KRAS Interaction with RAF1 RAS-Binding Domain and Cysteine-Rich Domain Provides Insights Into RAS-Mediated RAF Activation
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Identification and Characterization of a Novel Human Testis-Specific
Biochemical and Biophysical Research Communications 285, 400–408 (2001) doi:10.1006/bbrc.2001.5165, available online at http://www.idealibrary.com on Identification and Characterization of a Novel Human Testis-Specific Kinase Substrate Gene Which Is Downregulated in Testicular Tumors Andreas Scorilas,*,† George M. Yousef,*,† Klaus Jung,‡ Ewa Rajpert-De Meyts,§ Stephan Carsten,‡ and Eleftherios P. Diamandis*,†,1 *Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; †Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada; ‡Department of Urology, University Hospital Charite, Humboldt University, Berlin, Germany; and §Department of Growth and Reproduction, Juliane Marie Centre, National University Hospital, Copenhagen, Denmark Received June 8, 2001 physiology, most probably in the process of spermato- By using the positional candidate gene approach, we genesis or spermiogenesis. © 2001 Academic Press identified a novel putative serine/threonine kinase Key Words: kinase substrates; testis-specific genes; substrate gene that maps to chromosome 19q13.3. gene mapping; gene characterization; TSKS; testis- Screening of expressed sequence tags and reverse specific kinase substrate; RRAS; IRF3; testicular transcription–polymerase chain reaction of total RNA cancer. from human tissues allowed us to establish the expres- sion of the gene and delineate its genomic organiza- tion (GenBank Accession No. AF200923). This gene (TSKS, for testis-specific kinase substrate) is com- Protein phosphorylation is the most common post- posed of 11 exons and 10 intervening introns and is translational protein modification in eukaryotes and a likely the human homolog of the mouse testis-specific fundamental mechanism for the direct or indirect con- serine kinase substrate gene. -
The Rac Gtpase in Cancer: from Old Concepts to New Paradigms Marcelo G
Published OnlineFirst August 14, 2017; DOI: 10.1158/0008-5472.CAN-17-1456 Cancer Review Research The Rac GTPase in Cancer: From Old Concepts to New Paradigms Marcelo G. Kazanietz1 and Maria J. Caloca2 Abstract Rho family GTPases are critical regulators of cellular func- mislocalization of Rac signaling components. The unexpected tions that play important roles in cancer progression. Aberrant pro-oncogenic functions of Rac GTPase-activating proteins also activity of Rho small G-proteins, particularly Rac1 and their challenged the dogma that these negative Rac regulators solely regulators, is a hallmark of cancer and contributes to the act as tumor suppressors. The potential contribution of Rac tumorigenic and metastatic phenotypes of cancer cells. This hyperactivation to resistance to anticancer agents, including review examines the multiple mechanisms leading to Rac1 targeted therapies, as well as to the suppression of antitumor hyperactivation, particularly focusing on emerging paradigms immune response, highlights the critical need to develop ther- that involve gain-of-function mutations in Rac and guanine apeutic strategies to target the Rac pathway in a clinical setting. nucleotide exchange factors, defects in Rac1 degradation, and Cancer Res; 77(20); 5445–51. Ó2017 AACR. Introduction directed toward targeting Rho-regulated pathways for battling cancer. Exactly 25 years ago, two seminal papers by Alan Hall and Nearly all Rho GTPases act as molecular switches that cycle colleagues illuminated us with one of the most influential dis- between GDP-bound (inactive) and GTP-bound (active) forms. coveries in cancer signaling: the association of Ras-related small Activation is promoted by guanine nucleotide exchange factors GTPases of the Rho family with actin cytoskeleton reorganization (GEF) responsible for GDP dissociation, a process that normally (1, 2). -
A GTP-State Specific Cyclic Peptide Inhibitor of the Gtpase Gαs
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.054080; this version posted April 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A GTP-state specific cyclic peptide inhibitor of the GTPase Gαs Shizhong A. Dai1,2†, Qi Hu1,2†, Rong Gao3†, Andre Lazar1,4†, Ziyang Zhang1,2, Mark von Zastrow1,4, Hiroaki Suga3*, Kevan M. Shokat1,2* 5 1Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, 94158, USA 2Howard Hughes Medical Institute 3Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 10 4Department of Psychiatry, University of California, San Francisco, San Francisco, CA, 94158, USA *Correspondence to: [email protected], [email protected] †These authors contributed equally. 15 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.04.25.054080; this version posted April 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract: The G protein-coupled receptor (GPCR) cascade leading to production of the second messenger cAMP is replete with pharmacologically targetable receptors and enzymes with the exception of the stimulatory G protein α subunit, Gαs. -
Clinical Utility of Recently Identified Diagnostic, Prognostic, And
Modern Pathology (2017) 30, 1338–1366 1338 © 2017 USCAP, Inc All rights reserved 0893-3952/17 $32.00 Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms Arantza Onaindia1, L Jeffrey Medeiros2 and Keyur P Patel2 1Instituto de Investigacion Marques de Valdecilla (IDIVAL)/Hospital Universitario Marques de Valdecilla, Santander, Spain and 2Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA Genomic profiling studies have provided new insights into the pathogenesis of mature B-cell neoplasms and have identified markers with prognostic impact. Recurrent mutations in tumor-suppressor genes (TP53, BIRC3, ATM), and common signaling pathways, such as the B-cell receptor (CD79A, CD79B, CARD11, TCF3, ID3), Toll- like receptor (MYD88), NOTCH (NOTCH1/2), nuclear factor-κB, and mitogen activated kinase signaling, have been identified in B-cell neoplasms. Chronic lymphocytic leukemia/small lymphocytic lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, Burkitt lymphoma, Waldenström macroglobulinemia, hairy cell leukemia, and marginal zone lymphomas of splenic, nodal, and extranodal types represent examples of B-cell neoplasms in which novel molecular biomarkers have been discovered in recent years. In addition, ongoing retrospective correlative and prospective outcome studies have resulted in an enhanced understanding of the clinical utility of novel biomarkers. This progress is reflected in the 2016 update of the World Health Organization classification of lymphoid neoplasms, which lists as many as 41 mature B-cell neoplasms (including provisional categories). Consequently, molecular genetic studies are increasingly being applied for the clinical workup of many of these neoplasms. In this review, we focus on the diagnostic, prognostic, and/or therapeutic utility of molecular biomarkers in mature B-cell neoplasms. -
Tumor Markers
Tumor Markers Alan H.B. Wu, Ph.D. Professor, Laboratory Medicine, UCSF Section Chief, Clinical Chemistry, Toxicology, Pharmacogenomics Laboratory, SFGH Learning objectives • Know the ideal characteristics of a tumor marker • Understand the role of tumor markers for diagnosis and management of patients with cancer. • Know the emerging technologies for tumor markers • Understand the role of tumor markers for therapeutic selection How do we diagnose cancer today? Physical Examination Blood tests CT scans Biopsy Human Prostate Cancer Normal Blood Smear Chronic Myeloid Leukemia Death rates for cancer vs. heart disease New cancer cases per year Cancer Site or Type New Cases Prostate 218,000 Lung 222,500 Breast 207,500 Colorectal 149,000 Urinary system 131,500 Skin 68,770 Pancreas 43,100 Ovarian 22,000 Myeloma 20,200 Thyroid 44,700 Germ Cell 9,000 Types of Tumor Markers • Hormones (hCG; calcitonin; gastrin; prolactin;) • Enzymes (acid phosphatase; alkaline phosphatase; PSA) • Cancer antigen proteins & glycoproteins (CA125; CA 15.3; CA19.9) • Metabolites (norepinephrine, epinephrine) • Normal proteins (thyroglobulin) • Oncofetal antigens (CEA, AFP) • Receptors (ER, PR, EGFR) • Genetic changes (mutations/translocations, etc.) Characteristics of an ideal tumor marker • Specificity for a single type of cancer • High sensitivity and specificity for cancerous growth • Correlation of marker level with tumor size • Homogeneous (i.e., minimal post-translational modifications) • Short half-life in circulation Roles for tumor markers • Determine risk (PSA) -
Nck Adaptor Proteins Link Nephrin at the Podocyte Slit Diaphragm to the Hippo Regulator WTIP
Nck Adaptor Proteins Link Nephrin at the Podocyte Slit Diaphragm to the Hippo Regulator WTIP by Ava Keyvani Chahi A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Molecular and Cellular Biology Guelph, Ontario, Canada © Ava Keyvani Chahi, December, 2014 ABSTRACT NCK ADAPTOR PROTEINS LINK NEPHRIN AT THE PODOCYTE SLIT DIAPHRAGM TO THE HIPPO REGULATOR WTIP Ava Keyvani Chahi Advisor: University of Guelph, 2014 Dr. Nina Jones Podocytes are specialized epithelial cells that contribute to the kidney blood filtration barrier. Their unique cytoskeletal architecture and other complex biological signals are largely maintained by a modified adherens junction known as the slit diaphragm (SD). A major component of the SD is the transmembrane protein nephrin, which upon tyrosine phosphorylation of the intracellular domain regulates actin remodeling and cell survival. Nck adaptor proteins are a critical component of the filtration barrier and connect nephrin to actin-remodeling proteins by binding phosphotyrosine residues and proline-rich motifs. Herein we identify a novel Nck binding partner, Wilm’s tumor interacting protein (WTIP). WTIP is a transcription regulator in podocytes, though Nck is not nuclear localized under conditions known to induce WTIP nuclear accumulation. However, we demonstrate that WTIP is recruited to nephrin, upon nephrin tyrosine phosphorylation by Src Family Kinases, in an Nck-dependent manner. WTIP is an evolutionarily conserved negative regulator of the Hippo kinase pathway, which inhibits the transcription factor Yap. Yap activity promotes podocyte survival. We show in mice that cannot recruit Nck to nephrin, and by extension WTIP, that Yap protein levels are downregulated. -
Screening for Tumor Suppressors: Loss of Ephrin PNAS PLUS Receptor A2 Cooperates with Oncogenic Kras in Promoting Lung Adenocarcinoma
Screening for tumor suppressors: Loss of ephrin PNAS PLUS receptor A2 cooperates with oncogenic KRas in promoting lung adenocarcinoma Narayana Yeddulaa, Yifeng Xiaa, Eugene Kea, Joep Beumera,b, and Inder M. Vermaa,1 aLaboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037; and bHubrecht Institute, Utrecht, The Netherlands Contributed by Inder M. Verma, October 12, 2015 (sent for review July 28, 2015; reviewed by Anton Berns, Tyler Jacks, and Frank McCormick) Lung adenocarcinoma, a major form of non-small cell lung cancer, injections in embryonic skin cells identified several potential tu- is the leading cause of cancer deaths. The Cancer Genome Atlas morigenic factors (14–16). None of the reported studies have analysis of lung adenocarcinoma has identified a large number of performed direct shRNA-mediated high-throughput approaches previously unknown copy number alterations and mutations, re- in adult mice recapitulating the mode of tumorigenesis in humans. quiring experimental validation before use in therapeutics. Here, we Activating mutations at positions 12, 13, and 61 amino acids in describe an shRNA-mediated high-throughput approach to test a set Kirsten rat sarcoma viral oncogene homolog (KRas) contributes of genes for their ability to function as tumor suppressors in the to tumorigenesis in 32% of lung adenocarcinoma patients (2) by background of mutant KRas and WT Tp53. We identified several activating downstream signaling cascades. Mice with the KRasG12D candidate genes from tumors originated from lentiviral delivery of allele develop benign adenomatous lesions with long latency to shRNAs along with Cre recombinase into lungs of Loxp-stop-Loxp- develop adenocarcinoma (17, 18). -
SHOC2–MRAS–PP1 Complex Positively Regulates RAF Activity and Contributes to Noonan Syndrome Pathogenesis
SHOC2–MRAS–PP1 complex positively regulates RAF activity and contributes to Noonan syndrome pathogenesis Lucy C. Younga,1, Nicole Hartiga,2, Isabel Boned del Ríoa, Sibel Saria, Benjamin Ringham-Terrya, Joshua R. Wainwrighta, Greg G. Jonesa, Frank McCormickb,3, and Pablo Rodriguez-Vicianaa,3 aUniversity College London Cancer Institute, University College London, London WC1E 6DD, United Kingdom; and bHelen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158 Contributed by Frank McCormick, September 18, 2018 (sent for review November 22, 2017; reviewed by Deborah K. Morrison and Marc Therrien) Dephosphorylation of the inhibitory “S259” site on RAF kinases CRAF/RAF1 mutations are also frequently found in NS and (S259 on CRAF, S365 on BRAF) plays a key role in RAF activation. cluster around the S259 14-3-3 binding site, enhancing CRAF ac- The MRAS GTPase, a close relative of RAS oncoproteins, interacts tivity through disruption of 14-3-3 binding (8) and highlighting the with SHOC2 and protein phosphatase 1 (PP1) to form a heterotri- key role of this regulatory step in RAF–ERK pathway activation. meric holoenzyme that dephosphorylates this S259 RAF site. MRAS is a very close relative of the classical RAS oncoproteins MRAS and SHOC2 function as PP1 regulatory subunits providing (H-, N-, and KRAS, hereafter referred to collectively as “RAS”) the complex with striking specificity against RAF. MRAS also func- and shares most regulatory and effector interactions as well as tions as a targeting subunit as membrane localization is required transforming ability (9–11). However, MRAS also has specific for efficient RAF dephosphorylation and ERK pathway regulation functions of its own, and uniquely among RAS family GTPases, it in cells. -
The Effects of Oncogenic G12d Mutation on K-Ras Structure, Conformation and Dynamics
bioRxiv preprint doi: https://doi.org/10.1101/178483; this version posted August 19, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. THE EFFECTS OF ONCOGENIC G12D MUTATION ON K-RAS STRUCTURE, CONFORMATION AND DYNAMICS Sezen Vatansever1, 2, 3, Zeynep H. Gümüş2, 3*, Burak Erman1* 1Department of Chemical and Biological Engineering, College of Engineering, Koç University, Rumelifeneri Yolu, 34450, Sarıyer, Istanbul, Turkey 2Department of Genetics and Genomics, 3Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 *Correspondence: [email protected] (B.E.) and [email protected] (Z.H.G.) ABSTRACT K-Ras is the most frequently mutated protein in human tumors. Activating K-Ras mutations drive cancer initiation, progression and drug resistance, directly leading to nearly a million deaths per year. To understand the mechanisms by which mutations alter K-Ras function, we need to understand their effects on protein dynamics. However, despite decades of research, how oncogenic mutations in K-Ras alter its conformation and dynamics remain to be understood. Here, we present how the most recurrent K-Ras oncogenic mutation, G12D, leads to structural, conformational and dynamical changes that lead to constitutively active K- Ras. We have developed a new integrated MD simulation data analysis approach to quantify such changes in a protein and applied it to K-Ras. Our results show that G12D mutation induces strong negative correlations between the fluctuations of SII and those of the P-loop, Switch I (SI) and α3 regions in K-RasG12D. -
The Human Genome Project
TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 TO KNOW OURSELVES ❖ THE U.S. DEPARTMENT OF ENERGY AND THE HUMAN GENOME PROJECT JULY 1996 Contents FOREWORD . 2 THE GENOME PROJECT—WHY THE DOE? . 4 A bold but logical step INTRODUCING THE HUMAN GENOME . 6 The recipe for life Some definitions . 6 A plan of action . 8 EXPLORING THE GENOMIC LANDSCAPE . 10 Mapping the terrain Two giant steps: Chromosomes 16 and 19 . 12 Getting down to details: Sequencing the genome . 16 Shotguns and transposons . 20 How good is good enough? . 26 Sidebar: Tools of the Trade . 17 Sidebar: The Mighty Mouse . 24 BEYOND BIOLOGY . 27 Instrumentation and informatics Smaller is better—And other developments . 27 Dealing with the data . 30 ETHICAL, LEGAL, AND SOCIAL IMPLICATIONS . 32 An essential dimension of genome research Foreword T THE END OF THE ROAD in Little has been rapid, and it is now generally agreed Cottonwood Canyon, near Salt that this international project will produce Lake City, Alta is a place of the complete sequence of the human genome near-mythic renown among by the year 2005. A skiers. In time it may well And what is more important, the value assume similar status among molecular of the project also appears beyond doubt. geneticists. In December 1984, a conference Genome research is revolutionizing biology there, co-sponsored by the U.S. Department and biotechnology, and providing a vital of Energy, pondered a single question: Does thrust to the increasingly broad scope of the modern DNA research offer a way of detect- biological sciences. -
Agonist-Induced Formation of Unproductive Receptor-G12 Complexes Najeah Okashaha, Shane C
Agonist-induced formation of unproductive receptor-G12 complexes Najeah Okashaha, Shane C. Wrightb, Kouki Kawakamic, Signe Mathiasend,e,f, Joris Zhoub, Sumin Lua, Jonathan A. Javitchd,e,f, Asuka Inouec, Michel Bouvierb, and Nevin A. Lamberta,1 aDepartment of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912; bInstitute for Research in Immunology and Cancer, Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; cGraduate School of Pharmaceutical Sciences, Tohoku University, 980-8578 Sendai, Japan; dDepartment of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032; eDepartment of Pharmacology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032; and fDivision of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032 Edited by Brian K. Kobilka, Stanford University School of Medicine, Stanford, CA, and approved July 24, 2020 (received for review February 28, 2020) G proteins are activated when they associate with G protein- association does not always promote G protein activation and coupled receptors (GPCRs), often in response to agonist-mediated may in some circumstances inhibit downstream signaling. receptor activation. It is generally thought that agonist-induced receptor-G protein association necessarily promotes G protein acti- Results vation and, conversely, that activated GPCRs do not interact with V2R Interacts with G12 Heterotrimers. Conventional GPCR-G pro- G proteins that they do not activate. Here we show that GPCRs can tein coupling is understood as an allosteric interaction where an form agonist-dependent complexes with G proteins that they do agonist-bound active receptor mediates GDP release by stabi- not activate. -
Biocreative 2012 Proceedings
Proceedings of 2012 BioCreative Workshop April 4 -5, 2012 Washington, DC USA Editors: Cecilia Arighi Kevin Cohen Lynette Hirschman Martin Krallinger Zhiyong Lu Carolyn Mattingly Alfonso Valencia Thomas Wiegers John Wilbur Cathy Wu 2012 BioCreative Workshop Proceedings Table of Contents Preface…………………………………………………………………………………….......... iv Committees……………………………………………………………………………………... v Workshop Agenda…………………………………………………………………………….. vi Track 1 Collaborative Biocuration-Text Mining Development Task for Document Prioritization for Curation……………………………………..……………………………………………….. 2 T Wiegers, AP Davis, and CJ Mattingly System Description for the BioCreative 2012 Triage Task ………………………………... 20 S Kim, W Kim, CH Wei, Z Lu and WJ Wilbur Ranking of CTD articles and interactions using the OntoGene pipeline ……………..….. 25 F Rinaldi, S Clematide and S Hafner Selection of relevant articles for curation for the Comparative Toxicogenomic Database…………………………………………………………………………………………. 31 D Vishnyakova, E Pasche and P Ruch CoIN: a network exploration for document triage………………………………................... 39 YY Hsu and HY Kao DrTW: A Biomedical Term Weighting Method for Document Recommendation ………... 45 JH Ju, YD Chen and JH Chiang C2HI: a Complete CHemical Information decision system……………………………..….. 52 CH Ke, TLM Lee and JH Chiang Track 2 Overview of BioCreative Curation Workshop Track II: Curation Workflows….…………... 59 Z Lu and L Hirschman WormBase Literature Curation Workflow ……………………………………………………. 66 KV Auken, T Bieri, A Cabunoc, J Chan, Wj Chen, P Davis, A Duong, R Fang, C Grove, Tw Harris, K Howe, R Kishore, R Lee, Y Li, Hm Muller, C Nakamura, B Nash, P Ozersky, M Paulini, D Raciti, A Rangarajan, G Schindelman, Ma Tuli, D Wang, X Wang, G Williams, K Yook, J Hodgkin, M Berriman, R Durbin, P Kersey, J Spieth, L Stein and Pw Sternberg Literature curation workflow at The Arabidopsis Information Resource (TAIR)…..……… 72 D Li, R Muller, TZ Berardini and E Huala Summary of Curation Process for one component of the Mouse Genome Informatics Database Resource …………………………………………………………………………....