, email: [email protected] Keywords: papillary thyroid cancer, redifferentiation, iodine, glucose, dabrafenib Received: October 20, 2016 Accepted: January 24, 2017 Published: February 28, 2017 ABSTRACT Redifferentiation therapy with BRAF/MEK inhibitors to facilitate treatment with radioiodine represents a good choice for radioiodine-refractory differentiated thyroid carcinoma, but recent initial clinical outcomes were modest. MAPK rebound caused by BRAF/MEK inhibitors-induced activation of HER2/HER3 is a resistance mechanism, and combination with HER inhibitor to prevent MAPK rebound may sensitize BRAFV600E- mutant thyroid cancer cells to redifferentiation therapy. To evaluate if inhibiting both BRAF/MEK and HER can produce stronger redifferetiation effect, we tested the effects of BRAF/MEK inhibitor dabrafenib/selumetinib alone or in combination with HER inhibitor lapatinib on the expression and function of iodine- and glucose-handling genes in BRAFV600E-positive BCPAP and K1 cells, using BHP 2-7 cells harboring RET/ PTC1 rearrangement as control. Herein, we showed that lapatinib prevented MAPK rebound and sensitized BRAFV600E-positive papillary thyroid cancer cells to BRAF/ MEK inhibitors. Dabrafenib/selumetinib alone increased iodine-uptake and toxicity and suppressed glucose-metablism in BRAFV600E-positive papillary thyroid cancer cells.
    [Show full text]
  • Essential Trace Elements in Human Health: a Physician's View
    Margarita G. Skalnaya, Anatoly V. Skalny ESSENTIAL TRACE ELEMENTS IN HUMAN HEALTH: A PHYSICIAN'S VIEW Reviewers: Philippe Collery, M.D., Ph.D. Ivan V. Radysh, M.D., Ph.D., D.Sc. Tomsk Publishing House of Tomsk State University 2018 2 Essential trace elements in human health UDK 612:577.1 LBC 52.57 S66 Skalnaya Margarita G., Skalny Anatoly V. S66 Essential trace elements in human health: a physician's view. – Tomsk : Publishing House of Tomsk State University, 2018. – 224 p. ISBN 978-5-94621-683-8 Disturbances in trace element homeostasis may result in the development of pathologic states and diseases. The most characteristic patterns of a modern human being are deficiency of essential and excess of toxic trace elements. Such a deficiency frequently occurs due to insufficient trace element content in diets or increased requirements of an organism. All these changes of trace element homeostasis form an individual trace element portrait of a person. Consequently, impaired balance of every trace element should be analyzed in the view of other patterns of trace element portrait. Only personalized approach to diagnosis can meet these requirements and result in successful treatment. Effective management and timely diagnosis of trace element deficiency and toxicity may occur only in the case of adequate assessment of trace element status of every individual based on recent data on trace element metabolism. Therefore, the most recent basic data on participation of essential trace elements in physiological processes, metabolism, routes and volumes of entering to the body, relation to various diseases, medical applications with a special focus on iron (Fe), copper (Cu), manganese (Mn), zinc (Zn), selenium (Se), iodine (I), cobalt (Co), chromium, and molybdenum (Mo) are reviewed.
    [Show full text]
  • The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It’S Not All Bad
    nutrients Review The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It’s Not All Bad Emily S. Krueger 1 , Trevor S. Lloyd 1,2 and Jeffery S. Tessem 1,* 1 Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; [email protected] (E.S.K.); [email protected] (T.S.L.) 2 Medical Education Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA * Correspondence: [email protected]; Tel.: +1-801-422-9082 Abstract: Since elevated serum levels of trimethylamine N-oxide (TMAO) were first associated with increased risk of cardiovascular disease (CVD), TMAO research among chronic diseases has grown exponentially. We now know that serum TMAO accumulation begins with dietary choline metabolism across the microbiome-liver-kidney axis, which is typically dysregulated during pathogenesis. While CVD research links TMAO to atherosclerotic mechanisms in vascular tissue, its molecular effects on metabolic tissues are unclear. Here we report the current standing of TMAO research in metabolic disease contexts across relevant tissues including the liver, kidney, brain, adipose, and muscle. Since poor blood glucose management is a hallmark of metabolic diseases, we also explore the variable TMAO effects on insulin resistance and insulin production. Among metabolic tissues, hepatic TMAO research is the most common, whereas its effects on other tissues including the insulin producing pancreatic β-cells are largely unexplored. Studies on diseases including obesity, diabetes, liver diseases, chronic kidney disease, and cognitive diseases reveal that TMAO effects are unique under pathologic conditions compared to healthy controls. We conclude that molecular TMAO effects are highly context-dependent and call for further research to clarify the deleterious and beneficial Citation: Krueger, E.S.; Lloyd, T.S.; molecular effects observed in metabolic disease research.
    [Show full text]
  • Pflugers Final
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Serveur académique lausannois A comprehensive analysis of gene expression profiles in distal parts of the mouse renal tubule. Sylvain Pradervand2, Annie Mercier Zuber1, Gabriel Centeno1, Olivier Bonny1,3,4 and Dmitri Firsov1,4 1 - Department of Pharmacology and Toxicology, University of Lausanne, 1005 Lausanne, Switzerland 2 - DNA Array Facility, University of Lausanne, 1015 Lausanne, Switzerland 3 - Service of Nephrology, Lausanne University Hospital, 1005 Lausanne, Switzerland 4 – these two authors have equally contributed to the study to whom correspondence should be addressed: Dmitri FIRSOV Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1005 Lausanne, Switzerland Phone: ++ 41-216925406 Fax: ++ 41-216925355 e-mail: [email protected] and Olivier BONNY Department of Pharmacology and Toxicology, University of Lausanne, 27 rue du Bugnon, 1005 Lausanne, Switzerland Phone: ++ 41-216925417 Fax: ++ 41-216925355 e-mail: [email protected] 1 Abstract The distal parts of the renal tubule play a critical role in maintaining homeostasis of extracellular fluids. In this review, we present an in-depth analysis of microarray-based gene expression profiles available for microdissected mouse distal nephron segments, i.e., the distal convoluted tubule (DCT) and the connecting tubule (CNT), and for the cortical portion of the collecting duct (CCD) (Zuber et al., 2009). Classification of expressed transcripts in 14 major functional gene categories demonstrated that all principal proteins involved in maintaining of salt and water balance are represented by highly abundant transcripts. However, a significant number of transcripts belonging, for instance, to categories of G protein-coupled receptors (GPCR) or serine-threonine kinases exhibit high expression levels but remain unassigned to a specific renal function.
    [Show full text]
  • Pediatric Hearing Loss and Cochlear Implant Update Disclosure
    3/27/2014 Pediatric Hearing Loss and Cochlear Implant Update David H. Chi, MD Children’s Hospital of Pittsburgh Medical Director, Hearing Center April 25, 2014 Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA Disclosure • Nothing to disclose Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA Learning Objectives 1. Review etiologies and various presentations of pediatric hearing loss. 2. Select appropriate workup and recognize findings that lead to a decision for cochlear implant. 3. Discuss surgery, plan of care, and the PA/NP role in followup for pediatric CI patients. Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA 1 3/27/2014 Why is early detection and treatment of sensorineural hearing loss so important? • Hearing loss is the most frequent birth condition. Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA Incidence per 10,000 of Congenital Defects/Diseases 40 30 30 20 12 11 10 6 5 2 1 0 Epidemiology • 1‐3 of 1,000 live births with moderate to severe hearing loss • Approximately 12,000 infants born annually in the U.S. with SNHI – 33 babies / day • 90% of deaf genetic kids / hearing parents Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA 2 3/27/2014 Why is early detection and treatment of sensorineural hearing loss so important? • Hearing loss is the most frequent birth condition • Undetected hearing loss has important negative consequences. Fourth Annual ENT for the PA-C | April 24-27, 2014 | Pittsburgh, PA Reading Comprehension Scores of Hearing and Deaf Students 10.0 9.0 8.0 7.0 6.0 Deaf 5.0 Hearing 4.0 3.0 2.0 1.0 Grade Equivalents 8 9 10 11 12 13 14 15 16 17 18 Age in Years Schildroth, A.
    [Show full text]
  • Prestin Is the Motor Protein of Cochlear Outer Hair Cells
    articles Prestin is the motor protein of cochlear outer hair cells Jing Zheng*, Weixing Shen*, David Z. Z. He*, Kevin B. Long², Laird D. Madison² & Peter Dallos* * Auditory Physiology Laboratory (The Hugh Knowles Center), Departments of Neurobiology and Physiology and Communciation Sciences and Disorders, Northwestern University, Evanston, Illinois 60208, USA ² Center for Endocrinology, Metabolism, and Molecular Medicine, Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA ............................................................................................................................................................................................................................................................................ The outer and inner hair cells of the mammalian cochlea perform different functions. In response to changes in membrane potential, the cylindrical outer hair cell rapidly alters its length and stiffness. These mechanical changes, driven by putative molecular motors, are assumed to produce ampli®cation of vibrations in the cochlea that are transduced by inner hair cells. Here we have identi®ed an abundant complementary DNA from a gene, designated Prestin, which is speci®cally expressed in outer hair cells. Regions of the encoded protein show moderate sequence similarity to pendrin and related sulphate/anion transport proteins. Voltage-induced shape changes can be elicited in cultured human kidney cells that express prestin. The mechanical response of outer hair cells
    [Show full text]
  • Sudden Sensorineural Hearing Loss and Polymorphisms in Iron Homeostasis Genes: New Insights from a Case-Control Study
    Hindawi Publishing Corporation BioMed Research International Volume 2015, Article ID 834736, 10 pages http://dx.doi.org/10.1155/2015/834736 Research Article Sudden Sensorineural Hearing Loss and Polymorphisms in Iron Homeostasis Genes: New Insights from a Case-Control Study Alessandro Castiglione,1 Andrea Ciorba,2 Claudia Aimoni,2 Elisa Orioli,3 Giulia Zeri,3 Marco Vigliano,3 and Donato Gemmati3 1 Department of Neurosciences-Complex Operative Unit of Otorhinolaryngology and Otosurgery, University Hospital of Padua, Via Giustiniani 2, 35128 Padua, Italy 2ENT & Audiology Department, University Hospital of Ferrara, Via Aldo Moro 8, 44124 Cona, Ferrara, Italy 3Centre for Haemostasis & Thrombosis, Haematology Section, Department of Medical Sciences, University of Ferrara, 44100 Ferrara, Italy Correspondence should be addressed to Alessandro Castiglione; [email protected] Received 15 September 2014; Revised 15 December 2014; Accepted 6 January 2015 Academic Editor: Song Liu Copyright © 2015 Alessandro Castiglione et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. Even if various pathophysiological events have been proposed as explanations, the putative cause of sudden hearing loss remains unclear. Objectives. To investigate and to reveal associations (if any) between the main iron-related gene variants and idiopathic sudden sensorineural hearing loss.
    [Show full text]
  • Frontiersin.Org 1 April 2015 | Volume 9 | Article 123 Saunders Et Al
    ORIGINAL RESEARCH published: 28 April 2015 doi: 10.3389/fnins.2015.00123 Influx mechanisms in the embryonic and adult rat choroid plexus: a transcriptome study Norman R. Saunders 1*, Katarzyna M. Dziegielewska 1, Kjeld Møllgård 2, Mark D. Habgood 1, Matthew J. Wakefield 3, Helen Lindsay 4, Nathalie Stratzielle 5, Jean-Francois Ghersi-Egea 5 and Shane A. Liddelow 1, 6 1 Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, Australia, 2 Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark, 3 Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia, 4 Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland, 5 Lyon Neuroscience Research Center, INSERM U1028, Centre National de la Recherche Scientifique UMR5292, Université Lyon 1, Lyon, France, 6 Department of Neurobiology, Stanford University, Stanford, CA, USA The transcriptome of embryonic and adult rat lateral ventricular choroid plexus, using a combination of RNA-Sequencing and microarray data, was analyzed by functional groups of influx transporters, particularly solute carrier (SLC) transporters. RNA-Seq Edited by: Joana A. Palha, was performed at embryonic day (E) 15 and adult with additional data obtained at University of Minho, Portugal intermediate ages from microarray analysis. The largest represented functional group Reviewed by: in the embryo was amino acid transporters (twelve) with expression levels 2–98 times Fernanda Marques, University of Minho, Portugal greater than in the adult. In contrast, in the adult only six amino acid transporters Hanspeter Herzel, were up-regulated compared to the embryo and at more modest enrichment levels Humboldt University, Germany (<5-fold enrichment above E15).
    [Show full text]
  • Expression of Prestin-Homologous Solute Carrier (SLC26) in Auditory Organs of Nonmammalian Vertebrates and Insects
    Expression of prestin-homologous solute carrier (SLC26) in auditory organs of nonmammalian vertebrates and insects Thomas Weber*†, Martin C. Go¨ pfert†‡, Harald Winter*, Ulrike Zimmermann*, Hanni Kohler§, Alexandra Meier§, Oliver Hendrich*, Karin Rohbock*, Daniel Robert‡, and Marlies Knipper*¶ *Department of Otolaryngology, Tu¨bingen Hearing Research Center, Molecular Neurobiology, Elfriede-Aulhorn-Strasse 5, D-72076 Tu¨bingen, Germany; ‡School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, United Kingdom; and §Institute of Zoology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland Edited by Mary Jane West-Eberhard, Smithsonian Tropical Research Institute, Ciudad Universitaria, Costa Rica, and approved April 26, 2003 (received for review January 29, 2003) Prestin, the fifth member of the anion transporter family SLC26, is plasia sulfate transporter (DTDST, SLC26A2) (17), and the outer hair cell molecular motor thought to be responsible for SLC26A6 (18). Functionally, SLC26 proteins have been pro- Ϫ͞ Ϫ active mechanical amplification in the mammalian cochlea. Active posed to serve as chloride-iodide transporters, Cl HCO3 amplification is present in a variety of other auditory systems, yet exchangers, or sulfate transporters and, in the case of prestin, the prevailing view is that prestin is a motor molecule unique to motors (9, 14). mammalian ears. Here we identify prestin-related SLC26 proteins Using a 723-bp clone derived from the rat prestin cDNA that are expressed in the auditory organs of nonmammalian sequence covering the deduced amino acids between exons 11 vertebrates and insects. Sequence comparisons revealed the pres- and 18, we have generated riboprobes for in situ hybridization. ence of SLC26 proteins in fish (Danio, GenBank accession no.
    [Show full text]
  • Proximal Tubule H-Ferritin Mediates Iron Trafficking in Acute Kidney Injury
    Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury Abolfazl Zarjou, … , Lukas C. Kuhn, Anupam Agarwal J Clin Invest. 2013;123(10):4423-4434. https://doi.org/10.1172/JCI67867. Research Article Nephrology Ferritin plays a central role in iron metabolism and is made of 24 subunits of 2 types: heavy chain and light chain. The ferritin heavy chain (FtH) has ferroxidase activity that is required for iron incorporation and limiting toxicity. The purpose of this study was to investigate the role of FtH in acute kidney injury (AKI) and renal iron handling by using proximal tubule– specific FtH-knockout mice (FtHPT–/– mice). FtHPT–/– mice had significant mortality, worse structural and functional renal injury, and increased levels of apoptosis in rhabdomyolysis and cisplatin-induced AKI, despite significantly higher expression of heme oxygenase-1, an antioxidant and cytoprotective enzyme. While expression of divalent metal transporter-1 was unaffected, expression of ferroportin (FPN) was significantly lower under both basal and rhabdomyolysis-induced AKI in FtHPT–/– mice. Apical localization of FPN was disrupted after AKI to a diffuse cytosolic and basolateral pattern. FtH, regardless of iron content and ferroxidase activity, induced FPN. Interestingly, urinary levels of the iron acceptor proteins neutrophil gelatinase–associated lipocalin, hemopexin, and transferrin were increased in FtHPT–/– mice after AKI. These results underscore the protective role of FtH and reveal the critical role of proximal tubule FtH in iron trafficking in AKI. Find the latest version: https://jci.me/67867/pdf Research article Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury Abolfazl Zarjou,1 Subhashini Bolisetty,1 Reny Joseph,1 Amie Traylor,1 Eugene O.
    [Show full text]
  • A Single-Nucleus RNA-Sequencing Pipeline to Decipher the Molecular Anatomy and Pathophysiology of Human Kidneys
    ARTICLE https://doi.org/10.1038/s41467-019-10861-2 OPEN A single-nucleus RNA-sequencing pipeline to decipher the molecular anatomy and pathophysiology of human kidneys Blue B. Lake 1,6, Song Chen1,6, Masato Hoshi 2,6, Nongluk Plongthongkum1,3,6, Diane Salamon2,4, Amanda Knoten2, Anitha Vijayan2, Ramakrishna Venkatesh5, Eric H. Kim5, Derek Gao1, Joseph Gaut2, Kun Zhang 1 & Sanjay Jain 2,4 1234567890():,; Defining cellular and molecular identities within the kidney is necessary to understand its organization and function in health and disease. Here we demonstrate a reproducible method with minimal artifacts for single-nucleus Droplet-based RNA sequencing (snDrop-Seq) that we use to resolve thirty distinct cell populations in human adult kidney. We define molecular transition states along more than ten nephron segments spanning two major kidney regions. We further delineate cell type-specific expression of genes associated with chronic kidney disease, diabetes and hypertension, providing insight into possible targeted therapies. This includes expression of a hypertension-associated mechano-sensory ion channel in mesangial cells, and identification of proximal tubule cell populations defined by pathogenic expression signatures. Our fully optimized, quality-controlled transcriptomic profiling pipeline constitutes a tool for the generation of healthy and diseased molecular atlases applicable to clinical samples. 1 Department of Bioengineering, University of California, San Diego, La Jolla 92093 CA, USA. 2 Department of Medicine (Renal), Pathology and Immunology, Washington University School of Medicine, St. Louis 63110 MO, USA. 3 Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology, Thonburi 10140 Bangkok, Thailand. 4 Kidney Translational Research Center (KTRC), Washington University School of Medicine, St.
    [Show full text]