Download Pdf File

Total Page:16

File Type:pdf, Size:1020Kb

Download Pdf File Is More Life Always Better? The New Biology of Aging and the Meaning of Life by D AVID G EMS The social consequences of extending the human life span might be quite bad; perhaps the worst outcome is that power could be concentrated into ever fewer hands, as those who wield it gave way more slowly to death and disease. But the worry that more life would damage individuals’ quality of life is not persuasive. Depending on what the science of aging makes possible, and on how people plan their lives, longer life might even facilitate a richer and deeper life. He had passed that great meridian, the age of forty, nematode life were translated into human terms, this when for every man the process of spiritual evolution would represent a lifespan of around 700 years. stops, and he goes on thenceforward working out to the Common sense tells us that aging is universal, in- end a character that has become fixed and evitable, and associated with gradual physical decline. unalterable.”—G. Baker, in Tiberius Caesar But in this case, common sense is wrong. Some ani- mal species, such as tiny betentacled hydra, do not ap- he American biologist Andrzej Bartke recent- pear to age at all.3 There exist, for example, individual ly showed that a combination of genetic alter- colonies of corals that are over 20,000 years old.4 T ation and nutritional restriction can increase What is more, within the last decade biologists have the lifespan of a laboratory mouse by around 70 per- found that the rate of aging is remarkably easy to alter cent.1 While control mice withered and died, the test in laboratory animals such as nematodes, fruit flies, animals were still zestfully scurrying about, fleet of and mice. It is no longer far-fetched to think that one foot with glossy fur and unclouded eyes, and appar- day it will be possible to retard the aging process in ently as full of joie de vivre as any young rodent. Dis- humans and extend the human life span. coveries of this sort are now far from rare. I recently Do we really want this research to succeed? Some found that alteration of a gene called daf-2 can in- bioethicists have professed horror at the thought of crease the maximum life span of male nematode dramatic life extension. Many recoil at the notion of worms from 31 to 199 days—a 6.4-fold increase.2 If a extending the lives of people undergoing irreversible physical decline, like the senile and decrepit Struld- bruggs in Gulliver’s Travels. Yet recent research shows David Gems, “Is More Life Always Better? The New Biology of Aging and the Meaning of Life,” Hastings Center Report 33, no. 4 (2003): 31- it may be possible not just to extend life, but to ex- 39. tend youth. What if each of us could live a longer life, July-August 2003 HASTINGS CENTER REPORT 31 in peak physical and mental health, in the 1940s by the British geneticist is unable to purge the Huntington’s then suddenly shrivel away at the J.B.S. Haldane, working at University mutation from the general popula- end, like Dracula when he is exposed College London, who was interested tion, what about mutations that do to the sunlight? Would bioethicists in diseases caused by defective (mu- not strike until even later? Could it be still be so dour? Perhaps so, yet it tant) genes. One such disease, Hunt- that aging itself is the result of muta- would no longer be quite so clear ington’s, puzzled Haldane. Hunting- tions that strike very late in life, at an why. There may be reasons to worry, ton’s disease attacks the nervous sys- age beyond the reach of natural selec- but I want to suggest that aging re- tem, causing uncontrollable flaying tion? If this were true, then what we search raises philosophical questions spasms (chorea), insanity, and death. now think of as the process of aging is about the shape and purpose of life It is unusual in two respects: first, it a form of late-onset, invariably fatal that bioethics has thus far failed to does not strike until later in life—the genetic disease caused by genetic mu- address. mean age of onset is about thirty-five. tations that natural selection has been Second, the Huntington’s mutation is unable to purge from the population. The New Biology of Aging dominant, not recessive. This means This idea is at the heart of the evolu- that even people with only one copy tionary theory of aging. Its essence revolution has occurred in the bi- of the mutation will get the disease. can be distilled into a single phrase: Aology of aging, trans- the force of natural selec- forming a sleepy backwa- tion decreases with in- ter of research into a p until about fifteen years ago, creasing age after the onset rapidly advancing disci- U of reproduction. 5 pline. Up until about fif- research into the causes of aging was a An elaboration of the teen years ago, research evolutionary theory of into the causes of aging aging, proposed by was a somewhat disrep- somewhat disreputable activity George C. Williams, sug- utable activity occurring gests that aging may result at the fringes of biology. occurring at the fringes of biology. What from mutations that in Although the researchers early life enhance fitness, working on aging were changed everything was the but that have harmful ef- few, the number of theo- fects later in life—the ries they managed to gen- development of a theory of the trade-off theory. 8 Because erate were many—by one of the relative unimpor- estimate, over 300.6 Not evolution of aging with real explanatory tance of events later in life many of these theories to reproductive success, a have proved useful. The power and conceptual beauty. small early advantage may Russian immunologist outweigh a later catastro- Elie Metchnikoff believed phe. These two theories that aging resulted from have been tested experi- toxins released by bacteria in the in- Generally, one would expect that mentally, and the balance of evidence testinal tract. He suggested that a yo- dominant mutations causing fatal dis- favors the trade-off theory over the ghurt diet would extend human life eases would quickly disappear from simple mutation accumulation theo- span to 200 years. Another early the- the population. But as Haldane saw, ry. ory had it that aging in men resulted the awful thing about Huntington’s is While the evolutionary theory of from a reduction in the level of secre- that by the time the disease strikes, aging explains why aging occurs, it is tions from the testicles. This led to a most people have already had chil- not able to explain how it occurs— craze in the 1920s for surgically im- dren, to whom they have passed the what exactly happens when we age, planting the testicles of goats or mon- Huntington’s gene about half of the and what controls how fast it hap- keys into the scrotum of the recipient. time. Thus dominant, lethal muta- pens. To try to answer this, many bi- These crank theories have often tions can be maintained in a popula- ologists who study the genetics of found an audience among aging souls tion at a high frequency, so long as aging work with animals with very all too eager to grasp at the hope of their effects are delayed until after re- short life spans in order to save time. cheating death.7 production. Haldane’s insight solved Like a number of others in the field, I What changed everything was the the evolutionary puzzle of Hunting- work with a tiny nematode worm development of a theory of the evolu- ton’s. called Caenorhabditis elegans—C. ele- tion of aging with real explanatory But instead of stopping there, Hal- gans for short. These little creatures power and conceptual beauty. The dane went on to make a further bril- age and die after a mere two to three essence of it was originally seen back liant observation. If natural selection weeks. The whole of the C. elegans 32 HASTINGS CENTER REPORT July-August 2003 genome has been sequenced, and a promising and exciting areas of work funded research is successful. high proportion of C. elegans genes in biology, yet biologists are strangely BBSRC-funded work has involved have equivalents in humans. Thus, if reluctant to advocate the extension of treatments that dramatically increase the genes controlling aging in C. ele- human life, or sometimes even to lifespan in nematodes, fruitflies, ro- gans are found, they could potentially admit that life extension may be a dents, and yeast. Yet it is easy to un- be used to identify genes controlling consequence of their work. Consider derstand how we have arrived at this human aging. the following justifications for aging peculiar attitude of denial. Treating In classical genetics, the art is to research grant applications in the the aging process would have two identify genes that control the forma- United Kingdom: major consequences. First, it would tion of any particular facet of biology dramatically reduce the incidence of “Unless we can identify ways by looking for instances where a sin- many of the principal killer diseases through which healthspan can be gle gene has malfunctioned (mutat- of the developed world, such as car- increased as we age, the strain on ed), producing a defective animal. diovascular disease, cancer, diabetes, healthcare costs owing to the vol- The geneticist then works back to Alzheimer’s disease, and Parkinson’s ume of age-related pathologies will infer the normal function of the gene.
Recommended publications
  • A Review and Appraisal of the DNA Damage Theory of Ageing
    Mutation Research 728 (2011) 12–22 Contents lists available at ScienceDirect Mutation Research/Reviews in Mutation Research jo urnal homepage: www.elsevier.com/locate/reviewsmr Co mmunity address: www.elsevier.com/locate/mutres Review A review and appraisal of the DNA damage theory of ageing a,b a, Alex A. Freitas , Joa˜o Pedro de Magalha˜es * a Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool, L69 7ZB, UK b School of Computing and Centre for BioMedical Informatics, University of Kent, Canterbury, CT2 7NF, UK A R T I C L E I N F O A B S T R A C T Article history: Given the central role of DNA in life, and how ageing can be seen as the gradual and irreversible Received 10 February 2011 breakdown of living systems, the idea that damage to the DNA is the crucial cause of ageing remains a Received in revised form 2 May 2011 powerful one. DNA damage and mutations of different types clearly accumulate with age in mammalian Accepted 3 May 2011 tissues. Human progeroid syndromes resulting in what appears to be accelerated ageing have been Available online 10 May 2011 linked to defects in DNA repair or processing, suggesting that elevated levels of DNA damage can accelerate physiological decline and the development of age-related diseases not limited to cancer. Keywords: Higher DNA damage may trigger cellular signalling pathways, such as apoptosis, that result in a faster Ageing depletion of stem cells, which in turn contributes to accelerated ageing.
    [Show full text]
  • Human Cell and Organism Aging: Are There Limits? Interrupted Case Study on Cell Aging
    Human Cell and Organism Aging: Are there Limits? Interrupted Case study on Cell Aging Teresa Gonya Department of Biological Sciences University of Wisconsin-Fox Valley Menasha, WI The search for the fountain of youth persists in advertising, and individuals are constantly bombarded with messages about diet, exercise, vitamins and minerals that can help prolong one’s life. The biological basis of aging is often not mentioned in the anti-aging promotions. Is it possible that a diet rich in protein, or fruits and vegetables can add years to your life? Is it possible that a vitamin or mineral ‘tonic’ can promote tissue repair and extend life? Is it possible that a vitamin drink can extend your normal life expectancy? Even clinical medicine focuses on developing new treatments that are based on preventing aging and maintaining organ longevity. We are told to exercise to keep our heart healthy and to stop smoking to prevent damage to body tissues, especially the lungs and blood vessels. The new field of regenerative medicine is based on the premise that stem cells may one day be able to repair tissue and return function to damaged organs. There are real limits to longevity that are based on genetics, lifestyle, medical history and sociology. (1) At the foundation of organism longevity is cell longevity. All organisms are composed of cells. Four different types of tissue cells form the basis of all organs that are found in any animal organism. Each type of tissue cell has a different ability to undergo mitosis and replace itself, should it become damaged or injured.
    [Show full text]
  • From Here to Immortality: Anti-Aging Medicine
    FromFrom HereHere toto Immortality:Immortaalitty: AAnti-AgingAnnntti-AAgging MMedicineedicine Anti-aging medicine is a $5 billion industry. Despite its critics, researchers are discovering that inter ventions designed to turn back time may prove to be more science than fiction. By Trudie Mitschang 14 BioSupply Trends Quarterly • October 2013 he symptoms are disturbing. Weight gain, muscle Shifting Attitudes Fuel a Booming Industry aches, fatigue and joint stiffness. Some experience The notion that aging requires treatment is based on a belief Thear ing loss and diminished eyesight. In time, both that becoming old is both undesirable and unattractive. In the memory and libido will lapse, while sagging skin and inconti - last several decades, aging has become synonymous with nence may also become problematic. It is a malady that begins dete rioration, while youth is increasingly revered and in one’s late 40 s, and currently 100 percent of baby boomers admired. Anti-aging medicine is a relatively new but thriving suffer from it. No one is immune and left untreated ; it always field driven by a baby- boomer generation fighting to preserve leads to death. A frightening new disease, virus or plague? No , its “forever young” façade. According to the market research it’s simply a fact of life , and it’s called aging. firm Global Industry Analysts, the boomer-fueled consumer The mythical fountain of youth has long been the subject of base will push the U.S. market for anti-aging products from folklore, and although it is both natural and inevitable, human about $80 billion now to more than $114 billion by 2015.
    [Show full text]
  • “This Is Getting Really Old . . . ” the Genetics of Aging
    “This is getting really old . ” The Genetics of Aging Prof. Mike Kuchka Department of Biological Sciences OBJECTIVES • Explain how mutations in genes can increase lifespan in various organisms (METHUSELAH gene of Drosophila) • Relate chromosome length with aging (TELOMERE SHORTENING) • Understand how alteration of intracelluar signaling pathway impacts aging (INSULIN-LIKE GROWTH FACTOR) • Relate caloric restriction with aging (Role of SIRTUIN proteins) • Describe accelerated aging disorders in humans (WERNER’S SYNDROME, HUTCHINSON-GILFORD PROGERIA) Aging – the decline in survival and fecundity with advancing age, caused by the accumulation of damage to macromolecules, intracellular organelles, cells, tissues, organs. SOME INTRODUCTORY POINTS • Natural selection does not select for genes that cause aging or determine lifespan. Rather, aging occurs as a result of the pleiotropic effects of genes that specify other processes [Christensen et al. (2006)]. • Genes that influence longevity are involved in stress response and nutrient sensing, generally, intracellular signaling pathways. • In the past century, mean life expectancy in Western countries increased from ~50 to 75 – 80. • Twin studies (human) suggest that 25% of variation in lifespan is caused by genetic differences. • Manipulation of >100 genes in experimental animal models increases longevity. • Most of these genes are also present in the human genome. • Gene manipulations that increase longevity also postpone age-related diseases. Nematode Worm (C. elegans) as a Model Experimental Organism For the Study of Aging OLD YOUNG MUTANT 2 weeks old 2 days old 2 weeks old From: Hopkin, K. (2004) Scientific American, 14: 12 – 17. Mouse (Mus musculus) as a Model Experimental Organism For the Study of Aging From: Hampton, K.
    [Show full text]
  • Telomeres and Telomerase
    Oncogene (2010) 29, 1561–1565 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc GUEST EDITORIAL 2009 Nobel Prize in Physiology or Medicine: telomeres and telomerase Oncogene (2010) 29, 1561–1565; doi:10.1038/onc.2010.15 sate for the chromosomal shortening produced asso- ciated with cell division, suggesting that progressive telomere shortening may be a key factor to limit the Elizabeth H Blackburn, Carol W Greider and Jack W number of cell divisions. James D Watson (Nobel Prize Szostak were acknowledged with this year’s Nobel Prize 1962) also recognized that the unidirectional nature of in Physiology or Medicine for their discoveries on how DNA replication was a problem for the complete copy chromosomes are protected by telomeres and the of chromosomal ends (Watson, 1972). This was called enzyme telomerase. the ‘end-replication problem’. In this manner, during In the first half of the twentieth century, classic studies each cycle of cell division, a small fragment of telomeric by Hermann Mu¨ller (Nobel Prize 1945) working with DNA is lost from the end. After several rounds of the fruit fly (Drosophila melanogaster) and by Barbara division, telomeres eventually reach a critically short McClintock (Nobel Prize 1983) studying maize (Zea length, which activates the pathways for senescence and Mays) proposed the existence of a special structure at cell death (Hermann et al., 2001; Samper et al., 2001). the chromosome ends (Mu¨ller, 1938; McClintock, 1939). Uncovering the solution to the end-replication pro- This structure would have the essential role of protect- blem took several years of intense research.
    [Show full text]
  • Calorie Restriction and Sirtuins Revisited
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Calorie restriction and sirtuins revisited Leonard Guarente1 Department of Biology, Glenn Laboratory for the Science of Aging, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA Calorie or dietary restriction (CR) has attracted attention Toward the resolution of discordances because it is the oldest and most robust way to extend rodent life span. The idea that the nutrient sensors, termed Sirtuins and aging sirtuins, might mediate effects of CR was proposed 13 years Perhaps the greatest challenge to the idea that sirtuins ago and has been challenged in the intervening years. This mediate effects of CR was a study describing the failure to review addresses these challenges and draws from a great observe extension of life span in worms or flies transgenic body of new data in the sirtuin field that shows a systematic for the corresponding SIR2 orthologs after controlling for redirection of mammalian physiology in response to diet by genetic background (Burnett et al. 2011). These findings sirtuins. The prospects for drugs that can deliver at least contradicted other, earlier studies that showed extension a subset of the benefits of CR seems very real. of life span in transgenic worms (Tissenbaum and Guarente 2001; Viswanathan et al. 2005; Berdichevsky et al. 2006) A review published previously in Genes & Development and flies (Rogina and Helfand 2004; Wood et al. 2004; (Guarente 2000) stated the hypothesis that calorie re- Bauer et al. 2009). In fact, a subset of these earlier studies striction (CR) slowed aging and the accompanying de- did control for genetic background (e.g., Bauer et al.
    [Show full text]
  • “This Is Getting Really Old . . . ” the Genetics of Aging
    “This is getting really old . ” The Genetics of Aging Prof. Mike Kuchka Department of Biological Sciences OBJECTIVES • Explain how mutations in genes can increase lifespan in various organisms (METHUSELAH gene of Drosophila) • Relate chromosome length with aging (TELOMERE SHORTENING) • Understand how alteration of intracellular signaling pathway impacts aging (INSULIN-LIKE GROWTH FACTOR) • Relate caloric restriction with aging (Role of SIRTUIN proteins) • Describe accelerated aging disorders in humans (WERNER’S SYNDROME, HUTCHINSON-GILFORD PROGERIA) Aging – the decline in survival and fecundity with advancing age, caused by the accumulation of damage to macromolecules, intracellular organelles, cells, tissues, organs. SOME INTRODUCTORY POINTS • Natural selection does not select for genes that cause aging or determine lifespan. Rather, aging occurs as a result of the pleiotropic effects of genes that specify other processes [Christensen et al. (2006)]. • Genes that influence longevity are involved in stress response and nutrient sensing, generally, intracellular signaling pathways. • In the past century, mean life expectancy in Western countries increased from ~50 to 75 – 80. • Twin studies (human) suggest that 25% of variation in lifespan is caused by genetic differences. • Manipulation of >100 genes in experimental animal models increases longevity. • Most of these genes are also present in the human genome. • Gene manipulations that increase longevity also postpone age-related diseases. Nematode Worm (C. elegans) as a Model Experimental Organism For the Study of Aging OLD YOUNG MUTANT 2 weeks old 2 days old 2 weeks old From: Hopkin, K. (2004) Scientific American, 14: 12 – 17. Mouse (Mus musculus) as a Model Experimental Organism For the Study of Aging From: Hampton, K.
    [Show full text]
  • Living to 100”
    The Likelihood and Consequences of “Living to 100” Leonard Hayflick, Ph.D. Professor of Anatomy, Department of Anatomy University of California, San Francisco, School of Medicine Phone: (707) 785-3181 Fax: (707) 785-3809 Email: [email protected] Presented at the Living to 100 Symposium Orlando, Fla. January 5-7, 2011 Copyright 2011 by the Society of Actuaries. All rights reserved by the Society of Actuaries. Permission is granted to make brief excerpts for a published review. Permission is also granted to make limited numbers of copies of items in this monograph for personal, internal, classroom or other instructional use, on condition that the foregoing copyright notice is used so as to give reasonable notice of the Society’s copyright. This consent for free limited copying without prior consent of the Society does not extend to making copies for general distribution, for advertising or promotional purposes, for inclusion in new collective works or for resale. Abstract There is a common belief that it would be a universal good to discover how to slow or stop the aging process in humans. It guides the research of many biogerontologists, the course of some health policy leaders and the hopes of a substantial fraction of humanity. Yet, the outcome of achieving this goal is rarely addressed despite the fact that it would have profound consequences that would affect virtually every human institution. In this essay, I discuss the impact on human life if a means were found to slow our aging process, thus permitting a life expectancy suggested by the title of this conference, “Living to 100.” It is my belief that most of the consequences would not benefit either the individual or society.
    [Show full text]
  • Longevity, Genes, and Aging: a View Provided by a Genetic Model System1
    Experimental Gerontology, Vol. 34, No. 1, pp. 1–6, 1999 Copyright © 1999 Elsevier Science Inc. Printed in the USA. All rights reserved 0531-5565/99 $–see front matter PII S0531-5565(98)00053-9 LONGEVITY, GENES, AND AGING: A VIEW PROVIDED BY A GENETIC MODEL SYSTEM1 1 S. MICHAL JAZWINSKI Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Box P7-2, 1901 Perdido Street, New Orleans, Louisiana 70112 Abstract—The genetic analysis of aging in the yeast Saccharomyces cerevisiae has revealed the importance of metabolic capacity, resistance to stress, integrity of gene regulation, and genetic stability for longevity. A balance between these life maintenance processes is sustained by the RAS2 gene, which channels cellular resources among them. This gene cooperates with mitochondria and PHB1 in metabolic adjustments important for longevity. It also modulates stress responses. Transcriptional silencing of heterochromatic regions of the genome is lost during aging, suggesting that gene dysregulation accompanies the aging process. There is evidence that this age change plays a causal role. Aging possesses features of a nonlinear process, and it is likely that application of nonlinear system methodology to aging will be productive. © 1999 Elsevier Science Inc. All rights reserved. Key words: metabolism, stress responses, gene dysregulation, nonlinear system INTRODUCTION IF WE WERE to design an organism, we would endow it with sufficient lifetime metabolic capacity, stress resistance, integrity of gene regulation, and genetic stability. Given a limit to the resources available, we would need to strike a balance between these processes and reproduc- tion. Genetic analysis of the aging process has confirmed the soundness of these engineering principles (Jazwinski, 1996).
    [Show full text]
  • Controversy 2
    Controversy 2 WHY DO OUR BODIES GROW OLD? liver Wendell Holmes (1858/1891), in his poem “The Wonderful One-Hoss Shay,” invokes a memorable image of longevity and mortality, the example of a wooden Ohorse cart or shay that was designed to be long-lasting: Have you heard of the wonderful one-hoss shay, That was built in such a logical way, It ran a hundred years to a day . ? This wonderful “one-hoss shay,” we learn, was carefully built so that every part of it “aged” at the same rate and didn’t wear out until the whole thing fell apart all at once. Exactly a century after the carriage was produced, the village parson was driving this marvelous machine down the street, when What do you think the parson found, When he got up and stared around? The poor old chaise in a heap or mound, As if it had been to the mill and ground! You see, of course, if you’re not a dunce, How it went to pieces all at once, All at once, and nothing first, Just as bubbles do when they burst. The wonderful one-horse shay is the perfect image of an optimistic hope about aging: a long, healthy existence followed by an abrupt end of life, with no decline. The one-horse shay image also suggests that life has a built-in “warranty expiration” date. But where does this limit on longevity come from? Is it possible to extend life beyond what we know? The living organism with the longest individual life span is the bristlecone pine tree found in California, more than 4,500 years old, with no end in sight.
    [Show full text]
  • Skeletal Muscle in Aged Mice Reveals Extensive Transformation of Muscle
    Lin et al. BMC Genetics (2018) 19:55 https://doi.org/10.1186/s12863-018-0660-5 RESEARCHARTICLE Open Access Skeletal muscle in aged mice reveals extensive transformation of muscle gene expression I-Hsuan Lin1†, Junn-Liang Chang3†, Kate Hua1, Wan-Chen Huang4, Ming-Ta Hsu2 and Yi-Fan Chen4* Abstract Background: Aging leads to decreased skeletal muscle function in mammals and is associated with a progressive loss of muscle mass, quality and strength. Age-related muscle loss (sarcopenia) is an important health problem associated with the aged population. Results: We investigated the alteration of genome-wide transcription in mouse skeletal muscle tissue (rectus femoris muscle) during aging using a high-throughput sequencing technique. Analysis revealed significant transcriptional changes between skeletal muscles of mice at 3 (young group) and 24 (old group) months of age. Specifically, genes associated with energy metabolism, cell proliferation, muscle myosin isoforms, as well as immune functions were found to be altered. We observed several interesting gene expression changes in the elderly, many of which have not been reported before. Conclusions: Those data expand our understanding of the various compensatory mechanisms that can occur with age, and further will assist in the development of methods to prevent and attenuate adverse outcomes of aging. Keywords: Aging, Skeletal muscle, Cardiac-related genes, RNA sequencing analysis, Muscle fibers, Defects on differentiation Background SIRT1 reduces the oxidative stress and inflammation Aging is a process whereby various changes were accu- associated with ameliorating diseases, such as vascular mulated over time, resulting in dysfunction in mole- endothelial disorders, neurodegenerative diseases, as cules, cells, tissues and organs.
    [Show full text]
  • Longevidad Y Envejecimiento En El Tercer Milenio: Nuevas Perspectivas
    LONGEVIDAD Y ENVEJECIMIENTO EN EL TERCER MILENIO: NUEVAS PERSPECTIVAS JOSÉ MIGUEL RODRÍGUEZ-PARDO DEL CASTILLO ANTONIO LÓPEZ FARRÉ LONGEVIDAD Y ENVEJECIMIENTO EN EL TERCER MILENIO: NUEVAS PERSPECTIVAS José Miguel Rodríguez-Pardo del Castillo Profesor del Máster en Ciencias Actuariales y Financieras Universidad Carlos III, Madrid Antonio López Farré Profesor de la Facultad de Medicina. Departamento de Medicina. Codirector del Aula AINTEC Universidad Complutense de Madrid Fundación MAPFRE no se hace responsable del contenido de esta obra, ni el hecho de publicarla implica conformidad o identificación con las opiniones vertidas en ella. Reservados todos los derechos. Está prohibido reproducir o transmitir esta publicación, total o parcialmente, por cualquier medio, sin la autorización expresa de los editores, bajo las sanciones establecidas en las leyes. Imágenes de cubierta e interiores: ThinkStock Maquetación e impresión: Edipack Gráfico © De los textos: sus autores © De esta edición: 2017, Fundación MAPFRE Paseo de Recoletos, 23 28004 Madrid www.fundacionmapfre.org ISBN: 978-84-9844-648-7 Depósito Legal: M-18221-2017 «Los hombres son como los vinos: la edad agria los malos y mejora los buenos». Marco Tulio Cicerón «Solo la alegría es señal de salud y longevidad». Santiago Ramón y Cajal «No anheléis la inmortalidad, pero agotad el límite de lo posible». Píndaro Agradecimiento: Los autores quieren agradecer a Begoña Larrea Cruz su excelente y dedicada labor en la edición de esta obra, sin cuya ayuda no hubiera sido nunca finalizada. PRESENTACIÓN Desde 1975 Fundación MAPFRE desarrolla actividades de interés general para la sociedad en distintos ámbitos profesionales y culturales, así como ac- ciones destinadas a la mejora de las condiciones económicas y sociales de las personas y de los sectores menos favorecidos de la sociedad.
    [Show full text]