Early and Middle Cambrian Trilobites from Antarctica Paleontological Investigations in the Ellsworth Mountains, West Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Early and Middle Cambrian Trilobites from Antarctica Paleontological Investigations in the Ellsworth Mountains, West Antarctica again yielded no clear evidence of their nature. They Early and Middle Cambrian were then subjected to OX-DTA in a pure-oxygen atmosphere at a heating rate of 80°C./min in order Trilobites from Antarctica to emphasize DTA sensitivity and sample response ALLISON R. PALMER to oxygen combustion. Exotherm peaks for the 20-70 microgram samples resembled those of various coals State University of New York at Stony Brook and lay within the lignite-bituminous range-465°C. for the Wheeler Valley sample and 540°C. for the Eight trilobite faunules ranging in age from Early McKelvey Valley sample. On this basis, and on the to Late-Middle Cambrian have been recovered from basis of their physical properties and behavior toward fossiliferous boulders collected by J . M. Schopf in solvents, we concluded that the minute particles were 1966 from moraines on Mount Spann in the north- coal. Samples of this size are too small to be ranked eastern Argentina Range. One of the Late-Middle by the reflectance technique. Cambrian faunules and one additional Middle Cam- The particles were probably derived by wind ero- brian faunule were collected by D. L. Schmidt in sion acting against the cleat of the complex Mount 1964 and 1966 in place in the lowermost part of the Bastion measures at the head of Victoria Valley Nelson Limestone in the Neptune Range. A tenth (Gunn and Warren, 1962; Allen, 1962). In view of faunule, also of Middle Cambrian age, is represented the frequent occurrence of coal in the Antarctic, we in the Queen Maud Range by badly deformed and may expect to find low levels of mixed-rank coals in slightly metamorphosed trilobites collected by V. H. other dry-valley soils. Minshew in 1964. The faunules include a total of 28 The flotation-DTA micro-method should be ap- species representing 21 genera. plied to extraterrestrial returned samples as a means Almost all trilobites in these faunules are close of detecting any coalified fossil life present. Such relatives of Australian, Chinese, or Siberian forms. material would probably be missed by remote life- There are no significant relations between any of detection systems such as the Py-GC-MS experiment the faunules and the Cambrian trilobites of South suggested for the Mars lander (Simmonds et al., or North America. This observation creates prob- 1969; Horowitz et al., 1969). lems for an Early Paleozoic Gondwanaland because This paper presents the results of one phase of the contrasting antarctic and South American Cam- research carried out at the Jet Propulsion Laboratory, brian faunas would share a common coastline. More California Institute of Technology, under NASA con- work will be needed in South America and Antarc- tract No. NAS 7-100 and NSF contract No. CO- tica to explain this anomalous relationship. 585-000-00. Within Antarctica, the Cambrian data indicate that the Neptune and possibly also the Queen Maud Ranges were the last areas inundated by transgressing References Cambrian seas. Limestones in the Argentina Range at the Atlantic end of the Transantarctic Mountains Allen, A. D. 1962. Geological investigations in southern Vic- and the Shackleton Limestone at the Pacific end of toria Land, Antarctica. New Zealand Journal of Geology and Geophysics, 5: 278. the mountains are considerably older than the oldest Allison, L. E. 1960. Wet-combustion apparatus and pro- beds in the Neptune Range. cedure for organic and inorganic carbon in soil. Soil Sci- ence Society of America. Proceedings, 24: 36-40. Goin, L. J . and P. L. Kirk. 1947. Application of microchemi- cal techniques: Identity of soil samples. Journal of Crimi- nal Law and Criminology, 38 (3): 267-281. Grimshaw, R. W. and A. L. Roberts. 1957. Carbonaceous Paleontological Investigations in the materials. In The Differential Thermal Investigation of Clays, p. 404-417. Mineralogical Society of London. Ellsworth Mountains, West Antarctica Gunn, B. M. and Guyon Warren. 1962. Geology of Victoria Land between the Mawson and Mulock Glaciers, Antarc- GERALD F. WEBERS tica. New Zealand Geological Survey. Bulletin, 71: 109. Horowitz, N. I-I., A. J . Bauman, R. E. Cameron, P. J . Geiger, Department of Geology J. S. Hubbard, G. P. Shulman, P. G. Simmonds, and Macalester College K. Westberg. 1969. Sterile soil from Antarctica: Organic analysis. Science, 164: 1054-1056. Reconnaissance geologic mapping of the Ellsworth Simmonds, P. G., G. P. Shulman, and C. H. Stembridge. Mountains (centered at 79°S. 85°W.) by three 1969. Organic analysis by pyrolysis, gas chromatography and mass spectrometry, a candidate experiment for the expeditions of the University of Minnesota has re- biological exploration of Mars. Journal of Chromato- sulted in the discovery of 11 fossiliferous localities graphic Science, 7: 36-41. (Table 1). The fauna and flora range in age from 162 ANTARCTIC JOURNAL COLUMNAR SECTION ELLSWORTH MOUNTAINS ANTARCTICA Australian-Asiatic affinity and include at least a dozen species referable to Pseudagnostus, Homag- nostus, Eugonocare?, Aphelaspis?, and to new genera. -111E0.1 CON-MERATE The trilobite fauna is dominated by forms very close to those described by Ivshin (1956) from the Upper SITE Cambrian of Kazakstan, U.S.S.R., and referred to QUARTZITE 30.000 Aphelaspis. However, Ivshins use of Aphelaspis is a broad interpretation of the genus, and the assignment u. of Heritage forms to Aphelaspis? indicates a close relationship to Asiatic rather than North American trilobite faunas. Monoplacophorans are abundant and are repre- sented by six species referable to Hypseloconus, Pro plina, Ozarkoconus and to new genera. Two of the monoplacophorans are septate and one has as many as four septa. This latter form is a high-coned, multiseptate, non-siphuncular hypseloconid which is representative of the ancestral group from which the cephalopods evolved. Gastropods are common and include four species Figure 1: from Boucot, Doumani, and Webers, Macluritella, Scaevogyra, and to new 1967. Proceedings of the International Sympo- referable to sium on the Devonian System, v. 1, p. 642. genera. Brachiopods are represented by Billingsella, acrotretids, and an unidentified linguloid. Pelmato- zoans are represented by scattered columnals. Archa- Cambrian to Permian (Fig. 1). All invertebrate eocyathids survived in Antarctica until at least late faunas are presently under study and several are Cambrian and are represented by a single species nearing completion. Among the latter is an unusual close to Archaeocyathus. Upper Cambrian fauna from the north central Heri- tage Range (Table 1, Locality #3). Reference This well-preserved fauna is unusual in its diversity Ivshin, N. K. 1956. Upper Cambrian Trilobites of Kazak- of trilobites and unique in its abundance of primitive stan, Pt. 1. Akademiia Nauk Kazakhstan S.S.S.R. (Alma mollusks and archaeocyathids. Trilobites show an Ata). 221 p. Table 1. Presently known fossil localities in the Ellsworth Mountains Locality Location Age Fauna or flora and formation 1 Northern Sentinel Permian Glossopteris and Gangamopteris flora: Polarstar Formation Mountains 2 Southern Sentinel Paleozoic ? Possible straight-shelled cephalopod: Crashsite Quartzite Mountains 3 Webers Peaks Area, Upper Well preserved fauna of trilobites, primitive mollusks, archaeocyathids, Heritage Range Cambrian articulate and inarticulate brachiopods, pelmatozoan echinoderms: Upper Heritage Group 4. North-central Lower Inarticulate brachiopods and a single specimen of articulate brachiopod: Heritage Range Devonian Crashsite Quartzite 5 Pipe Peak, Cambrian ? Inarticulate brachiopods: Crashsite Quartzite Heritage Range 6 Windy Peak, Cambrian ? Inarticulate brachiopods: Crashsite Quartzite Heritage Range 7 Springer Peak, Cambrian ? Inarticulate brachiopods: Crashsite Quartzite Heritage Range 8 Soholt Peaks, Middle Trilobites: Upper Heritage Group Heritage Range Cambrian ? 9 Inferno Ridge, Middle Trilobites: Upper Heritage Group Heritage Range Cambrian ? 10 Meyer Hills, (Reworked) Fossiliferous carbonate boulders: Whiteout Conglomerate Heritage Range 11 Anderson Massif, Cambrian (?) Highly deformed articulate brachiopods: Upper Heritage Group Heritage Range September—October 1970 163.
Recommended publications
  • Review of the Geology and Paleontology of the Ellsworth Mountains, Antarctica
    U.S. Geological Survey and The National Academies; USGS OF-2007-1047, Short Research Paper 107; doi:10.3133/of2007-1047.srp107 Review of the geology and paleontology of the Ellsworth Mountains, Antarctica G.F. Webers¹ and J.F. Splettstoesser² ¹Department of Geology, Macalester College, St. Paul, MN 55108, USA ([email protected]) ²P.O. Box 515, Waconia, MN 55387, USA ([email protected]) Abstract The geology of the Ellsworth Mountains has become known in detail only within the past 40-45 years, and the wealth of paleontologic information within the past 25 years. The mountains are an anomaly, structurally speaking, occurring at right angles to the Transantarctic Mountains, implying a crustal plate rotation to reach the present location. Paleontologic affinities with other parts of Gondwanaland are evident, with nearly 150 fossil species ranging in age from Early Cambrian to Permian, with the majority from the Heritage Range. Trilobites and mollusks comprise most of the fauna discovered and identified, including many new genera and species. A Glossopteris flora of Permian age provides a comparison with other Gondwana floras of similar age. The quartzitic rocks that form much of the Sentinel Range have been sculpted by glacial erosion into spectacular alpine topography, resulting in eight of the highest peaks in Antarctica. Citation: Webers, G.F., and J.F. Splettstoesser (2007), Review of the geology and paleontology of the Ellsworth Mountains, Antarctica, in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10th ISAES, edited by A.K. Cooper and C.R. Raymond et al., USGS Open- File Report 2007-1047, Short Research Paper 107, 5 p.; doi:10.3133/of2007-1047.srp107 Introduction The Ellsworth Mountains are located in West Antarctica (Figure 1) with dimensions of approximately 350 km long and 80 km wide.
    [Show full text]
  • PDF-TITEL-AA-CHILE-EMPEORSADVENTURE Kopie.Pages
    Antarktis Flug-Expeditionen EMPEROR PENGUINS Besuch der Kaiserpinguin-Kolonie in der Gould-Bucht ex Punta Arenas / Chile via Basecamp Union Glaciar POLARADVENTURES Schiffs- und Flug-Expeditionen in Arktis und Antarktis Reiseagentur Heinrich-Böll-Str. 40 * D-21335 Lüneburg * Deutschland Tel +49-4131- 223474 Fax +49-4131-54255 [email protected] www.polaradventures.de Saison 2021/22 Veranstalter Direkt-Angebote ab-bis Punta Arenas (Chile) für individuelle Planungen alle Abfahrten der Saison inkl. englischsprachiger Termine POLARADVENTURES Schiffs- und Flug-Expeditionen in Arktis und Antarktis Reiseagentur * Heinrich-Böll-Str. 40 * D-21335 Lüneburg * Deutschland Tel +49-4131- 223474 Fax +49-4131-54255 [email protected] www.polaradventures.de EMPEROR PENGUINS A PHOTOGRAPHER’S PARADISE Immerse yourself in the sights and sounds of the Gould Bay Emperor Penguin Colony on the remote coast of the Weddell Sea. Camp on the same sea ice where thousands of birds come to raise and feed their young. Photograph majestic emperors and their chicks against a spectacular backdrop of ice cliffs, pressure ridges, and icebergs. Spot petrels and seals amongst the endless white expanse. Fall asleep to a chorus of trumpeting calls and wake to find curious penguins outside your tent. Our remote field camp offers you unparalleled access to the emperors as you witness their amazing adaptations to the Antarctic environment alongside our expert guides. ITINERARY Arrival Day Punta Arenas, Chile Pre-departure Day Luggage Pick-Up & Briefing Day 1 Fly to Antarctica Day 2 Explore Union Glacier Day 3 Fly to Emperor Colony Day 4-6 Live with the Emperors Day 7 Return to Union Glacier Day 8 Explore Union Glacier Day 9 Return to Chile Flexible Departure Day Fly Home *Subject to change based on weather and flight conditions.
    [Show full text]
  • S. Antarctic Projects Officer Bullet
    S. ANTARCTIC PROJECTS OFFICER BULLET VOLUME III NUMBER 8 APRIL 1962 Instructions given by the Lords Commissioners of the Admiralty ti James Clark Ross, Esquire, Captain of HMS EREBUS, 14 September 1839, in J. C. Ross, A Voya ge of Dis- covery_and Research in the Southern and Antarctic Regions, . I, pp. xxiv-xxv: In the following summer, your provisions having been completed and your crews refreshed, you will proceed direct to the southward, in order to determine the position of the magnet- ic pole, and oven to attain to it if pssble, which it is hoped will be one of the remarka- ble and creditable results of this expedition. In the execution, however, of this arduous part of the service entrusted to your enter- prise and to your resources, you are to use your best endoavours to withdraw from the high latitudes in time to prevent the ships being besot with the ice Volume III, No. 8 April 1962 CONTENTS South Magnetic Pole 1 University of Miohigan Glaoiologioal Work on the Ross Ice Shelf, 1961-62 9 by Charles W. M. Swithinbank 2 Little America - Byrd Traverse, by Major Wilbur E. Martin, USA 6 Air Development Squadron SIX, Navy Unit Commendation 16 Geological Reoonnaissanoe of the Ellsworth Mountains, by Paul G. Schmidt 17 Hydrographio Offices Shipboard Marine Geophysical Program, by Alan Ballard and James Q. Tierney 21 Sentinel flange Mapped 23 Antarctic Chronology, 1961-62 24 The Bulletin is pleased to present four firsthand accounts of activities in the Antarctic during the recent season. The Illustration accompanying Major Martins log is an official U.S.
    [Show full text]
  • Mid-Holocene Pulse of Thinning in the Weddell Sea Sector of the West Antarctic Ice Sheet
    ARTICLE Received 9 Feb 2016 | Accepted 9 Jul 2016 | Published 22 Aug 2016 DOI: 10.1038/ncomms12511 OPEN Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet Andrew S. Hein1, Shasta M. Marrero1, John Woodward2, Stuart A. Dunning2,3, Kate Winter2, Matthew J. Westoby2, Stewart P.H.T. Freeman4, Richard P. Shanks4 & David E. Sugden1 Establishing the trajectory of thinning of the West Antarctic ice sheet (WAIS) since the last glacial maximum (LGM) is important for addressing questions concerning ice sheet (in)stability and changes in global sea level. Here we present detailed geomorphological and cosmogenic nuclide data from the southern Ellsworth Mountains in the heart of the Weddell Sea embayment that suggest the ice sheet, nourished by increased snowfall until the early Holocene, was close to its LGM thickness at 10 ka. A pulse of rapid thinning caused the ice elevation to fall B400 m to the present level at 6.5–3.5 ka, and could have contributed 1.4–2 m to global sea-level rise. These results imply that the Weddell Sea sector of the WAIS contributed little to late-glacial pulses in sea-level rise but was involved in mid-Holocene rises. The stepped decline is argued to reflect marine downdraw triggered by grounding line retreat into Hercules Inlet. 1 School of GeoSciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK. 2 Department of Geography, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, UK. 3 School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
    [Show full text]
  • Mem170-Bm.Pdf by Guest on 30 September 2021 452 Index
    Index [Italic page numbers indicate major references] acacamite, 437 anticlines, 21, 385 Bathyholcus sp., 135, 136, 137, 150 Acanthagnostus, 108 anticlinorium, 33, 377, 385, 396 Bathyuriscus, 113 accretion, 371 Antispira, 201 manchuriensis, 110 Acmarhachis sp., 133 apatite, 74, 298 Battus sp., 105, 107 Acrotretidae, 252 Aphelaspidinae, 140, 142 Bavaria, 72 actinolite, 13, 298, 299, 335, 336, 339, aphelaspidinids, 130 Beacon Supergroup, 33 346 Aphelaspis sp., 128, 130, 131, 132, Beardmore Glacier, 429 Actinopteris bengalensis, 288 140, 141, 142, 144, 145, 155, 168 beaverite, 440 Africa, southern, 52, 63, 72, 77, 402 Apoptopegma, 206, 207 bedrock, 4, 58, 296, 412, 416, 422, aggregates, 12, 342 craddocki sp., 185, 186, 206, 207, 429, 434, 440 Agnostidae, 104, 105, 109, 116, 122, 208, 210, 244 Bellingsella, 255 131, 132, 133 Appalachian Basin, 71 Bergeronites sp., 112 Angostinae, 130 Appalachian Province, 276 Bicyathus, 281 Agnostoidea, 105 Appalachian metamorphic belt, 343 Billingsella sp., 255, 256, 264 Agnostus, 131 aragonite, 438 Billingsia saratogensis, 201 cyclopyge, 133 Arberiella, 288 Bingham Peak, 86, 129, 185, 190, 194, e genus, 105 Archaeocyathidae, 5, 14, 86, 89, 104, 195, 204, 205, 244 nudus marginata, 105 128, 249, 257, 281 biogeography, 275 parvifrons, 106 Archaeocyathinae, 258 biomicrite, 13, 18 pisiformis, 131, 141 Archaeocyathus, 279, 280, 281, 283 biosparite, 18, 86 pisiformis obesus, 131 Archaeogastropoda, 199 biostratigraphy, 130, 275 punctuosus, 107 Archaeopharetra sp., 281 biotite, 14, 74, 300, 347 repandus, 108 Archaeophialia,
    [Show full text]
  • New Last Glacial Maximum Ice Thickness Constraints for The
    Edinburgh Research Explorer New Last Glacial Maximum Ice Thickness constraints for the Weddell Sea Embayment, Antarctica Citation for published version: Nichols, KA, Goehring, BM, Balco, G, Johnson, JS, Hein, A & Todd, C 2019, 'New Last Glacial Maximum Ice Thickness constraints for the Weddell Sea Embayment, Antarctica', Cryosphere. https://doi.org/10.5194/tc-13-2935-2019 Digital Object Identifier (DOI): 10.5194/tc-13-2935-2019 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Cryosphere Publisher Rights Statement: © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 The Cryosphere, 13, 2935–2951, 2019 https://doi.org/10.5194/tc-13-2935-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. New Last Glacial Maximum ice thickness constraints for the Weddell Sea Embayment, Antarctica Keir A. Nichols1, Brent M.
    [Show full text]
  • Ellsworth Mountains, Overview Antarctica Mt
    AAC Publications Ellsworth Mountains, Overview Antarctica Mt. Vinson (4,892m) continues to attract large numbers. One hundred and seventy individual climbers reached the summit during the 2012-13 season (a total of 184 successful ascents). Fourteen guides made two or more ascents. Only four clients failed to top out. Neighboring Mt. Shinn (4,660m) received five ascents. American guide Robert Anderson and his clients did the probable first ascent of a 2,880m peak five kilometers south of Vinson base camp. This attractive ice peak forms a pyramidal end to the ridge dividing the Cairns and Tulaczyk glaciers, the unclimbed southern arm of the western ridge of the Vinson Massif. In late December, Antarctic Logistics & Expeditions (ALE) guides Maria Paz “Pachi” Ibarra and Todd Passey led the returning German client Ralf Laier on the first ascents of three peaks: Mt. Allen (3,430m) and Mt. Liptak (3,052m) in the southern Sentinel Range, and Robinson Peak (2,038m) further south in the Heritage Range. Allen was climbed from the south, ending in a difficult corniced ridge, and took two attempts. Liptak had a mixed summit ridge of loose rock, after steep snow and ice on the northern slope. Robinson Peak, a rocky summit in the Pioneer Heights Range, was approached from the west, across the Rennell Glacier, and then climbed by the south ridge, with some technical rock pitches and exposed scrambling. The trio traversed the summit to the northern side, and traveled back around the east to reach their skis on the southern col. Further south, in the Independence Hills, Scott Webster and friends made the first ascent of an elegangt unnamed ice peak north of Beitzel Peak and just south of the famous Minaret Peak, a distinctive rock tower visible to all who flew out of the old ANI base at Patriot Hills.
    [Show full text]
  • Reconstruction of Changes in the Weddell Sea Sector of the Antarctic Ice Sheet Since the Last Glacial Maximum
    Quaternary Science Reviews xxx (2013) 1e26 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Reconstruction of changes in the Weddell Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximum Claus-Dieter Hillenbrand a,*,1, Michael J. Bentley b,1, Travis D. Stolldorf c, Andrew S. Hein d, Gerhard Kuhn e, Alastair G.C. Graham f, Christopher J. Fogwill g, Yngve Kristoffersen h, James. A. Smith a, John B. Anderson c, Robert D. Larter a, Martin Melles i, Dominic A. Hodgson a, Robert Mulvaney a, David E. Sugden d a British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK b Department of Geography, Durham University, South Road, Durham DH1 3LE, UK c Department of Earth Sciences, Rice University, 6100 Main Street, Houston, TX 77005, USA d School of GeoSciences, University of Edinburgh, Drummond Street, Edinburgh EH8 9XP, UK e Alfred-Wegener-Institut Hemholtz-Zentrum für Polar- und Meeresforschung, Am Alten Hafen 26, D-27568 Bremerhaven, Germany f College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK g Climate Change Research Centre, University of New South Wales, Sydney, Australia h Department of Earth Science, University of Bergen, Allegate 41, Bergen N-5014, Norway i Institute of Geology and Mineralogy, University of Cologne, Zülpicher Strasse 49a, D-50674 Cologne, Germany article info abstract Article history: The Weddell Sea sector is one of the main formation sites for Antarctic Bottom Water and an outlet for Received 4 December 2012 about one fifth of Antarctica’s continental ice volume.
    [Show full text]
  • Ski Antarctica
    SKI ANTARCTICA 2020 EXPEDITION TRIP NOTES SKI ANTARCTICA TRIP NOTES 2020 EXPEDITION DETAILS Dates: December 15–30, 2020 Duration: 16 days Departure: ex Punta Arenas, Chile Price: US$30,950 per person Looking west over Rossman Cove. Photo: Wilson Cheung During the southern hemisphere summer of 2020/21, Adventure Consultants will operate an expedition to ski in the Ellsworth Mountains in Antarctica. This Ski Antarctica trip offers the opportunity for backcountry skiers to carve first tracks on pristine slopes in the world’s most remote environment. The Heritage Range that will be our playground for The mountains were discovered on 23 November this expedition has the breadth of terrain to suit 1935 by Lincoln Ellsworth on a trans-Antarctic any experience level, with unparalleled views in all flight and he named them the Sentinel Range. directions and options for multi-day trips or day The Canadian company Adventure Network tours from our base at Union Glacier Camp. International (ANI) opened up this area to private expeditions and operated regular flights to Enjoy the exploration as a trip in itself, or as an add- its summer camp at Patriot Hills from 1985. In on to our Vinson Massif or South Pole expeditions 2003/2004 they withdrew their Antarctic operations to complete your Antarctic experience. and Antarctica Logistics & Expeditions (ALE) stepped in. ALE is run by some of the same people that initially started ANI back in the 1980s and they now use a new camp at Union Glacier as their base HISTORY within Antarctica. Union Glacier is located in the Heritage Range amongst the Ellsworth Mountains, 1,300km/700 The terrain and skiing in the area is varied with nautical miles from the South Pole.
    [Show full text]
  • The Million-Year Evolution of the Glacial Trimline in the Southernmost Ellsworth Mountains, Antarctica ∗ David E
    Earth and Planetary Science Letters 469 (2017) 42–52 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl The million-year evolution of the glacial trimline in the southernmost Ellsworth Mountains, Antarctica ∗ David E. Sugden a, , Andrew S. Hein a, John Woodward b, Shasta M. Marrero a, Ángel Rodés c, Stuart A. Dunning d, Finlay M. Stuart c, Stewart P.H.T. Freeman c, Kate Winter b, Matthew J. Westoby b a Institute of Geography, School of GeoSciences, University of Edinburgh, Edinburgh, EH8 9XP, UK b Department of Geography, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK c Scottish Universities Environmental Research Centre, Rankine Avenue, East Kilbride, G75 0QF, UK d School of Geography, Politics and Sociology, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK a r t i c l e i n f o a b s t r a c t Article history: An elevated erosional trimline in the heart of West Antarctica in the Ellsworth Mountains tells of thicker Received 23 December 2016 ice in the past and represents an important yet ambiguous stage in the evolution of the Antarctic Ice Received in revised form 28 March 2017 Sheet. Here we analyse the geomorphology of massifs in the southernmost Heritage Range where the Accepted 2 April 2017 surfaces associated with the trimline are overlain by surficial deposits that have the potential to be dated Available online xxxx through cosmogenic nuclide analysis. Analysis of 100 rock samples reveals that some clasts have been Editor: A. Yin exposed on glacially moulded surfaces for 1.4 Ma and perhaps more than 3.5 Ma, while others reflect Keywords: fluctuations in thickness during Quaternary glacial cycles.
    [Show full text]
  • New Last Glacial Maximum Ice Thickness Constraints for the Weddell Sea Embayment, Antarctica
    The Cryosphere, 13, 2935–2951, 2019 https://doi.org/10.5194/tc-13-2935-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. New Last Glacial Maximum ice thickness constraints for the Weddell Sea Embayment, Antarctica Keir A. Nichols1, Brent M. Goehring1, Greg Balco2, Joanne S. Johnson3, Andrew S. Hein4, and Claire Todd5 1Department of Earth and Environmental Sciences, Tulane University, New Orleans, LA 70118, USA 2Berkeley Geochronology Center, 2455 Ridge Road, Berkeley, CA 94709, USA 3British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK 4School of GeoSciences, University of Edinburgh, Drummund Street, Edinburgh, EH8 9XP, UK 5Department of Geosciences, Pacific Lutheran University, Tacoma, WA 98447, USA Correspondence: Keir A. Nichols ([email protected]) Received: 27 March 2019 – Discussion started: 14 May 2019 Revised: 12 September 2019 – Accepted: 2 October 2019 – Published: 8 November 2019 Abstract. We describe new Last Glacial Maximum (LGM) surements indicate that the long-lived nuclide measurements ice thickness constraints for three locations spanning the of previous studies were influenced by cosmogenic nuclide Weddell Sea Embayment (WSE) of Antarctica. Samples col- inheritance. Our inferred LGM configuration, which is pri- lected from the Shackleton Range, Pensacola Mountains, and marily based on minimum ice thickness constraints and thus the Lassiter Coast constrain the LGM thickness of the Slessor does not constrain an upper limit, indicates a relatively mod- Glacier, Foundation Ice Stream, and grounded ice proximal est contribution to sea level rise since the LGM of < 4.6 m, to the modern Ronne Ice Shelf edge on the Antarctic Penin- and possibly as little as < 1.5 m.
    [Show full text]
  • 1 Tundra Environments in the Neogene Sirius Group, Antarctica: Evidence from The
    Journal of the Geological Society, London, Vol. 164, 2007, pp. 1–6. Printed in Great Britain. 1 Tundra environments in the Neogene Sirius Group, Antarctica: evidence from the 2 geological record and coupled atmosphere–vegetation models 1 2 3 4 3 J. E. FRANCIS ,A.M.HAYWOOD,A.C.ASHWORTH &P.J.VALDES 1 4 School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK 2 5 Geological Sciences Division, British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK 6 (e-mail: [email protected]) 3 7 Department of Geosciences, North Dakota State University, Fargo, ND 58105517, USA 4 8 School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK 9 Abstract: The Neogene Meyer Desert Formation, Sirius Group, at Oliver Bluffs in the Transantarctic 10 Mountains, contains a sequence of glacial deposits formed under a wet-based glacial regime. Within this 11 sequence fluvial deposits have yielded fossil plants that, along with evidence from fossil insects, invertebrates 12 and palaeosols, indicate the existence of tundra conditions at 858S during the Neogene. Mean annual 13 temperatures of c. À12 8C are estimated, with short summer seasons with temperatures up to +5 8C. The 14 current published date for this formation is Pliocene, although this is hotly debated. Reconstructions produced 15 by the TRIFFID and BIOME 4 vegetation models, utilizing a Pliocene climatology derived from the HadAM3 16 general circulation model (running with prescribed boundary conditions from the US Geological Survey 17 PRISM2 dataset), also predict tundra-type vegetation in Antarctica. The consistency of the model outputs with 18 geological evidence demonstrates that a Pliocene age for the Meyer Desert Formation is consistent with proxy 19 environmental reconstructions and numerical model reconstructions for the mid-Pliocene.
    [Show full text]