Biochemistry Diseases Associated with Glycogen Synthesis

Total Page:16

File Type:pdf, Size:1020Kb

Biochemistry Diseases Associated with Glycogen Synthesis Paper : 04 Metabolism of carbohydrates Module: 29 Diseases Associated with Glycogen Synthesis Dr. S.K.Khare, Professor Principal Investigator, IIT Delhi. Paper Coordinator Dr. Ramesh Kothari, Professor Dr. Vijaya Khader UGCDr.- MCCAS Varadaraj Department of Biosciences Saurashtra University, Rajkot-5 Gujarat-INDIA Content Writer Dr. Chirantan Rawal, Assistant Professor Department of Microbiology, Silvassa College. Silvassa, UT of Dadra & Nagar Haveli, 396235 Professor Content Reviewer: Prof. S. P. Singh, UGC-CAS Department of Biosciences Saurashtra University, Rajkot-5 Gujarat-INDIA 1 Metabolism of Carbohydrates Biochemistry Diseases Associated with Glycogen Synthesis Description of Module Subject Name Biochemistry Paper Name 04 Metabolism of carbohydrates Module Name/Title Diseases Associated with Glycogen Synthesis 2 Metabolism of Carbohydrates Biochemistry Diseases Associated with Glycogen Synthesis Diseases Associated With Glycogen Synthesis Objectives 1. To understand the concept of glycogen storage diseases (GSD). 2. To study Glycogen storage diseases associated with the glycogen synthesis. 3. To understand the molecular basis of diseases. 3 Metabolism of Carbohydrates Biochemistry Diseases Associated with Glycogen Synthesis Introduction . Glycogen storage disease (GSD) relates to a set of metabolic disorder occurs due to the defective glycogenesis or glycogenolysis. Classification of glycogen storage diseases are according to the type of enzymatic deficiency. It is also classified on the basis of kind of primary organs involved. GSDs are usually diagnosed in infants or early childhood. Enzymes associated with GSDs are involved in the regulation of glycogen metabolism. It is observed that there is phenotypic variation is observed when specific enzyme is altered by mutation. Such diseases concern primarily the liver, skeletal muscle, heart and sometimes the central nervous system and the kidneys. These distinctive diseases are relatively diverse in age of onset of symptoms, morbidity and mortality. A person with a GSD has a deficiency of one of the enzymes responsible for synthesis or degradation of glycogen in the body. It results in to abnormal concentration of glycogen in the tissue or imperfectly formed glycogen. In Glycogen storage diseases, human body is not able to make enough glucose, or not able to use glucose as a source of energy. Diagnosis of GSDs depends on an individual's symptoms. Glycogen storage diseases are genetic disorders. They are caused due to mutation in the genes related to glycogen metabolism. General diagnosis: It is detected in infancy or early childhood. In severe case it is immediately identified while milder types may not be identified or unnoticed for several years. General characteristic symptoms include hypoglycaemia, hepatomegaly (enlarged liver), growth retardation, and irregular blood biochemistry. A more specific diagnosis can be done by analysing concentration of glycogen in a biopsy sample or by assaying the sample for enzyme activity. Genetic diagnostic techniques are also available. GSD's are currently not curable. Generally it is treated to manage symptoms. Treatment involves organ transplants or dietary treatment. In future, It may be possible to treat such diseases by using gene therapy . In this chapter, we will learn GSDs associated with Glycogen Synthesis. 4 Metabolism of Carbohydrates Biochemistry Diseases Associated with Glycogen Synthesis Overview of Glycogen synthesis Glycogenesis and glycogenolysis occur by different pathways. Glycogen synthesis involves the use of an activated form of glucose. Mammals, fungi and eukaryotic heterotrophic microorganisms use UDP-Glucose while bacteria and photosynthetic eukaryotes use ADP-Glucose. Initially glucose is phosphorylated to glucose 6-phosphate. This reaction is catalyzed by hexokinase (muscle) or glucokinase ( liver). Phosphoglucomutase catalyse the isomerisation of Glucose 6-phosphate to glucose 1- phosphate. Now UDP-glucose pyrophosphorylase catalyse the formation of UDP-glucose from UTP and glucose 1-phosphate. Glycogen synthase transfers the glucosyl residue from UDP-glucose to the non reducing terminal residues of glycogen. It is transferred to hydroxyl terminal of C4 end of glycogen to form an α-1–4 glycosidic bond. UDP-glucose + (glycogen) n residues UDP + (glycogen) n+1 residues Glycogen synthase catalyzes only α- 1–4 glycosidic bonds. It results in to the formation of α- amylose. Branching is catalysed by separate enzyme called Branching enzyme. It is also known as amylo-(1–4→1–6) transglycosylase. Students may refer module 25 (glycogenesis) for further details. 5 Metabolism of Carbohydrates Biochemistry Diseases Associated with Glycogen Synthesis GLUCOSE ATP Hexokinase ADP GLUCOSE-6-PHOSPHATE Phosphoglucomutase GLUCOSE-1-PHOSPHATE UTP UDP-glucose pyrophosphorylase 2PPi UDP-GLUCOSE Glycogen synthase GLUCOSE+ GLUCOSE +……….. Leads to formation of glycogen Fig: 29.1 OVERVIEW OF GLYCOGENESIS 6 Metabolism of Carbohydrates Biochemistry Diseases Associated with Glycogen Synthesis Diseases Associated with Glycogen Synthesis Glycogen Storage Disease O Glycogen Storage Disease Type IV 7 Metabolism of Carbohydrates Biochemistry Diseases Associated with Glycogen Synthesis Glycogen Storage Disease Type 0 It is also known as Hepatic Glycogen Synthase Deficiency It is caused due to deficiency of glycogen synthase enzyme. Glycogen synthase transfers the glucosyl residue from UDP-glucose to the non reducing terminal residues of glycogen. It is transferred to hydroxyl terminal of C4 end of glycogen to form an α-1–4 glycosidic bond. This reaction is catalysed by glycogen synthase. Glycogen synthase is the regulatory enzyme in synthesis of glycogen. Liver glycogen storage will not be there due to deficiency of glycogen synthase Carbohydrate will be converted in to lactate instead of the glycogen. This is autosomal recessive disorder. General symptoms: o Postprandial period: Hyperglycemia, glycosuria and hyperlactic acidemia after postprandial period. o Fasting: hypoglycemia and hyperketonemia o In this disease objective is to prevent the low blood sugar by evade fasting. Repeated food should be given every 3-4 hours during the day. o High protein food may help in reducing muscular cramping, tiredness, and fatigue that patient experience GLYCOGEN STORAGE DISEASE TYPE 0 Deficient Glycogen Synthase enzyme Chromosomal 12p12.2 location Diagnosis Genetic studies Quantitative analysis of glycogen synthase enzyme and glycogen Treatment Dietary treatment Gene therapy may be possible in future. 8 Metabolism of Carbohydrates Biochemistry Diseases Associated with Glycogen Synthesis Glycogen Storage Disease Type IV It is also known as Andersen Disease, Brancher Deficiency; Amylopectinosis, Glycogen Branching Enzyme Deficiency. This is autosomal recessive disorder. It occurs due to deficiency of branching enzyme. It is also known as amylo-(1–4→1–6) transglycosylase After a number of glucose units have been linked as a straight chain with α1–4 linkages, branching enzyme breaks α 1–4 bonds. It breaks a 7 unit segment of α 1–4 residues from a glycogen chain and transfers to a C-6 hydroxyl group of a glucosyl residue that is four residues away from an existing branch. Reattachment is done by creating an α1–6 bond. In such cases branches will not form in the structure of glycogen. It will resembles amylopectin like structures. It is called PAS i.e. positive amylopectin like structures. In type IV diseases PAS will accumulate in the liver, muscles, leucocytes etc. GLYCOGEN STORAGE DISEASE TYPE IV Deficient Glycogen Branching enzyme enzyme Chromosomal 3p12 location Diagnosis Genetic studies Histological and ultra structure examination of tissue sample. Treatment Liver transplantation Gene therapy may be possible in future. 9 Metabolism of Carbohydrates Biochemistry Diseases Associated with Glycogen Synthesis GLYCOGEN STORAGE DISEASES (Excluding disease associated with glycogen synthesis and degradation) Type VII Tarui’s disease (Deficiency of phosphofructokinase in muscle and erythrocytes) It is a genetic disorder It is directly related to impairment in the glycolysis. In this disease patient is unable to breakdown glycogen in muscle cells.It result in to the interference in the functioning of muscle cells. Four types of GSD Type VII is observed The classical form is the most common form. Its symptoms observed in childhood. It is characterised by muscle pain and cramps after moderate exercise. Exercise results in to the breakdown of muscles. It releases the protein called myoglobin. It results in to the myoglobinuria. If untreated, myoglobinuria can harm the kidneys and lead to kidney failure. It is observed due to mutation in the gene of M subunit of the Phosphofructokinase enzyme. PFKM. This gene helps in the synthesis of phosphofructokinase. PFK phosphorylates fructose- 6-phosphate preceding to its cleavage into glyceraldehyde-3-phosphate which enters the energy generation phase of glycolysis.. GLYCOGEN STORAGE DISEASE TYPE VII Deficient phosphofructokinase enzyme enzyme Genetic basis Mutations in the PFKM gene results in to the type VII glycogen storage diseases. Diagnosis Genetic studies Muscle biopsy Quantitative analysis of Phosphofructokinase enzyme Treatment Dietary treatment Gene therapy may be possible in future 10 Metabolism of Carbohydrates Biochemistry Diseases Associated with Glycogen Synthesis Glycogen Storage Disease Type XII (Aldolase A Deficiency, Glycogenosis Type 12, red cell Aldolase deficiency)
Recommended publications
  • Targeted Therapies for Metabolic Myopathies Related to Glycogen Storage and Lipid Metabolism: a Systematic Review and Steps Towards a ‘Treatabolome’
    Journal of Neuromuscular Diseases 8 (2021) 401–417 401 DOI 10.3233/JND-200621 IOS Press Systematic Review Targeted Therapies for Metabolic Myopathies Related to Glycogen Storage and Lipid Metabolism: a Systematic Review and Steps Towards a ‘Treatabolome’ A. Mantaa,b, S. Spendiffb, H. Lochmuller¨ b,c,d,e,f and R. Thompsonb,∗ aFaculty of Medicine, University of Ottawa, Ottawa, ON, Canada bChildren’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada cDepartment of Neuropediatrics and Muscle Disorders, Medical Center – University of Freiburg, Faculty of Medicine, Freiburg, Germany dCentro Nacional de An´alisis Gen´omico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain eDivision of Neurology, Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, Canada f Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada Abstract. Background: Metabolic myopathies are a heterogenous group of muscle diseases typically characterized by exercise intoler- ance, myalgia and progressive muscle weakness. Effective treatments for some of these diseases are available, but while our understanding of the pathogenesis of metabolic myopathies related to glycogen storage, lipid metabolism and ␤-oxidation is well established, evidence linking treatments with the precise causative genetic defect is lacking. Objective: The objective of this study was to collate all published evidence on pharmacological therapies for the aforemen- tioned metabolic myopathies and link this to the genetic mutation in a format amenable to databasing for further computational use in line with the principles of the “treatabolome” project. Methods: A systematic literature review was conducted to retrieve all levels of evidence examining the therapeutic efficacy of pharmacological treatments on metabolic myopathies related to glycogen storage and lipid metabolism.
    [Show full text]
  • Defective Galactose Oxidation in a Patient with Glycogen Storage Disease and Fanconi Syndrome
    Pediatr. Res. 17: 157-161 (1983) Defective Galactose Oxidation in a Patient with Glycogen Storage Disease and Fanconi Syndrome M. BRIVET,"" N. MOATTI, A. CORRIAT, A. LEMONNIER, AND M. ODIEVRE Laboratoire Central de Biochimie du Centre Hospitalier de Bichre, 94270 Kremlin-Bicetre, France [M. B., A. C.]; Faculte des Sciences Pharmaceutiques et Biologiques de I'Universite Paris-Sud, 92290 Chatenay-Malabry, France [N. M., A. L.]; and Faculte de Midecine de I'Universiti Paris-Sud et Unite de Recherches d'Hepatologie Infantile, INSERM U 56, 94270 Kremlin-Bicetre. France [M. 0.1 Summary The patient's diet was supplemented with 25-OH-cholecalci- ferol, phosphorus, calcium, and bicarbonate. With this treatment, Carbohydrate metabolism was studied in a child with atypical the serum phosphate concentration increased, but remained be- glycogen storage disease and Fanconi syndrome. Massive gluco- tween 0.8 and 1.0 mmole/liter, whereas the plasma carbon dioxide suria, partial resistance to glucagon and abnormal responses to level returned to normal (18-22 mmole/liter). Rickets was only carbohydrate loads, mainly in the form of major impairment of partially controlled. galactose utilization were found, as reported in previous cases. Increased blood lactate to pyruvate ratios, observed in a few cases of idiopathic Fanconi syndrome, were not present. [l-14ClGalac- METHODS tose oxidation was normal in erythrocytes, but reduced in fresh All studies of the patient and of the subjects who served as minced liver tissue, despite normal activities of hepatic galactoki- controls were undertaken after obtaining parental or personal nase, uridyltransferase, and UDP-glucose 4epirnerase in hornog- consent. enates of frozen liver.
    [Show full text]
  • Improvement of the Nutritional Management of Glycogen Storage Disease Type I
    1 Improvement of the nutritional management of glycogen storage disease type I Kaustuv Bhattacharya Presented for the degree of MD (res) at University College London 2 “The roots below the earth claim no rewards for making the branches fruitful” Sir Rabrindranath Tagore Stray Birds (1917) Acknowledgements Whilst this thesis is my own work, it is the product of several helpful discussions with many people around the world. It was conducted under the supervision of Philip Lee who, since completion of the data collection, faced bigger personal challenges than he could have imagined. I hope that this work is a fitting conclusion to one strategic direction, of some of his research, which I hope he can be proud of. I am very grateful for his help. Peter Clayton has been a source of inspiration throughout my “metabolic” career and his guidance throughout this process has been very gratefully received. I appreciate the tolerance of my other colleagues at Queen Square and Great Ormond Street Hospital that have accommodated in different ways. The dietetic experience of Maggie Lilburn has been invaluable to this work. Simon Eaton has helped tremendously with performing the assays in chapter 5. I would also like to thank, David Morley, Amy Cole, Martin Christian, and Bridget Wilcken for their constructive thoughts. None of this work would have been possible without the Murphy family’s generous support. I thank the Dromintee Trust for keeping me in worthwhile employment. I would like to thank the patients who volunteered and gave me so much of their time. The Association for Glycogen Storage Disease (UK), Glycologic Ltd and Vitaflo Ltd have also sponsored these trials and hopefully facilitated a better experience for patients.
    [Show full text]
  • Carbohydrates: Structure and Function
    CARBOHYDRATES: STRUCTURE AND FUNCTION Color index: . Very important . Extra Information. “ STOP SAYING I WISH, START SAYING I WILL” 435 Biochemistry Team *هذا العمل ﻻ يغني عن المصدر المذاكرة الرئيسي • The structure of carbohydrates of physiological significance. • The main role of carbohydrates in providing and storing of energy. • The structure and function of glycosaminoglycans. OBJECTIVES: 435 Biochemistry Team extra information that might help you 1-synovial fluid: - It is a viscous, non-Newtonian fluid found in the cavities of synovial joints. - the principal role of synovial fluid is to reduce friction between the articular cartilage of synovial joints during movement O 2- aldehyde = terminal carbonyl group (RCHO) R H 3- ketone = carbonyl group within (inside) the compound (RCOR’) 435 Biochemistry Team the most abundant organic molecules in nature (CH2O)n Carbohydrates Formula *hydrate of carbon* Function 1-provides important part of energy Diseases caused by disorders of in diet . 2-Acts as the storage form of energy carbohydrate metabolism in the body 3-structural component of cell membrane. 1-Diabetesmellitus. 2-Galactosemia. 3-Glycogen storage disease. 4-Lactoseintolerance. 435 Biochemistry Team Classification of carbohydrates monosaccharides disaccharides oligosaccharides polysaccharides simple sugar Two monosaccharides 3-10 sugar units units more than 10 sugar units Joining of 2 monosaccharides No. of carbon atoms Type of carbonyl by O-glycosidic bond: they contain group they contain - Maltose (α-1, 4)= glucose + glucose -Sucrose (α-1,2)= glucose + fructose - Lactose (β-1,4)= glucose+ galactose Homopolysaccharides Heteropolysaccharides Ketone or aldehyde Homo= same type of sugars Hetero= different types Ketose aldose of sugars branched unBranched -Example: - Contains: - Contains: Examples: aldehyde group glycosaminoglycans ketone group.
    [Show full text]
  • Datasheet: VPA00226
    Datasheet: VPA00226 Description: RABBIT ANTI ALDOA Specificity: ALDOA Format: Purified Product Type: PrecisionAb™ Polyclonal Isotype: Polyclonal IgG Quantity: 100 µl Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Mouse, Rat Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation Rabbit Ig fraction prepared by ammonium sulphate precipitation Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers Immunogen KLH conjugated synthetic peptide between 66-95 amino acids from the N-terminal region of human ALDOA External Database UniProt: Links P04075 Related reagents Entrez Gene: 226 ALDOA Related reagents Page 1 of 2 Synonyms ALDA Specificity Rabbit anti Human ALDOA antibody recognizes fructose-bisphosphate aldolase A, also known as epididymis secretory sperm binding protein Li 87p, fructose-1,6-bisphosphate triosephosphate-lyase, lung cancer antigen NY-LU-1 and muscle-type aldolase. Encoded by the ALDOA gene, fructose-bisphosphate aldolase A is a glycolytic enzyme that catalyzes the reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate.
    [Show full text]
  • General Nutrition Guidelines for Glycogen Storage Disease Type III
    General Nutrition Guidelines For Glycogen Storage Disease Type III Glycogen Storage Disease Type III (GSDIII) is a genetic metabolic disorder which causes the inability to break down glycogen to glucose. Glycogen is a stored form of sugar in the body. Glucose (sugar) is the main source of fuel for the body and brain. GSD IIIa causes the inability of the liver and muscles to breakdown glycogen to glucose. GSD IIIb causes the inability of the liver to breakdown glycogen to glucose. As a result of the inability to breakdown glycogen, patients with GSDIII are at risk for low blood sugars (hypoglycemia) during periods of fasting. Patients with GSDIIIa also do not have the ability to access glycogen in their muscles as well. The lack of glycogen access in the muscles causes muscle damage as the muscle do not have a fuel to aid them in working. The following is a recommended general nutrition guideline for those with GSDIII to help maximize blood sugar control, nutrition, energy, and hopefully minimize muscle damage for those with GSDIIIa. Protein What is protein? Protein is a macronutrient (like carbohydrate and fat) and is required for proper growth and development. In GSDIII, the most important role that protein serves is a way for the body to make glucose since those with GSDIII do not have access to stored sugars (glycogen). Protein also serves as the building blocks for our cells, is also necessary to make antibodies which help our bodies fight off illnesses, make up hormones, enzymes, and even our DNA. With GSD type III, it is very important to make sure you are getting all the protein that your body needs.
    [Show full text]
  • Maladies Convention Mal
    maladies métaboliques monogéniques héréditaires rares 1 avenant à la convention avec les centres de référence – annexe OMIM # FULL NAME A. disorders of amino acid metabolism 1 261600 classical phenylketonuria and hyperphenylala- ninemia 2 261640 phenylketonuria due to PTPS deficiency 3 261630 phenylketonuria due to DHPR deficiency 4 264070 phenylketonuria due to PCD deficiency 5 128230 DOPA-responsive dystonia (TH, SPR, GCH1) 6 248600 leucinose, maple syrup urine disease (MSUD) 7 276700 tyrosinemia type 1 8 276600 tyrosinemia type 2 9 276710 tyrosinemia type 3 10 203500 alkaptonuria 11 236200 homocystinuria, B6 responsive and non responsive 12 236250 homocystinuria due to MTHFR deficiency 13 236270-250940 homocystinuria-megaloblastic anemia Cbl E & G type 14 250850 methionine S-adenosyltransferase deficiency 15 606664 glycine N-methyltransferase deficiency 16 180960 S-adenosylhomocystine hydrolase deficiency 17 237300 hyperammonemia due to CPS deficiency 18 311250 hyperammonemia due to OTC deficiency 19 215700 citrullinemia type I 20 605814-603471 citrullinemia type II 21 207900 argininosuccinic aciduria (ASL deficiency) 22 207800 argininemia (arginase deficiency) 23 237310 hyperammonemia due to NAGS deficiency 24 238970 hyperornithinemia, hyperammonemia, homocitrulli- nuria (HHH) 25 222700 lysinuric protein intolerance 26 258870 gyrate atrophy, B6 responsive or non responsive 27 238700 hyperlysinemia (alpha-aminoadipic semialdehyde synthase deficiency) 28 238300-330-310 non ketotic hyperglycinaemia 29 234500 hartnup disorder 30 601815-172480
    [Show full text]
  • Carbohydrates Adapted from Pellar
    Carbohydrates Adapted from Pellar OBJECTIVE: To learn about carbohydrates and their reactivities BACKGROUND: Carbohydrates are a major food source, with most dietary guidelines recommending that 45-65% of daily calories come from carbohydrates. Rice, potatoes, bread, pasta and candy are all high in carbohydrates, specifically starches and sugars. These compounds are just a few examples of carbohydrates. Other carbohydrates include fibers such as cellulose and pectins. In addition to serving as the primary source of energy for the body, sugars play a number of other key roles in biological processes, such as forming part of the backbone of DNA structure, affecting cell-to-cell communication, nerve and brain cell function, and some disease pathways. Carbohydrates are defined as polyhydroxy aldehydes or polyhydroxy ketones, or compounds that break down into these substances. They can be categorized according to the number of carbons in the structure and whether a ketone or an aldehyde group is present. Glucose, for example, is an aldohexose because it contains six carbons and an aldehyde functional group. Similarly, fructose would be classified as a ketohexose. glucose fructose A more general classification scheme exists where carbohydrates are broken down into the groups monosaccharides, disaccharides, and polysaccharides. Monosaccharides are often referred to as simple sugars. These compounds cannot be broken down into smaller sugars by acid hydrolysis. Glucose, fructose and ribose are examples of monosaccharides. Monosaccharides exist mostly as cyclic structures containing hemiacetal or hemiketal groups. These structures in solution are in equilibrium with the corresponding open-chain structures bearing aldehyde or ketone functional groups. The chemical linkage of two monosaccharides forms disaccharides.
    [Show full text]
  • Table S1. Disease Classification and Disease-Reaction Association
    Table S1. Disease classification and disease-reaction association Disorder class Associated reactions cross Disease Ref[Goh check et al.
    [Show full text]
  • Nucleosides & Nucleotides
    Nucleosides & Nucleotides Biochemistry Fundamentals > Genetic Information > Genetic Information NUCLEOSIDE AND NUCLEOTIDES SUMMARY NUCLEOSIDES  • Comprise a sugar and a base NUCLEOTIDES  • Phosphorylated nucleosides (at least one phosphorus group) • Link in chains to form polymers called nucleic acids (i.e. DNA and RNA) N-BETA-GLYCOSIDIC BOND  • Links nitrogenous base to sugar in nucleotides and nucleosides • Purines: C1 of sugar bonds with N9 of base • Pyrimidines: C1 of sugar bonds with N1 of base PHOSPHOESTER BOND • Links C3 or C5 hydroxyl group of sugar to phosphate NITROGENOUS BASES  • Adenine • Guanine • Cytosine • Thymine (DNA) 1 / 8 • Uracil (RNA) NUCLEOSIDES • =sugar + base • Adenosine • Guanosine • Cytidine • Thymidine • Uridine NUCLEOTIDE MONOPHOSPHATES – ADD SUFFIX 'SYLATE' • = nucleoside + 1 phosphate group • Adenylate • Guanylate • Cytidylate • Thymidylate • Uridylate Add prefix 'deoxy' when the ribose is a deoxyribose: lacks a hydroxyl group at C2. • Thymine only exists in DNA (deoxy prefix unnecessary for this reason) • Uracil only exists in RNA NUCLEIC ACIDS (DNA AND RNA)  • Phosphodiester bonds: a phosphate group attached to C5 of one sugar bonds with - OH group on C3 of next sugar • Nucleotide monomers of nucleic acids exist as triphosphates • Nucleotide polymers (i.e. nucleic acids) are monophosphates • 5' end is free phosphate group attached to C5 • 3' end is free -OH group attached to C3 2 / 8 FULL-LENGTH TEXT • Here we will learn about learn about nucleoside and nucleotide structure, and how they create the backbones of nucleic acids (DNA and RNA). • Start a table, so we can address key features of nucleosides and nucleotides. • Denote that nucleosides comprise a sugar and a base.
    [Show full text]
  • The Stochastic Human Red Blood Cell Model and Its Applications
    RESEARCH The Stochastic Human Red Blood Cell Model and Its Applications Archita Biswas1, Pawan K Dhar1, Girja Kaushal2, Usha Kumari3, Kalaiarasan Ponnusamy* 1Synthetic Biology group, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India 2Center of Innovative and Applied Bioprocessing, Mohali, Punjab, India 3Faculty of Medicine, AIMST University, Malaysia. *Corresponding author’s email: [email protected] ABSTRACT Red blood cells (RBCs) form the bulk of the blood volume for delivering oxygen and nutrients to various cells in the body. Several studies have focused on the RBCs to understand its metabolic activities in normal and abnormal conditions. However, an integrated view of the red blood cell, as a system of molecular fluctuations, is still lacking. The RBC metabolic wiring comprises four key pathways, i.e. Glycolysis, Pentose Phosphate, Purine salvage pathway and Glutathione pathway. Here we present an integrated metabolic pathway model of the human red blood cell by including first three pathways due to their significant presence and interaction. Furthermore, the stochastic model of RBCs metabolic pathways has been extended to include explaining abnormal conditions in the form of Pyruvate Kinase and Aldolase A deficiencies. By studying metabolite changes in-silico, four biomarkers were found to represent two genetic mutations, i.e., 2-phosphoglycerate & phosphoenol pyruvate changes for Pyruvate kinase deficiency and fructose-1-6-bisphosphate & xylulose-5-phosphate for Aldolase A deficiency. The virtual RBC model has the potential for more clinical applications and can be scaled up to include additional regulatory and metabolic content. KEYWORDS: Virtual Cell, stochastic model, RBC, ns, Pyruvate kinase, Aldolase A deficiency. Citation: Biswas A et al (2018) The Stochastic human red blood cell model and its applications.
    [Show full text]
  • 8| Nucleotides and Nucleic Acids
    8| Nucleotides and Nucleic Acids © 2013 W. H. Freeman and Company CHAPTER 8 Nucleotides and Nucleic Acids Key topics: – Biological function of nucleotides and nucleic acids – Structures of common nucleotides – Structure of double‐stranded DNA – Structures of ribonucleic acids – Denaturation and annealing of DNA – Chemistry of nucleic acids; mutagenesis Functions of Nucleotides and Nucleic Acids • Nucleotide Functions: – Energy for metabolism (ATP) – Enzyme cofactors (NAD+) –Signal transduction (cAMP) • Nucleic Acid Functions: – Storage of genetic info (DNA) – Transmission of genetic info (mRNA) –Processing of genetic information (ribozymes) –Protein synthesis (tRNA and rRNA) Nucleotides and Nucleosides • Nucleotide = – Nitrogeneous base –Pentose – Phosphate • Nucleoside = – Nitrogeneous base –Pentose • Nucleobase = – Nitrogeneous base Phosphate Group •Negatively charged at neutral pH • Typically attached to 5’ position – Nucleic acids are built using 5’‐triphosphates •ATP, GTP, TTP, CTP – Nucleic acids contain one phosphate moiety per nucleotide •May be attached to other positions Other Nucleotides: Monophosphate Group in Different Positions Pentose in Nucleotides • ‐D‐ribofuranose in RNA • ‐2’‐deoxy‐D‐ribofuranose in DNA •Different puckered conformations of the sugar ring are possible Nucleobases •Derivatives of pyrimidine or purine • Nitrogen‐containing heteroaromatic molecules •Planar or almost planar structures •Absorb UV light around 250–270 nm Pyrimidine Bases • Cytosine is found in both DNA and RNA •Thymineis found only in DNA
    [Show full text]