Effect of Early Closing of the Inlet Valve on Fuel Consumption And

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Early Closing of the Inlet Valve on Fuel Consumption And Journal of Marine Science and Engineering Article Effect of Early Closing of the Inlet Valve on Fuel Consumption and Temperature in a Medium Speed Marine Diesel Engine Cylinder Vladimir Peli´c 1 , Tomislav Mrakovˇci´c 2,* , Vedran Medica-Viola 2 and Marko Valˇci´c 2 1 Faculty of Maritime Studies, University of Rijeka, Studentska ulica 2, 51000 Rijeka, Croatia; [email protected] 2 Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia; [email protected] (V.M.-V.); [email protected] (M.V.) * Correspondence: [email protected]; Tel.: +385-51-651-520 Received: 3 September 2020; Accepted: 24 September 2020; Published: 26 September 2020 Abstract: The energy efficiency and environmental friendliness of medium-speed marine diesel engines are to be improved through the application of various measures and technologies. Special attention will be paid to the reduction in NOx in order to comply with the conditions of the MARPOL Convention, Annex VI. The reduction in NOx emissions will be achieved by the application of primary and secondary measures. The primary measures relate to the process in the engine, while the secondary measures are based on the reduction in NOx emissions through the after-treatment of exhaust gases. Some primary measures such as exhaust gas recirculation, adding water to the fuel or injecting water into the cylinder give good results in reducing NOx emissions, but generally lead to an increase in fuel consumption. In contrast to the aforementioned methods, the use of an earlier inlet valve closure, referred to in the literature as the Miller process, not only reduces NOx emissions, but also increases the efficiency of the engine in conjunction with appropriate turbochargers. A previously developed numerical model to simulate diesel engine operation is used to analyse the effects of the Miller process on engine performance. Although the numerical model cannot completely replace experimental research, it is an effective tool for verifying the influence of various input parameters on engine performance. In this paper, the effect of an earlier closing of the intake valve and an increase in inlet manifold pressure on fuel consumption, pressure and temperature in the engine cylinder under steady-state conditions is analysed. The results obtained with the numerical model show the justification for using the Miller processes to reduce NOx emissions and fuel consumption. Keywords: marine diesel engine; Miller process; fuel consumption; nitrogen oxides 1. Introduction Maritime transport is extremely important for the exchange of goods at the global level. Although the transport of goods by sea is the most efficient known mode of transport in terms of energy consumption per mile travelled and per tonne of cargo transported, it faces increasing demands in terms of energy efficiency and the reduction in negative environmental impacts. The requirements for reducing air pollution with pollutants from marine power plants are defined in MARPOL (International Convention for the Prevention of Pollution from Ships, 1973, 1978, 1997), Annex VI (Prevention of Air Pollution from Ships, enforced since 19 May 2005). The NOx emission limits for marine diesel engines with a rated power of more than 130 kW are divided into Tiers I, II and III according to the IMO (International Maritime Organisation). The limit values are applied depending on the date of construction date and the area of navigation, as shown in Figure1. J. Mar. Sci. Eng. 2020, 8, 747; doi:10.3390/jmse8100747 www.mdpi.com/journal/jmse J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 2 of 18 applied depending on the date of construction date and the area of navigation, as shown in Figure J.1. Mar. Sci. Eng. 2020, 8, 747 2 of 18 FigureFigure 1.1. NOxx emission limits for marine engines [[1].1]. Tier II refersrefers toto allall shipsships builtbuilt sincesince 2000.2000. Tier IIII isis enforcedenforced sincesince 2011.2011. Due to TierTier II,II, thethe NONOxx emission limits are reduced by up to 21% compared to Tier I. Tier III requires an additional 76% reduction inin emissionsemissions reduction reduction for for ships ships operating operating in in ECA ECA (Emission (Emission Control Control Areas). Areas). Depending Depending on theiron their operating operating area area of navigation, of naviga manytion, many ships areships aff ectedare affected by Tiers by II andTiers III. II Itand is therefore III. It is necessarytherefore tonecessary optimize to the optimize emissions the ofemissi marineons dieselof marine engines. diesel engines. Most merchantmerchant ships ships are are powered powered by a by two-stroke a two-st low-speedroke low-speed diesel enginediesel whoseengine overall whose effi overallciency exceedsefficiency 50% exceeds under 50% certain under operating certain conditions.operating co Medium-speednditions. Medium-speed diesel engines diesel are engines half the are size half at thethe samesize at rated the powersame rated and NO powerx emissions and NO arex considerablyemissions are lower. considerably However, lower. their However, efficiency doestheir notefficiency exceed does 48%. not The exceed advantages 48%. The of medium-speedadvantages of medium-speed diesel engines arediesel particularly engines are pronounced particularly in diesel-electricpronounced in and diesel-electric hybrid systems. and hybrid The slightly systems. higher The specific slightly fuel higher consumption specific fuel of four-stroke consumption diesel of enginesfour-stroke can bediesel compensated engines can by utilizingbe compensated waste heat by ofutilizing the exhaust waste gases heat and of coolingthe exhaust water. gases and coolingIn order water. to meet the environmental requirements for medium-speed diesel engines, various measures are appliedIn order to reduceto meet emissions. the environmentalThese measures requiremen are dividedts for medium-speed into primary and diesel secondary engines, measures. various Primarymeasures measuresare applied involve to reduce modifying emissions. the These process measures in the are engine divided cylinder. into primary Secondary and secondary measures includemeasures. exhaust Primary after-treatment. measures involve Fuel type modifying and quality the alsoprocess have ain significant the engine influence cylinder. on Secondary emissions. Technologiesmeasures include for reducing exhaust NOafter-treax emissionstment. are Fuel listed type in and Table quality1. also have a significant influence on emissions. Technologies for reducing NOx emissions are listed in Table 1. Table 1. NOx emission reduction technologies [2]. Table 1. NOx emission reduction technologies [2]. NOx Emission Reduction Technology Expected Reduction 1NO Two-stagex Emission turbocharger Reduction and Technology Miller process Expected ~40% Reduction 1 2Two-stage Combustion turbocharger process and adjustmentMiller process ~ ~10%40% 2 3Combustion EGR—exhaust process gas adjustment recirculation ~ ~60%10% 3 4EGR—exhaust Higher humidity gas of recirculation the scavenging air~ ~40%60% 5 Adding water to the fuel before injecting ~25% 4 6Higher Direct humidity injection of waterthe scavenging into the cylinder air ~ ~50%40% 5 7Adding SCR—selective water to the fuel catalythic before reduction injecting ~ ~80%25% 6 8Direct Replacing injection liquidof water fuel into with the gaseous cylinder fuel ~ ~85%50% 7 SCR—selective catalythic reduction ~ 80% 8 Replacing liquid fuel with gaseous fuel ~ 85% NOx emission reduction technologies, which are marked 1, 2, 7 and 8 in Table1, have the most favourable impact on energy efficiency and specific fuel oil consumption (SFOC). The implementation of otherNO listedx emission technologies reduction leads technologies, to an increase which in specificare mark fueled consumption.1, 2, 7 and 8 in Table 1, have the most favourableThe adjustment impact ofon the energy combustion efficiency process and in thespecific engine cylinderfuel oil byconsumption increasing the (SFOC). compression The ratioimplementation while simultaneously of other listed reducing technologies the amount leads of to fuel an injected increase per in crankshaftspecific fuel revolution consumption. theoretically enablesThe theadjustment approximately of the constant combustion pressure process of the in combustion the engine process. cylinder Thisby leadsincreasing to lower the compression ratio while simultaneously reducing the amount of fuel injected per crankshaft maximum pressure and a lower maximum temperature, which is beneficial because NOx emissions J. Mar. Sci. Eng. 2020, 8, x FOR PEER REVIEW 3 of 18 revolution theoretically enables the approximately constant pressure of the combustion process. This leads to lower maximum pressure and a lower maximum temperature, which is beneficial because NOx emissions are largely temperature-dependent. By using modern electronically J. Mar. Sci. Eng. 2020, 8, 747 3 of 18 controlled fuel injection systems, this technology does not lead to a significant increase in specific fuel consumption. are largelyThe temperature-dependent.Miller process is specific By usingto the modern early electronicallyclosing of the controlled inlet valves fuel injectionclosing. systems,R. Miller thisinvestigated technology the does influence not lead of to the a significant closing angle increase of the in specific inlet valve fuel consumption.on the temperature at the end of compressionThe Miller processin the cylinder. is specific Early to the closing early closingof the inlet of the valve inlet results valves closing.in additional
Recommended publications
  • Sbd Fuel Injection Assembly and Set up Instructions 2.0L Vauxhall High Specification Taper Throttle Kit
    SBDMotorsport April 2013 SBD FUEL INJECTION ASSEMBLY AND SET UP INSTRUCTIONS 2.0L VAUXHALL HIGH SPECIFICATION TAPER THROTTLE KIT SBD would like to thank you for choosing the taper throttle injection kit. The tapered throttle body system which Richard Jenvey and Steve Broughton of SBD Motorsport have developed back in 1995 for the 2.0L XE originally at that time for a touring car project which has been so successful, even spawning many copies. We decided that the fact that the 2.0L XE was still very popular, that is was time to look at the design again which everything that we had learnt in developing the Hayabusa and Duratec high specification throttle bodies. We contacted Jenvey Dynamics again, who have helped us to develop all our own special throttle body projects over the years and started designing a new intake system to suit the 2.0L XE as well as it’s larger capacity versions, 2.2L, 2.3L, 2.4L & 2.5L which are now being built. The tapered throttle body has a 54mm entry tapering down to 52mm butterfly. The taper then continues on through the throttle body then into the manifold and down to the cylinder head. The port shape we have developed to match up with our high specification CNC ported cylinder head, this means the inlet manifold should not require any porting when mated to one of these cylinder heads. The injectors are now mounted underneath the throttle body pointing at an upwards direction at the correct angle so that upon butterfly opening high gas speed is achieved allowing very fast throttle response.
    [Show full text]
  • Diesel Strategy Overview
    Diesel Strategy Overview Diesel Strategy Overview Status: Confidential Issue Date: 1st Sept 2014 Email: [email protected] Telephone: Tel: +1 (734) 656 0140 Address: Pi Innovo LLC 47023 W. Five Mile Road, Plymouth, MI 48170-3765, USA Incorporated in Delaware 20-5693756 Revision History see version control tool Abstract This document describes the functionality contained in the diesel common rail engine control strategies, discusses where the strategies have been used, and answers common questions customers have about them. Confidential Page 2 of 13 Contents 1. Introduction and Scope 5 2. Software Environment 5 3. Diesel Engine Components 5 4. Control Architecture 6 5. Functional Behavior 7 5.1 Torque Domain 7 5.1.1 Driver Request 7 5.1.2 Idle Speed Control 7 5.1.3 Engine Speed Limiter 7 5.1.4 The Engine Speed Limiter provides rev-limit functionality by reducing torque to provide a smooth limit rather than the sharp limit achieved by cutting cylinders.CAN Torque Requests 7 5.1.5 Engine Loads Model 8 5.1.6 Torque Governor 8 5.2 Air Charge Estimate 8 5.3 Air Controls 8 5.3.1 EGR Demand 8 5.3.2 Boost Pressure Control 9 5.4 Fuel Controls 9 5.4.1 Fuel Rail Pressure Control 9 5.4.2 Injection Quantities to Durations 9 5.4.3 Cylinder Balancing 9 5.4.4 Deceleration Fuel Shut Off 10 5.4.5 Injector Compensation 10 5.5 Miscellaneous Controls 10 5.5.1 Engine Running Mode 10 5.5.2 Glow Plug Controls 10 5.5.3 Cooling Fan Control 10 5.5.4 Manual Calibration Override 10 5.5.5 CAN Communications 11 5.5.6 Diagnostics 11 5.5.6.1 Out of Range 11 Confidential Page 3 of 13 5.5.6.2 Rationality 11 5.5.6.3 Misfire detection 11 6.
    [Show full text]
  • How a Fuel Injection System Works | How a Car Works 10/5/20, 1128 AM How a Fuel Injection System Works
    How a fuel injection system works | How a Car Works 10/5/20, 1128 AM How a fuel injection system works For the engine to run smoothly and efficiently it needs to be provided with the right quantity of fuel /air mixture according to its wide range of demands. A fuel injection system Petrol-engined cars use indirect fuel injection. A fuel pump sends the petrol to the engine bay, and it is then injected into the inlet manifold by an injector. There is either a separate injector for each cylinder or one or two injectors into the inlet manifold. Traditionally, the fuel/air mixture is controlled by the carburettor , an instrument that is by no means perfect. Its major disadvantage is that a single carburettor supplying a four- cylinder https://www.howacarworks.com/basics/how-a-fuel-injection-system-works Page 1 of 7 How a fuel injection system works | How a Car Works 10/5/20, 1128 AM engine cannot give each cylinder precisely the same fuel/air mixture because some of the cylinders are further away from the carburettor than others. One solution is to fit twin-carburettors, but these are difficult to tune correctly. Instead, many cars are now being fitted with fuel-injected engines where the fuel is delivered in precise bursts. Engines so equipped are usually more efficient and more powerful than carburetted ones, and they can also be more economical, as well as having less poisonous emissions . Diesel fuel injection The fuel injection system in petrolengined cars is always indirect, petrol being injected into the inlet manifold or inlet port rather than directly into the combustion chambers .
    [Show full text]
  • Combined Effect of Inlet Manifold Swirl and Piston Head Configuration in a Constant Speed Four Stoke Diesel Engine V
    International Journal of Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-8 Issue-11, September 2019 Combined Effect Of Inlet Manifold Swirl And Piston Head Configuration In A Constant Speed Four Stoke Diesel Engine V. V.NagaDeepthi , K.GovindaRajulu Abstract: The internal combustion engine manifold has a subsystem that supplies the fresh A/F mixture to the engine cylinders where the fuel is combusted. For efficient combustion of charge, the walls of the intake manifold must be smooth / polished to minimize any side resistance. To redesign the inlet port of a small internal combustion engine, to increase the production of turbulence by a swirl. A good swirl promotes more rapid combustion and improves efficiency. The CI engine has a piston shaped flat on the crown and a concave combustion chamber, with this geometry we are driving the engine. But here the A/F ratio mixture cannot mix properly. To avoid this we make piston geometry changes. The main objective of this project is that three new technologies have been adopted here. The first stage is varying the diameter of the convergence - the divergent nozzle. The second stage is the change on the piston head and the Figure 1: Valve Parts of the Inlet and Exhaust last stage is replacing the inlet and exhaust valve with pitch 0.5. Mm to 2 mm and the cut thread depth is 4 mm and three threads The reduced dilution reduces the amount of un burnt per inch. All of these techniques aim to investigate performance mixture/charge inside the chamber which reduces the techniques to increase air flow to achieve improved engine hydrocarbon emissions coming out of the engine.
    [Show full text]
  • 1,120,118, Patented Dec. 8,1914
    E. H. & H. H. ASHLOOK. AUXILIARY AIR INLET DEVICE FOR INTERNAL ‘COMBUSTION ENGINES. APPLICATION FILED NOW 19, 1913. 1,120,118, Patented Dec. 8,1914 Attorneys WTTED STATES PATENT OFFTCE. ERNEST H. ASHLOGK AND HENRY H. ASHLOGK, OF SAN DIEGO, CALIFORNIA. AUXILIARY AIR-INLET DEVICE FOR INTERNAL-COMBUSTION ENGINES. 1,120,118. Speci?cation of Letters Patent. Patented Dec. 8, 1914. Application ?led November 19, 1913. Serial No. 801,910. To all whom it may concern .' through and with which opening my i1n~ Be it known that we, ERNnsT H. AsnLocK, proved device communicates. and HENRY H. AsHLooK, citizens of the An elbow 7 is externally threaded at one United States, residing, at San Diego, in the end as at 8 and to which is secured the yoke 5 county of San Diego and State of Cali 9. The yoke 9 embraces the fuel inlet mani 60 fornia, have invented a new and useful fold 4 therebetwecn and is held rigidly Auxiliary Air-Inlet Device for Internal~ thereto by the curved bolt 10. The extreme . Combustion Engines, of which the follow end of the elbow 7 is beveled as at 11 and ing is a speci?cation. effects an air-tight joint with the side walls of the opening (3 of the fuel inlet manifold. 65 10 This invention relates to an attachment for internal combustion engines and more The remote end of the elbow 7 is also ex particularly to a device for supplying either ternally threaded as at 12 and to which is cold or heated air to the inlet manifold be secured the valve chamber or casing 13.
    [Show full text]
  • E Series Valves and Manifolds Introduction
    Instrumentation Products E Series Valves and Manifolds Introduction Introduction The AS-Schneider Group with its headquarters in Germany is one of the World‘s Leading Manufacturers of Instrumentation Valves and Manifolds. AS-Schneider offers a large variety of E Series Valves and Manifolds as well as numerous accessories needed for the instrumentation installations globally. Selection can be made from a comprehensive range of bodies with a variety of connections and material options, optimising installation and access opportunities. Many of the valves shown in this catalogue are available from stock or within a short period of time. The dimensions shown in this catalogue apply to standard types – very often 1/2 NPT treaded. If you need the dimensions for your individual type please contact the factory. Note: Not every configuration which can be created in the ordering information is feasible / available. Continuous product development may from time to time necessitate changes in the details contained in this catalogue. AS-Schneider reserves the right to make such changes at their discretion and without prior notice. All dimensions shown in this catalogue are approximate and subject to change. 2 Introduction Service Portal // Digital Product Pass AS-Schneider Contents Introduction | page 2 Contents | page 3 General Features | page 4 Valve Head Unit Options | page 5-11 Connections | page 12-13 Hand Valves | page 14-15 Gauge Valves | page 16-17 Multiport Gauge Valves | page 18-19 Block & Bleed and Double Block & Bleed Manifolds | page 20-21
    [Show full text]
  • Determination of Optimal Valve Timing for Internal Combustion Engines Using Parameter Estimation Method
    130 Determination of optimal valve timing for internal combustion engines using parameter estimation method A. H. Kakaee 1,* and M. Pishgooie 2 1 Assistant Professor, 2 MSc student, Department of Automotive Engineering, Iran University of Science and Technology, Tehran, Iran * [email protected] Abstract In this article determination of appropriate valve timing using sensitivity analysis problem is investigated for a gasoline four stroke engine. In the first part of this study a 4­storke Spark Ignition engine (XU7JP4/L3) including its different systems such as inlet and exhaust manifold, exhaust pipe and engine geometry are modeled using GT­Power software and the model is coupled with MATLAB/Simulink to be able to control input and output parameters. Then in order to find the best model that fits experimental data, sensitivity analysis is performed and the best unknown parameters that can best model the engine are obtained. The input parameters are considered to be the inlet port temperature and pressure, and manifold friction coefficient. The target was achieving the least square error in engine power, torque and fuel consumption. In the second part of the study the optimized model is used for the sensitivity analysis and minimizing the engine specific fuel consumption up to 10 percent reduction in specific fuel consumption as a target. Sensitivity analysis is used for finding the best valve timing in different engine speeds to achieve the target. Keywords: Variable Valve Timing system, GT­Power, MATLAB Simulink, Valve Timing, sensitivity analysis 1. INTRODUCTION mid rpm (1200–3200 rpm) range, and the peak torque improved by an average of 3%.
    [Show full text]
  • Audi RS3 and TTRS High Flow Dump Valve and Inlet Pipe Installation
    Audi RS3 and TTRS High Flow Dump Valve and Inlet Pipe Installation Tools Required: Flat headed screw driver T25 Torx driver T30 Torx driver T30 socket, matching ratchet and long extension 7mm hose clamp driver 5mm Allen key 3mm Allen key 1. Remove the small plastic covers around the oil filler and cold air feed on the intake. Remove the two clips holding the hose between the air box and turbo inlet, and the one clip on the standard dump valve. Undo the T25 torx on the cold air feed and undo the 10mm bolt on the filter box. Pull air filter box upwards to release from the rubber grommets. Air box – turbo pipe 10mm bolt Cover Dump valve clip T25 T25 Cover 2. Unplug the MAP sensor, TPS sensor and stock dump valve, undo the jubilee clip and the four T30 torx bolts holding the inlet pipe and throttle body to the inlet manifold. Remove the inlet pipe taking care not to drop the metal gasket between the throttle body and inlet. Metal gasket Dump valve TPS MAP 3. Attach the throttle body with the new o ring supplied in the kit. Also attach the MAP sensor with the existing bolts. New O ring inside here 4. Refit the high flow inlet pipe with dump valve in reverse order of step 2. Take care when refitting the metal gasket and bolt on the solenoid as shown in view A. View A View A 5. This photo shows the how to connect the vacuum pipe assembly. Dump valve wire extension Solenoid & solenoid bracket T-piece to vacuum pump 6.
    [Show full text]
  • Piston Pump Service Manual
    PISTON PUMP SERVICE MANUAL 3 FRAME: 280, 281, 290, 291 10 FRAME: 621, 623, 820, 821, 825,1010,1011,1015 4 FRAME: 331, 333, 335, 430, 431, 435 25 FRAME: 1520,1521,1525, 2520, 2521, 2525, 2520C 5 FRAME: 323, 390 60 FRAME: 6020, 6021, 6024, 6040, 6041, 6044 INSTALLATION AND START-UP INFORMATION Optimum performance of the pump is dependent upon the entire liquid system and will be obtained only with the proper selection, installation of plumbing, and operation of the pump and accessories. SPECIFICATIONS: Maximum specifications refer to individual attributes. It is not Install a Pulsation Dampening device onto the discharge head or in the discharge implied that all maximums can be performed simultaneously. If more than one line. Be certain the pulsation dampener (Prrrrr-o-lator) is properly precharged for the maximum is considered, check with your CAT PUMPS supplier to confirm the proper system pressure (refer to individual Data Sheet). performance and pump selection. Refer to individual pump Data Sheet for complete A reliable Pressure Gauge should be installed near the discharge outlet of specifications, parts list and exploded view. the high pressure manifold. This is extremely important for adjusting pressure LUBRICATION: Fill crankcase with special CAT PUMP oil per pump specifications regulating devices and also for proper sizing of the nozzle or restricting [3FR-10 oz., 4FR-21 oz., 5FR-21 oz.,10FR-40 oz., 25FR-84 oz., 60FR-10 Qts.]. DO orifice. The pump is rated for a maximum pressure; this is the pressure which would NOT RUN PUMP WITHOUT OIL IN CRANKCASE. Change initial fill after 50 hours be read at the discharge manifold of the pump, NOT AT THE GUN OR NOZZLE.
    [Show full text]
  • A Design Strategy for Volumetric Efficiency Improvement in a Multi-Cylinder Stationary Diesel Engine and Its Validity Under Transient Engine Operation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Directory of Open Access Journals SCI-PUBLICATIONS American Journal of Applied Sciences 5 (3): 189-196, 2008 ISSN 1546-9239 © 2008 Science Publications A Design Strategy for Volumetric Efficiency Improvement in a Multi-cylinder Stationary Diesel Engine and its Validity under Transient Engine Operation 1P. Seenikannan, 2V.M.Periasamy and 3P.Nagaraj 1 Author Manuscrip Deptartment of Mech., Sethu Institute of Tech., Kariapatti, T.N, India, 626106 2 Crescent Engineering College, Chennai, T.N, India 3Deptartmentof Mech, Mepco Schlenk Engg College, T.N., India Abstract: This paper proposes an approach to improve engine performance of volumetric efficiency of a multi cylinder diesel engine. A computer simulation model is used to compare volumetric efficiency with instantaneous values. A baseline engine model is first correlated with measured volumetric efficiency data to establish confidence in the engine model’s predictions. A derivative of the baseline model with exhaust manifold, is then subjected to a transient expedition simulating typical, in-service, t maximum rates of engine speed change. Instantaneous volumetric efficiency, calculated over discrete engine cycles forming the sequence, is then compared with its steady speed equivalent at the corresponding speed. It is shown that the engine volumetric efficiency responds almost quasi-steadily under transient operation thus justifying the assumption of correlation between steady speed and transient data. The computer model is used to demonstrate the basic gas dynamic phenomena graphically. The paper provides a good example of the application of computer simulation techniques in providing answers to real engineering questions.
    [Show full text]
  • Jaguar E-Type 3.8 & 4.2 Classic Manifold Kits for Weber
    JAGUAR E-TYPE 3.8 & 4.2 CLASSIC MANIFOLD KITS FOR WEBER CARBURETTORS, www.mangoletsimanifolds.com UNIQUE MANIFOLD AND THROTTLE CONTROL SYSTEM –Patent Pending 0922289.4 Classic Polished Flat Topped Water Gallery with polished thermostat housing From a new throttle pedal and ready-assembled linkages - through to perfectly matched head ports with innovative template method Over a two year period we have developed our new range, and up-dated our classic manifolds, in conjunction with 6 leading E-Type specialists in UK and USA. We thank them for their combined input in respect of design, fitting, engine performance and driveability, now incorporated in the final manifolds and linkages. The template matching system has been well received. Manifolds – Quality castings are essential for water jacketed manifolds. Mangoletsi manifolds are specially tooled to be cast by a highly mechanised specialist foundry, who produce original equipment cylinder heads, blocks and manifolds for engine manufacturers, to BS9001 quality standards. Manifolds are cast in heat treated LM25, double impregnated and pressure tested. See website – www.mangoletsimanifolds.com/technical. One servo offtake to all six cylinders via unique Mangoletsi cast-in air gallery Removes servo related flat spots under braking. The servo drillings are angled to enter the side of the ports. If drilled directly underneath the port, fuel may enter the servo system. (Further manifold information – see page 2) “Out of the Box” Fit – Much of the extensive development time was spent on refining all the components to suit the various different models and then producing dedicated parts, castings, hoses, hosetails, etc. (see page 3) All new fully adjustable throttle pedal assembly - unique “sliding set-up” carburettor linkage system( Page 4) “I had the pleasure of driving Harry's (E Type UK) EFI demonstrator a few weeks back and was mightily impressed with the smooth throttle response.
    [Show full text]
  • Lenntech.Com Lenntech Tel
    SF PLUNGER PUMP SERVICE MANUAL ® 2SF, 2SFX, CEE, SEEL MODELS: 4SF MODELS: 2SF10, 2SF20, 2SF22, 4SF32ELS, 4SF40ELS, 4SF45ELS, 4SF50ELS, 2SF25, 2SF29, 2SF30, 2SF35 4SF30GS1, 4SF35GS1, 4SF40GS1, 4SF45GS1, 2SF05, 10, 15, 25, 29, 35SEEL 4SF45GS118, 4SF50GS1 INSTALLATION AND START-UP INFORMATION Optimum performance of the pump is dependent upon the entire liquid system and will be obtained only with the proper selection, installation of plumbing, and operation of the pump and accessories. SPECIFICATIONS: Maximum specifications refer to individual attributes. It is not A reliable Pressure Gauge should be installed near the discharge outlet of the high implied that all maximums can be performed simultaneously. If more than one pressure manifold. This is extremely important for adjusting pressure regulating maximum is considered, check with your CAT PUMPS supplier to confirm the proper devices and also for proper sizing of the nozzle or restricting orifice. The pump is performance and pump selection. Refer to individual pump Data Sheet for complete rated for a maximum pressure; this is the pressure which would be read at the specifications, parts list and exploded view. discharge manifold of the pump, NOT AT THE GUN OR NOZZLE. LUBRICATION: Fill crankcase with special CAT PUMP oil per pump specifications Use PTFE thread tape or pipe thread sealant (sparingly) to connect accessories or [2SF, 2SFX: prior 3/03-11.83 oz., after 3/03-10.15 oz., 4SF: 23.66 oz.]. DO NOT plumbing. Exercise caution not to wrap tape beyond the last thread to avoid tape from RUN PUMP WITHOUT OIL IN CRANKCASE. Change initial fill after 50 hours run- becoming lodged in the pump or accessories.
    [Show full text]