Potential Impact of Genome Exclusion by Alien Species in the Hybridogenetic Water Frogs (Pelophylax Esculentus Complex)

Total Page:16

File Type:pdf, Size:1020Kb

Potential Impact of Genome Exclusion by Alien Species in the Hybridogenetic Water Frogs (Pelophylax Esculentus Complex) See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/227011487 Potential impact of genome exclusion by alien species in the hybridogenetic water frogs (Pelophylax esculentus complex) Article in Biological Invasions · January 2009 DOI: 10.1007/s10530-009-9427-2 CITATIONS READS 49 599 2 authors, including: Robert Jooris Research Institute for Nature and Forest 28 PUBLICATIONS 161 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Analysis of scutellation in populations of Cerastes vipera (Linnaeus, 1758): Scale characters co-vary with environmental temperature View project INVEXO View project All content following this page was uploaded by Robert Jooris on 25 April 2016. The user has requested enhancement of the downloaded file. Biol Invasions (2010) 12:1–13 DOI 10.1007/s10530-009-9427-2 PERSPECTIVES AND PARADIGMS Potential impact of genome exclusion by alien species in the hybridogenetic water frogs (Pelophylax esculentus complex) G. Holsbeek Æ R. Jooris Received: 23 January 2008 / Accepted: 12 January 2009 / Published online: 30 January 2009 Ó Springer Science+Business Media B.V. 2009 Abstract Globalization and increasing human water frogs in Western Europe have become frequent impact on natural aquatic systems have facilitated the last decade leading to rapid expansion of the the movement of species and the establishment of range of the marsh frog P. ridibundus. Subsequent nonindigenous species enhancing hybridisation hybridisation of the exotic P. ridibundus may opportunities between naturally allopatric species. dramatically affect the viability and maintenance of In this review, we focus on a special case of natural hybrid water frog populations throughout Europe. hybrid speciation and the consequences of recent Interestingly, the impact of this introduced species anthropogenic hybridisation in the water frog com- may differ depending on their geographic origin, plex (Pelophylax esculentus complex), which consists which defines the ability to induce genome elimina- of two parental species, Pelophylax lessonae and tion. This may result in fertile or sterile hybrids, Pelophylax ridibundus and a hybrid taxon. The making global conservation guidelines challenging. hybrid water frogs reproduce hybridogenetically and We predict a severe genetic and ecological impact of eliminate the genome of the syntopic water frog nonindigenous P. ridibundus prompting for strict species. Although the actual cause triggering chro- conservation measures to reduce species transloca- mosome exclusion remains elusive, it has been tions and for studies on the geographic origin of proposed that chromosome elimination takes place exotic frog species. prior to meiosis and may involve enzymatic degra- dation of the discarded genome. Translocations of Keywords European water frogs Á Hybrid complex Á Hybridisation Á Pelophylax ridibundus Á Translocations G. Holsbeek (&) Laboratory of Aquatic Ecology and Evolutionary Biology, Katholieke Universiteit Leuven, Ch. Deberiotstraat, 32, 3000 Louvain, Belgium Introduction e-mail: [email protected] Translocations of alien species, habitat modifications G. Holsbeek Laboratory of Animal Diversity and Systematics, and fragmentation are the primary factors that are Katholieke Universiteit Leuven, Ch. Deberiotstraat, believed to contribute to the current increase of 32, 3000 Louvain, Belgium hybridisation rates between naturally allopatric spe- cies (Allendorf et al. 2001; Frankham et al. 2002; R. Jooris Natuurpunt, Michiel Coxiestraat 11, Rhymer and Simberloff 1996). Global trade has 2800 Mechlin, Belgium facilitated the movement of species outside their 123 2 G. Holsbeek, R. Jooris natural environment and enhanced the establishment frog species (Arano et al. 1995; Grossenbacher 1988; of nonindigenous species in new habitats (Mooney Holsbeek et al. 2008; Pagano et al. 2001a, 2003; and Cleland 2001), increasingly putting pressure on Vorburger and Reyer 2003). The water frog complex indigenous species already suffering from human- forms a suitable model system to investigate the induced habitat loss and fragmentation (Fahrig 2003; population genetics of alien species and translocation Forester and Machlist 1996; Pimm and Raven 2000). effects in a hybrid complex, because the unique way The establishment of invading species in new habitats of hybridogenetic reproduction allows for very rapid may result in maladaptive hybridisation with autoch- introgression between native and exotic species thonous species and genetic pollution, ultimately (Holsbeek et al. 2008; Pagano et al. 2003). Studies leading to the extinction of native species (Rhymer on hybridisation events through translocation in and Simberloff 1996). Translocation of nonindige- hybridogenetic species are necessary to design more nous species may cause outbreeding depression in suitable conservation policies for these species. In native populations, because reproductive efforts are order to identify and interpret the possible ecological wasted on producing hybrids with reduced fitness or and/or genetic consequences of introductions in the even sterile offspring (Levin et al. 1996; Rhymer and native water frog species, it is crucial to fully Simberloff 1996). Alternatively, hybridisation may understand the hybridogenetic reproduction of the positively influence species diversification in animals water frog complex and the genetic mechanism (Dowling and Secor 1997; Grant and Grant 1992; underlying hybridogenesis. We provide an overview Mooney and Cleland 2001; Seehausen 2004). Inter- of the hybridogenetic reproduction of the water frog specific hybridisation may increase genetic diversity complex. We then discuss the potential impact of more rapidly than through mutations, and populations translocated populations of members of this hybrid with high genetic diversity are expected to be on complex on the native species. average better equipped to cope with and adapt to environmental changes and diseases than populations with lower genetic diversity (Dowling and Secor The water frog complex 1997; Ellstrand and Schierenbeck 2006; Frankham et al. 2002; Seehausen 2004; Tsutsui et al. 2000). The Pelophylax esculentus complex, formerly known Since natural hybridisation is an evolutionary as Rana esculenta complex (Dubois 1992; Frost et al. process, natural hybrids are believed to be eligible 2006), consists of two parental species, Pelophylax for protection, while hybrids resulting from human ridibundus Pallas 1771 (genotype RR) and Pelophy- actions are not (Allendorf et al. 2001). It is therefore lax lessonae Camerano 1882 (genotype LL), and the of primary importance to distinguish between natural hybrid species P. kl. esculentus Linnaeus 1758 and anthropogenic hybridisation. The consequences (genotype RL, Berger 1988; Graf and Polls Pelaz of natural and anthropogenic hybridisation on native 1989). Whereas other hybridogenetic species are species have been extensively investigated (e.g. characterized by all-female and diploid hybrid pop- Arnold 2004; Grant and Grant 2002; Huxel 1999; ulations, the hybridogenetic water frog complex is Lamont et al. 2003; Mallet 2005; Rieseberg 1997). In unique due to the presence of female as well as male the present review, we focus on a special case, being hybrids (Dubois and Gu¨nther 1982; Graf and Polls anthropogenic hybridisation taking place in a hybrid Pelaz 1989). Multiple fertilisation experiments per- complex that originated from a hybridisation event in formed by Berger (1967) revealed the extraordinary the past. We discuss the water frog complex and reproductive strategy in P. kl. esculentus. The enquire to what extent hybridisation through translo- hybridogenetic nature of reproduction in the hybrid cation may have an effect in hybrid populations frogs of this complex (Berger 1973) was recognized a where natural hybridisation has occurred or is still few years later after the definition of the term occurring. Are hybrid species at risk as a result of ‘hybridogenesis’ by Schultz (1969). anthropogenic hybridisation? Natural interspecific hybrid lineages that persist The native water frog populations of Western and through hybridogenetic reproduction are widespread Central Europe have recently been subjected to among the European water frogs (Berger 1988; Graf multiple and recurrent introductions of other water and Polls Pelaz 1989). Hybrid gametogenesis in the 123 Hybridisation in a hybrid complex 3 P. esculentus complex shows peculiar geographical offspring of P. kl. esculentus inter se matings and variation. The hybridogenetic system can be catego- the operation of the ratchet (Berger 1967; Binkert rized into three major breeding strategies (Fig. 1): et al. 1982; Ogielska 1994b; Uzzell et al. 1980; the P. lessonae—P. kl. esculentus (L–E) system, the Vorburger 2001c). Vorburger (2001a, b) and Geux P. ridibundus—P. kl. esculentus (R–E) system, and et al. (2002) also revealed that P. ridibundus tadpoles all-hybrid (E) populations (Graf and Polls Pelaz from matings between P. kl. esculentus individuals 1989). The L–E system (P. lessonae—P. kl. escu- with two different ridibundus genomes survived. lentus; Fig. 1), which inhabits Western Europe, is the Even though most offspring of matings between two most widespread hybridogenetic system, and its P. kl. esculentus with the same ridibundus genomes breeding strategy has been studied to the greatest are nonviable, a low percentage (3%) of viable detail. In this
Recommended publications
  • Genome Analysis of Ranavirus Frog Virus 3Isolated from American Bullfrog
    www.nature.com/scientificreports OPEN Genome analysis of Ranavirus frog virus 3 isolated from American Bullfrog (Lithobates catesbeianus) in South America Marcelo Candido 1*, Loiane Sampaio Tavares1, Anna Luiza Farias Alencar2, Cláudia Maris Ferreira3, Sabrina Ribeiro de Almeida Queiroz1, Andrezza Maria Fernandes1 & Ricardo Luiz Moro de Sousa1 Ranaviruses (family Iridoviridae) cause important diseases in cold-blooded vertebrates. In addition, some occurrences indicate that, in this genus, the same virus can infect animals from diferent taxonomic groups. A strain isolated from a Ranavirus outbreak (2012) in the state of Sao Paulo, Brazil, had its genome sequenced and presented 99.26% and 36.85% identity with samples of Frog virus 3 (FV3) and Singapore grouper iridovirus (SGIV) ranaviruses, respectively. Eight potential recombination events among the analyzed sample and reference FV3 samples were identifed, including a recombination with Bohle iridovirus (BIV) sample from Oceania. The analyzed sample presented several rearrangements compared to FV3 reference samples from North America and European continent. We report for the frst time the complete genome of Ranavirus FV3 isolated from South America, these results contribute to a greater knowledge related to evolutionary events of potentially lethal infectious agent for cold-blooded animals. Among the major viral pathogens, worldwide distributed and recent history, Ranavirus (Rv) is highlighted, on which, studies in South America remain limited. Rv are part of the family Iridoviridae that is divided into fve genera, of which three are considered more relevant by infectious severity in aquatic and semi-aquatic animals: Lymphocystivirus, Megalocytivirus and Rv. Tey are enveloped and unenveloped viruses, showing double-stranded DNA whose genome ranges from 103 to 220 kbp.
    [Show full text]
  • The Herpetological Journal
    Volume 8, Number 1 January 1998 ISSN 0268-0130 THE HERPETOLOGICAL JOURNAL man African Published by the Indexed in BRITISH HERPETOLOGICAL SOCIETY Current Contents The Herpetologica/ Journal is published quarterly by the British Herpetological Society and is issued freeto members. Articles are listed in Current Awareness in Biological Sciences, Current Contents, Science Citation Index and Zoological Record. Applications to purchase copies and/or for details of membership should be made to the Hon. Secretary, British Herpetological Society, The Zoological Society of London, Regent's Park, London NWI 4RY, UK. Instructions to authors are printed inside the back cover. All contributions should be addressed to the Editor (address below). Editor: Richard A. Griffiths, The Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent CT2 7NJ, UK Associate Editor: Leigh Gillett Editorial Board: Pim Arntzen (Aporto) Donald Broadley (Zimbabwe) John Cooper (Tanzania) John Davenport (Millport) Andrew Gardner (Oman) Tim Hall iday (Milton Keynes) Michael Klemens (New York) Colin McCarthy (London) Andrew Milner (London) Henk Strijbosch (Nijmegen) Richard Tinsley (Bristol) BRITISH HERPETOLOGICAL SOCIETY Copyright It is a fundamental condition that submitted manuscripts have not been published and will not be simultaneously submitted or published elsewhere. By submitting a manuscript, the authors agree that the copyright for their article is transferred to the publisher ifandwhen the article is accepted forpubli cation. The copyright covers the · exclusive rights to reproduce and distribute the article, including reprints and photographic reproductions. Permission for any such activities must be sought in advance from the Editor. ADVERTISEMENTS The Herpetological Journal accepts advertisements subj ect to approval of contents by the Editor, to whom enquiries should be addressed.
    [Show full text]
  • MASS OCCURRENCE of POLYPLOID GREEN FROGS (Rana Esculenta COMPLEX) in EASTERN UKRAINE
    CORE Metadata, citation and similar papers at core.ac.uk Russian Journal of Herpetology Vol. 11, No. 3, 2004, pp. 194 – 213 MASS OCCURRENCE OF POLYPLOID GREEN FROGS (Rana esculenta COMPLEX) IN EASTERN UKRAINE Leo J. Borkin,1 Alexey V. Korshunov,2 Georgiy A. Lada,1,3 Spartak N. Litvinchuk,4 Jury M. Rosanov,4 Dmitry A. Shabanov,2 and Alexander I. Zinenko5 Submitted August 20, 2004. In eastern Ukraine, the Rana esculenta complex consists of three species: R. lessonae, R. ridibunda, and hybrid R. esculenta. The first one was rare, whereas two latter frog taxa were very common. Based on DNA flow cyto- metry, mass occurrence of the triploidy in Rana esculenta has been revealed in 14 localities of Kharkov, Do- netsk, and Lugansk Provinces. One hybrid specimen from Kharkov Province was tetraploid. All polyploids were recorded along the middle part of Seversky Donets River (above 450 km). Triploids comprised two groups with different genome composition (LLR and LRR), and were found in three types of population systems (E, R–E, and L–E–R). Geographic distribution of polyploidy in European green frogs is briefly outlined. Different meth- ods of ploidy level identification are discussed. The chromosome count and nuclear DNA cytometry provide the most reliable data. Keywords: hybridogenetic frogs, triploidy, tetraploidy, Rana esculenta complex, DNA flow cytometry, Ukraine. INTRODUCTION ous kinds (e.g., Uzzell et al., 1977, 1980; Borkin et al., 1987; Vinogradov et al., 1988, 1990, 1991; Graf and Polls Pelaz, 1989a; Berger, 1990; Bucci et al., 1990; Three taxa of European green frogs (Rana esculenta Günther, 1990; Tunner and Heppich-Tunner, 1991; Hotz complex) are distributed in eastern Europe.
    [Show full text]
  • Leaping to the Rescue Ecological Service of Frogs SPECIAL EDITION Collaborating for Conservation Success Million Dollar Fund
    Issue number 109 (January 2014) ISSN: 1026-0269 eISSN: 1817-3934 Volume 22, number 1 www.amphibians.orgFrogLog Promoting Conservation, Research and Education for the World’s Amphibians SPECIAL EDITION Collaborating for Conservation Success Million Dollar Fund for Frogs 2014 Year of the Salamander Recent Publications And Much More! Fire Salamander (Salamandra salamandra) Photo: Jelger Herder. Leaping to the Ecological Service Rescue of Frogs FrogLog 22 (1), Number 109 (January 2014) | 1 FrogLog CONTENTS 3 Editorial NEWS FROM THE AMPHIBIAN COMMUNITY 4 Leaping to the Rescue: Million Dollar Fund for Frogs 18 Pre-Eminent Authority on Amphibians and Reptiles 6 State of the Salamander Publishes the Frog Reference Work of the Decade 14 Now Available: Synopsis of Evidence on Global 19 Foundation of a National Amphibian Genome Bank and Amphibian Conservation Oversight Group Creation 16 1% for the Planet: Hop to It! 20 Amazing Amphibian: The Gorgan Mountain Salamander 18 Announcing the 2014 Year of the Salamander logo! SPECIAL EDITION— Collaborating for Conservation Success 22 Conservation Actions for Wielkopolska Region (Poland) 54 Mission Mantella—A Story About Amphibians in Chiapas State, 40 Six Years of Active Conservation of the First Wild Encounter with One’s Mexico Amphibians in the City of Poznan, Favorite Animal 25 Collaboration for Conservation Poland 57 An Ecological Service of Frogs: Success in the Netherlands 42 We Get By With A Little Help From Tadpoles Feeding on Dengue 28 Strengthening Partnerships Our Friends… Mosquito Eggs and
    [Show full text]
  • Climatic Effects on Population Dynamics and Hybridization of a Rare Grasshopper Species
    Climatic effects on population dynamics and hybridization of a rare grasshopper species Dem Fachbereich VI (Raum- und Umweltwissenschaften) der Universität Trier zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation Rohde, Katja Betreuender: PD Dr. Axel Hochkirch Berichterstattende: PD Dr. Axel Hochkirch, Prof. Dr. Alexander Proelß, Prof. Dr. Günter Köhler (extern) Datum der wissenschaftlichen Aussprache: 16.07.2015 Trier, 2015 “An understanding of the natural world and what’s in it is a source of not only a great curiosity but great fulfillment.” - David Attenborough - Ch. montanus ♀ In loving memory to my parents Table of Contents Acknowledgements ........................................................................................... i Preliminary remarks ...................................................................................... iii General Introduction ...................................................................................... 1 Chapter I ........................................................................................................ 26 Sex-specific phenotypic plasticity in response to the trade-off between developmental time and body size supports the dimorphic niche hypothesis ......................................... 26 Chapter II ....................................................................................................... 46 Wide prevalence of hybridization in a rare wetland grasshopper increases genetic diversity in its widespread
    [Show full text]
  • Cross-Specific Mortality and Differential Occurrence of Aberrant Phenotypes in Tadpoles of the Pelophylax Kl
    SALAMANDRA 55(2) 127–130 15 May 2019 CorrespondenceISSN 0036–3375 Correspondence Cross-specific mortality and differential occurrence of aberrant phenotypes in tadpoles of the Pelophylax kl. esculentus hemiclone assortment Alessandro Bolis, Daniele Pellitteri-Rosa & Adriana Bellati Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy Corresponding author: Adriana Bellati, e-mail: [email protected] Manuscript received: 23 September 2018 Accepted: 14 January 2019 by Arne Schulze Morphological malformations are one of the factors con- gano et al. 1997), thus masking deleterious recessive alle- tributing to amphibian declines worldwide. There is grow- les carried by the non-recombinant R genome via perma- ing evidence that these are boosted by altered ecological nent heterozygosity with the host parental species (Berger conditions like increased UV-B radiation, parasite infec- 1967, Graf & Müller 1979, Graf & Polls-Pelaz 1989, tions, and pollution (e.g., Blaustein et al. 1997, Johnson Vorburger 2001). et al. 2001). Recent advances in molecular techniques to- As a result, natural mating between two hybrids in L-E day facilitate more in-depth studies of inbreeding, i.e., the systems typically leads to non-viable RR tadpoles (individ- union of consanguineous gametes that can lead to a signifi- uals that carry two clonally transmitted ridibundus genom- cant decrease in fitness by favouring the expression of reces- es), as is evidenced by the absence of adult, and in most sive deleterious alleles in homozygotes (Keller & Waller cases of metamorphosed juvenile P. ridibundus in L-E sys- 2002, Charlesworth & Willis 2009). Such reduction in tems throughout their range, and the production of non- genetic diversity can similarly promote the occurrence of viable offspring, with high mortality rates during the early morphological malformations in natural populations of tadpole developmental stages (97%; Berger 1967, Graf & many different taxa like fishesAfonso ( et al.
    [Show full text]
  • An Extinct Vertebrate Preserved by Its Living Hybridogenetic Descendant
    www.nature.com/scientificreports OPEN An extinct vertebrate preserved by its living hybridogenetic descendant Received: 28 June 2017 Sylvain Dubey1,2 & Christophe Dufresnes3 Accepted: 20 September 2017 Hybridogenesis is a special mode of hybrid reproduction where one parental genome is eliminated Published: xx xx xxxx and the other is transmitted clonally. We propose that this mechanism can perpetuate the genome of extinct species, based on new genetic data from Pelophylax water frogs. We characterized the genetic makeup of Italian hybridogenetic hybrids (P. kl. hispanicus and esculentus) and identifed a new endemic lineage of Eastern-Mediterranean origin as one parental ancestor of P. kl. hispanicus. This taxon is nowadays extinct in the wild but its germline subsists through its hybridogenetic descendant, which can thus be considered as a “semi living fossil”. Such rare situation calls for realistic eforts of de- extinction through selective breeding without genetic engineering, and fuels the topical controversy of reviving long extinct species. “Ghost” species hidden by taxa of hybrid origin may be more frequent than suspected in vertebrate groups that experienced a strong history of hybridization and semi-sexual reproduction. In a context of the worldwide mass extinction of biodiversity, the hopes for rediscovering or reviving extinct wildlife have become a popular scientifc fantasy1,2. So-called “de-extinction” programs, like the “mammophant” (mammoth × elephant in vitro hybrid) or the Lazarus project (cloning of the extinct platypus frog from frozen specimens) are taking this fantasy to the experimental level, following recent advances in cloning biotechnol- ogy3–7. Here we present a new opportunity: the preservation of the genome of an extinct species through hybri- dogenesis, a special reproductive mode of hybrids.
    [Show full text]
  • Phylogenetic Systematics Phylogenetic Systematics
    FoundationsFoundations ofof PhylogeneticPhylogenetic SystematicsSystematics Johann-Wolfgang Wägele Verlag Dr. Friedrich Pfeil • München 1 Johann-Wolfgang Wägele Foundations of Phylogenetic Systematics 2 Bibliographic Information published by Die Deutschen Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de. Original Title: Grundlagen der Phylogenetischen Systematik, first published by Verlag Dr. Friedrich Pfeil, München, 2000 2nd, revised edition 2001. Copyright © 2005 by Verlag Dr. Friedrich Pfeil, München All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Publisher, Verlag Dr. Friedrich Pfeil, Wolfratshauser Str. 27, D-81379 München. Druckvorstufe: Verlag Dr. Friedrich Pfeil, München CTP-Druck: grafik + druck GmbH Peter Pöllinger, München Buchbinder: Thomas, Augsburg ISBN 3-89937-056-2 Printed in Germany Verlag Dr. Friedrich Pfeil, Wolfratshauser Straße 27, D-81379 München, Germany Tel.: + 49 - (0)89 - 74 28 270 • Fax: + 49 - (0)89 - 72 42 772 • E-Mail: [email protected] www.pfeil-verlag.de J.-W. Wägele: Foundations of Phylogenetic Systematics 3 Foundations of Phylogenetic Systematics Johann-Wolfgang Wägele Translated from the German second edition by C. Stefen, J.-W. Wägele, and revised by B. Sinclair Verlag Dr. Friedrich Pfeil München, January 2005 ISBN 3-89937-056-2 4 J.-W. Wägele: Foundations of Phylogenetic Systematics 5 Contents Introduction ..............................................................................................................................................................
    [Show full text]
  • XV OPTIMA Meeting June 6-11, 2016 MONTPELLIER
    XV OPTIMA Meeting June 6-11, 2016 MONTPELLIER Abstracts Oral presentations Poster presentations Montpellier (France), 6-11 June 2016 OPTIMA (Organization for the Phyto-Taxonomic Investigation of the Mediterranean Area) XV OPTIMA MEETING Montpellier (France), 6-11 June 2016 Abstracts Oral presentations, Poster presentations Editors: Frédéric Médail & Gianniantonio Domina Technical editing: Sophie Dubois, Laurence Meslin & Gianniantonio Domina Cover design: Laurence Meslin Logo design: Audrey Tocco May 2016 JF Impression, 296 rue Patrice Lumumba, 34075 Montpellier (France). Copyright © OPTIMA 2016. Editions by Orto Botanico ed Herbarium Mediterraneum, Università degli Studi di Palermo, Palermo, Italy. ISBN 978-88-903108-7-4 Organizing Commitee Daniel Mathieu, President and founder of Tela Botanica, Montpellier, France James Molina, Conservatoire Botanique National Méditerranéen de Porquerolles, Montpellier, France Eric Imbert, University of Montpellier, Institut des Sciences de l’Evolution, Montpellier, France Errol Véla, University of Montpellier, Département Biologie Écologie AMAP, Montpellier, France Sophie Dubois, Secretary of OPTIMA 2016, Montpellier, France Scientific Commitee Frédéric Médail, Marseille, France (President) Gianniantonio Domina, Palermo, Italy (Secretary) Alex Baumel, Marseille, France Magda Bou Dagher Kharrat, Beyrouth, Liban Sarah Brunel, Rome, Italy Ana Rosa Burgaz Moreno, Madrid, Spain K. Hüsnü Can Başer, Eskisehir, Turkey Katia Diadema, Hyères, France Elisabeth Dodinet, Saint-Laurent d'Olt, France Guillaume Fried,
    [Show full text]
  • Sixteen New Polymorphic Microsatellite Loci in the Green Frog
    Species assignment in the Pelophylax ridibundus x P. perezi hybridogenetic complex based on 16 newly characterized microsatellite markers Gregorio Sánchez-Montes1,2, Ernesto Recuero3, Jorge Gutiérrez-Rodríguez2, Ivan Gomez-Mestre4 and Iñigo Martínez-Solano 4*, 5, 6 1 Departamento de Biología Ambiental, Facultad de Ciencias, Universidad de Navarra, c/ Irunlarrea, 1, 31008 Pamplona, Spain 2 Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal, 2, 28006 Madrid, Spain 3 Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ap. Postal 70-275, Ciudad Universitaria, México DF, 04510, Mexico 4 Ecology, Evolution, and Development Group, Department of Wetland Ecology, Doñana Biological Station, CSIC, c/ Américo Vespucio, s/n, 41092 Seville, Spain 5 Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, s/n, 13005 Ciudad Real, Spain 6 CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal *corresponding author Present address: Department of Wetland Ecology, Doñana Biological Station, CSIC, c/ Américo Vespucio, s/n, 41092 Seville, Spain. E-mail: [email protected], Phone: (+34) 954 232 340, Fax: (+34) 954 621 125 Running title: Pelophylax microsatellites and hybridisation Abstract Pelophylax perezi is an Iberian green waterfrog with high tolerance to habitat alteration that at times shows local population growth and demographic expansion, even where other species decline. However, pond destruction, invasive predators, and hybridisation with other European waterfrog species (P. ridibundus) threaten many of its populations across its range. Hybrids of P. perezi and P. ridibundus (P. kl. grafi) can breed successfully with the former parental species after discarding the whole P.
    [Show full text]
  • (Genus Ambystoma) Present a New Reproductive Mode for Eukaryotes
    119 Unisexual salamanders (genus Ambystoma) present a new reproductive mode for eukaryotes James P. Bogart, Ke Bi, Jinzong Fu, Daniel W.A. Noble, and John Niedzwiecki Abstract: To persist, unisexual and asexual eukaryotes must have reproductive modes that circumvent normal bisexual re- production. Parthenogenesis, gynogenesis, and hybridogenesis are the modes that have generally been ascribed to various unisexuals. Unisexual Ambystoma are abundant around the Great Lakes region of North America, and have variously been described as having all 3 reproductive modes. Diploid and polyploid unisexuals have nuclear genomes that combine the haploid genomes of 2 to 4 distinct sexual species, but the mtDNA is unlike any of those 4 species and is similar to another species, Ambystoma barbouri. To obtain better resolution of the reproductive mode used by unisexual Ambystoma and to explore the relationship of A. barbouri to the unisexuals, we sequenced the mitochondrial control and highly variable inter- genic spacer region of 48 ambystomatids, which included 28 unisexuals, representatives of the 4 sexual species and A. bar- bouri. The unisexuals have similar sequences over most of their range, and form a close sister group to A. barbouri, with an estimated time of divergence of 2.4–3.9 million years ago. Individuals from the Lake Erie Islands (Kelleys, Pelee, North Bass) have a haplotype that demonstrates an isolation event. We examined highly variable microsatellite loci, and found that the genetic makeup of the unisexuals is highly variable and that unisexual individuals share microsatellite al- leles with sexual individuals within populations. Although many progeny from the same female had the same genotype for 5 microsatellite DNA loci, there was no indication that any particular genome is consistently inherited in a clonal fashion in a population.
    [Show full text]
  • Reptiles and Amphibians As Targets for Nature Management
    Reptiles and amphibians as targets for nature management 1 Reptiles and amphibians as targets for nature management Promotor: Prof. Dr. H.H.T. Prins Hoogleraar in de Resource Ecology, Wageningen Universiteit Co-promotor: Dr. S.E. van Wieren Universitair Docent, Leerstoelgroep Resource Ecology Group, Wageningen Universiteit Promotiecommissie: Prof. Dr. K.V. Sykora Wageningen Universiteit Dr. H.H. de Iongh Centrum voor Milieukunde, Leiden Dr. F.W.M. Vera Staatsbosbeheer, Driebergen Prof. Dr. Ir. G.M.J. Mohren Wageningen Universiteit 2 Chapter 1. Introduction Reptiles and amphibians as targets for nature management A.H.P. Stumpel PROEFSCHRIFT ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. Dr. Ir. L. Speelman, in het openbaar te verdedigen op dinsdag 9 november 2004 des namiddags te vier uur in de Aula 3 Reptiles and amphibians as targets for nature management Aan Suzette, Evert en Joris Cover: Sand lizard (Lacerta agilis) ISBN 90-8504-116-3 4 Contents Preface 7 1 Introduction 11 2 Biometrical and ecological data from a Netherlands population of Anguis fragilis (Reptilia, Sauria, Anguidae) A.H.P. STUMPEL Published in Amphibia-Reptilia 6: 181-194 (1985) 29 3 Habitat selection and management of the Sand lizard, Lacerta agilis L., at the Utrechtse Heuvelrug, Central Netherlands A.H.P. STUMPEL Published in Mertensiella 1: 122-131 (1988) 45 4 Distribution and present numbers of the tree frog Hyla arborea in Zealand Flanders, the Netherlands (Amphibia, Hylidae) A.H.P. STUMPEL Published in Bijdragen tot de Dierkunde 57(2): 151-163 (1987) 55 5 Characterizing the suitability of new ponds for amphibians A.H.P.
    [Show full text]