Domain and Range of a Function

Total Page:16

File Type:pdf, Size:1020Kb

Domain and Range of a Function Domain and Range of a Function Andrew Gloag Eve Rawley Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) AUTHORS Andrew Gloag To access a customizable version of this book, as well as other Eve Rawley interactive content, visit www.ck12.org SOURCE Anne Gloag CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-source, collaborative, and web-based compilation model, CK-12 pioneers and promotes the creation and distribution of high-quality, adaptive online textbooks that can be mixed, modified and printed (i.e., the FlexBook® textbooks). Copyright © 2015 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference. Complete terms can be found at http://www.ck12.org/about/ terms-of-use. Printed: December 13, 2015 www.ck12.org Chapter 1. Domain and Range of a Function CHAPTER 1 Domain and Range of a Function Here you’ll learn how to find the domain and range of a function and you’ll make a table of values for a given function. What if you were given a rule that relates two variables, like f (x) = 5x2 + 1? How could you find the domain and range of the function defined by that rule? After completing this Concept, you’ll be able to identify the domain and range of functions like this one. Watch This MEDIA Click image to the left or use the URL below. URL: http://www.ck12.org/flx/render/embeddedobject/133266 CK-12 Foundation: 0110S Introduction to Functions For another look at the domain of a function, see the following video, where the narrator solves a sample problem from the California Standards Test about finding the domain of an unusual function. MEDIA Click image to the left or use the URL below. URL: http://www.ck12.org/flx/render/embeddedobject/5 Khan Academy: CA AlgebraI: Functions Guidance A function is a rule for relating two or more variables. For example, the price you pay for phone service may depend on the number of minutes you talk on the phone. We would say that the cost of phone service is a function of the number of minutes you talk. Consider the following situation. Josh goes to an amusement park where he pays $2 per ride. There is a relationship between the number of rides Josh goes on and the total amount he spends that day: To figure out the amount he spends, we multiply the number of rides by two. This rule is an example of a function. Functions usually—but not always—are rules based on mathematical operations. You can think of a function as a box or a machine that contains a mathematical operation. 1 www.ck12.org Whatever number we feed into the function box is changed by the given operation, and a new number comes out the other side of the box. When we input different values for the number of rides Josh goes on, we get different values for the amount of money he spends. The input is called the independent variable because its value can be any number. The output is called the dependent variable because its value depends on the input value. Functions usually contain more than one mathematical operation. Here is a situation that is slightly more complicated than the example above. Jason goes to an amusement park where he pays $8 admission and $2 per ride. The following function represents the total amount Jason pays. The rule for this function is "multiply the number of rides by 2 and add 8." When we input different values for the number of rides, we arrive at different outputs (costs). These flow diagrams are useful in visualizing what a function is. However, they are cumbersome to use in practice. In algebra, we use the following short-hand notation instead: # f (x) = y outputfunctionbox |{z} First, we define the variables: x = the number of rides Jason goes on y = the total amount of money Jason spends at the amusement park. So, x represents the input and y represents the output. The notation f () represents the function or the mathematical operations we use on the input to get the output. In the last example, the cost is 2 times the number of rides plus 8. This can be written as a function: f (x) = 2x + 8 2 www.ck12.org Chapter 1. Domain and Range of a Function In algebra, the notations y and f (x) are typically used interchangeably. Technically, though, f (x) represents the function itself and y represents the output of the function. Identify the Domain and Range of a Function In the last example, we saw that we can input the number of rides into the function to give us the total cost for going to the amusement park. The set of all values that we can use for the input is called the domain of the function, and the set of all values that the output could turn out to be is called the range of the function. In many situations the domain and range of a function are both simply the set of all real numbers, but this isn’t always the case. Let’s look at our amusement park example. Example A Find the domain and range of the function that describes the situation: Jason goes to an amusement park where he pays $8 admission and $2 per ride. Solution Here is the function that describes this situation: f (x) = 2x + 8 = y In this function, x is the number of rides and y is the total cost. To find the domain of the function, we need to determine which numbers make sense to use as the input (x). • The values have to be zero or positive, because Jason can’t go on a negative number of rides. • The values have to be integers because, for example, Jason could not go on 2.25 rides. • Realistically, there must be a maximum number of rides that Jason can go on because the park closes, he runs out of money, etc. However, since we aren’t given any information about what that maximum might be, we must consider that all non-negative integers are possible values regardless of how big they are. Answer For this function, the domain is the set of all non-negative integers. To find the range of the function we must determine what the values of y will be when we apply the function to the input values. The domain is the set of all non-negative integers: {0, 1, 2, 3, 4, 5, 6, ...}. Next we plug these values into the function for x. If we plug in 0, we get 8; if we plug in 1, we get 10; if we plug in 2, we get 12, and so on, counting by 2s each time. Possible values of y are therefore 8, 10, 12, 14, 16, 18, 20... or in other words all even integers greater than or equal to 8. Answer The range of this function is the set of all even integers greater than or equal to 8. Example B Find the domain and range of the following functions. a) A ball is dropped from a height and it bounces up to 75% of its original height. b) y = x2 Solution a) Let’s define the variables: x = original height y = bounce height 3 www.ck12.org A function that describes the situation is y = f (x) = 0:75x. x can represent any real value greater than zero, since you can drop a ball from any height greater than zero. A little thought tells us that y can also represent any real value greater than zero. Answer The domain is the set of all real numbers greater than zero. The range is also the set of all real numbers greater than zero. b) Since there is no word problem attached to this equation, we can assume that we can use any real number as a value of x. When we square a real number, we always get a non-negative answer, so y can be any non-negative real number. Answer The domain of this function is all real numbers. The range of this function is all non-negative real numbers. In the functions we’ve looked at so far, x is called the independent variable because it can be any of the values from the domain, and y is called the dependent variable because its value depends on x. However, any letters or symbols can be used to represent the dependent and independent variables. Here are three different examples: y = f (x) = 3x R = f (w) = 3w v = f (t) = 3t These expressions all represent the same function: a function where the dependent variable is three times the independent variable.
Recommended publications
  • Domain and Range of a Function
    4.1 Domain and Range of a Function How can you fi nd the domain and range of STATES a function? STANDARDS MA.8.A.1.1 MA.8.A.1.5 1 ACTIVITY: The Domain and Range of a Function Work with a partner. The table shows the number of adult and child tickets sold for a school concert. Input Number of Adult Tickets, x 01234 Output Number of Child Tickets, y 86420 The variables x and y are related by the linear equation 4x + 2y = 16. a. Write the equation in function form by solving for y. b. The domain of a function is the set of all input values. Find the domain of the function. Domain = Why is x = 5 not in the domain of the function? 1 Why is x = — not in the domain of the function? 2 c. The range of a function is the set of all output values. Find the range of the function. Range = d. Functions can be described in many ways. ● by an equation ● by an input-output table y 9 ● in words 8 ● by a graph 7 6 ● as a set of ordered pairs 5 4 Use the graph to write the function 3 as a set of ordered pairs. 2 1 , , ( , ) ( , ) 0 09321 45 876 x ( , ) , ( , ) , ( , ) 148 Chapter 4 Functions 2 ACTIVITY: Finding Domains and Ranges Work with a partner. ● Copy and complete each input-output table. ● Find the domain and range of the function represented by the table. 1 a. y = −3x + 4 b. y = — x − 6 2 x −2 −10 1 2 x 01234 y y c.
    [Show full text]
  • Module 1 Lecture Notes
    Module 1 Lecture Notes Contents 1.1 Identifying Functions.............................1 1.2 Algebraically Determining the Domain of a Function..........4 1.3 Evaluating Functions.............................6 1.4 Function Operations..............................7 1.5 The Difference Quotient...........................9 1.6 Applications of Function Operations.................... 10 1.7 Determining the Domain and Range of a Function Graphically.... 12 1.8 Reading the Graph of a Function...................... 14 1.1 Identifying Functions In previous classes, you should have studied a variety basic functions. For example, 1 p f(x) = 3x − 5; g(x) = 2x2 − 1; h(x) = ; j(x) = 5x + 2 x − 5 We will begin this course by studying functions and their properties. As the course progresses, we will study inverse, composite, exponential, logarithmic, polynomial and rational functions. Math 111 Module 1 Lecture Notes Definition 1: A relation is a correspondence between two variables. A relation can be ex- pressed through a set of ordered pairs, a graph, a table, or an equation. A set containing ordered pairs (x; y) defines y as a function of x if and only if no two ordered pairs in the set have the same x-coordinate. In other words, every input maps to exactly one output. We write y = f(x) and say \y is a function of x." For the function defined by y = f(x), • x is the independent variable (also known as the input) • y is the dependent variable (also known as the output) • f is the function name Example 1: Determine whether or not each of the following represents a function. Table 1.1 Chicken Name Egg Color Emma Turquoise Hazel Light Brown George(ia) Chocolate Brown Isabella White Yvonne Light Brown (a) The set of ordered pairs of the form (chicken name, egg color) shown in Table 1.1.
    [Show full text]
  • The Church-Turing Thesis in Quantum and Classical Computing∗
    The Church-Turing thesis in quantum and classical computing∗ Petrus Potgietery 31 October 2002 Abstract The Church-Turing thesis is examined in historical context and a survey is made of current claims to have surpassed its restrictions using quantum computing | thereby calling into question the basis of the accepted solutions to the Entscheidungsproblem and Hilbert's tenth problem. 1 Formal computability The need for a formal definition of algorithm or computation became clear to the scientific community of the early twentieth century due mainly to two problems of Hilbert: the Entscheidungsproblem|can an algorithm be found that, given a statement • in first-order logic (for example Peano arithmetic), determines whether it is true in all models of a theory; and Hilbert's tenth problem|does there exist an algorithm which, given a Diophan- • tine equation, determines whether is has any integer solutions? The Entscheidungsproblem, or decision problem, can be traced back to Leibniz and was successfully and independently solved in the mid-1930s by Alonzo Church [Church, 1936] and Alan Turing [Turing, 1935]. Church defined an algorithm to be identical to that of a function computable by his Lambda Calculus. Turing, in turn, first identified an algorithm to be identical with a recursive function and later with a function computed by what is now known as a Turing machine1. It was later shown that the class of the recursive functions, Turing machines, and the Lambda Calculus define the same class of functions. The remarkable equivalence of these three definitions of disparate origin quite strongly supported the idea of this as an adequate definition of computability and the Entscheidungsproblem is generally considered to be solved.
    [Show full text]
  • Turing Machines
    Syllabus R09 Regulation FORMAL LANGUAGES & AUTOMATA THEORY Jaya Krishna, M.Tech, Asst. Prof. UNIT-VII TURING MACHINES Introduction Until now we have been interested primarily in simple classes of languages and the ways that they can be used for relatively constrainted problems, such as analyzing protocols, searching text, or parsing programs. We begin with an informal argument, using an assumed knowledge of C programming, to show that there are specific problems we cannot solve using a computer. These problems are called “undecidable”. We then introduce a respected formalism for computers called the Turing machine. While a Turing machine looks nothing like a PC, and would be grossly inefficient should some startup company decide to manufacture and sell them, the Turing machine long has been recognized as an accurate model for what any physical computing device is capable of doing. TURING MACHINE: The purpose of the theory of undecidable problems is not only to establish the existence of such problems – an intellectually exciting idea in its own right – but to provide guidance to programmers about what they might or might not be able to accomplish through programming. The theory has great impact when we discuss the problems that are decidable, may require large amount of time to solve them. These problems are called “intractable problems” tend to present greater difficulty to the programmer and system designer than do the undecidable problems. We need tools that will allow us to prove everyday questions undecidable or intractable. As a result we need to rebuild our theory of undecidability, based not on programs in C or another language, but based on a very simple model of a computer called the Turing machine.
    [Show full text]
  • Domain and Range of an Inverse Function
    Lesson 28 Domain and Range of an Inverse Function As stated in the previous lesson, when changing from a function to its inverse the inputs and outputs of the original function are switched. This is because when we find an inverse function, we are taking some original function and solving for its input 푥; so what used to be the input becomes the output, and what used to be the output becomes the input. −11 푓(푥) = Given to the left are the steps 1 + 3푥 to find the inverse of the −ퟏퟏ original function 푓. These 풇 = steps illustrates the changing ퟏ + ퟑ풙 of the inputs and the outputs (ퟏ + ퟑ풙) ∙ 풇 = −ퟏퟏ when going from a function to its inverse. We start out 풇 + ퟑ풙풇 = −ퟏퟏ with 푓 (the output) isolated and 푥 (the input) as part of ퟑ풙풇 = −ퟏퟏ − 풇 the expression, and we end up with 푥 isolated and 푓 as −ퟏퟏ − 풇 the input of the expression. 풙 = ퟑ풇 Keep in mind that once 푥 is isolated, we have basically −11 − 푥 푓−1(푥) = found the inverse function. 3푥 Since the inputs and outputs of a function are switched when going from the original function to its inverse, this means that the domain of the original function 푓 is the range of its inverse function 푓−1. This also means that the range of the original function 푓 is the domain of its inverse function 푓−1. In this lesson we will review how to find an inverse function (as shown above), and we will also review how to find the domain of a function (which we covered in Lesson 18).
    [Show full text]
  • First-Order Logic
    Chapter 5 First-Order Logic 5.1 INTRODUCTION In propositional logic, it is not possible to express assertions about elements of a structure. The weak expressive power of propositional logic accounts for its relative mathematical simplicity, but it is a very severe limitation, and it is desirable to have more expressive logics. First-order logic is a considerably richer logic than propositional logic, but yet enjoys many nice mathemati- cal properties. In particular, there are finitary proof systems complete with respect to the semantics. In first-order logic, assertions about elements of structures can be ex- pressed. Technically, this is achieved by allowing the propositional symbols to have arguments ranging over elements of structures. For convenience, we also allow symbols denoting functions and constants. Our study of first-order logic will parallel the study of propositional logic conducted in Chapter 3. First, the syntax of first-order logic will be defined. The syntax is given by an inductive definition. Next, the semantics of first- order logic will be given. For this, it will be necessary to define the notion of a structure, which is essentially the concept of an algebra defined in Section 2.4, and the notion of satisfaction. Given a structure M and a formula A, for any assignment s of values in M to the variables (in A), we shall define the satisfaction relation |=, so that M |= A[s] 146 5.2 FIRST-ORDER LANGUAGES 147 expresses the fact that the assignment s satisfies the formula A in M. The satisfaction relation |= is defined recursively on the set of formulae.
    [Show full text]
  • Functions and Relations
    Functions and relations • Relations • Set rules & symbols • Sets of numbers • Sets & intervals • Functions • Relations • Function notation • Hybrid functions • Hyperbola • Truncus • Square root • Circle • Inverse functions VCE Maths Methods - Functions & Relations 2 Relations • A relation is a rule that links two sets of numbers: the domain & range. • The domain of a relation is the set of the !rst elements of the ordered pairs (x values). • The range of a relation is the set of the second elements of the ordered pairs (y values). • (The range is a subset of the co-domain of the function.) • Some relations exist for all possible values of x. • Other relations have an implied domain, as the function is only valid for certain values of x. VCE Maths Methods - Functions & Relations 3 Set rules & symbols A = {1, 3, 5, 7, 9} B = {2, 4, 6, 8, 10} C = {2, 3, 5, 7} D = {4,8} (odd numbers) (even numbers) (prime numbers) (multiples of 4) • ∈ : element of a set. 3 ! A • ∉ : not an element of a set. 6 ! A • ∩ : intersection of two sets (in both B and C) B!C = {2} ∪ • : union of two sets (elements in set B or C) B!C = {2,3,4,5,6,7,8,10} • ⊂ : subset of a set (all elements in D are part of set B) D ! B • \ : exclusion (elements in set B but not in set C) B \C = {2,6,10} • Ø : empty set A!B =" VCE Maths Methods - Functions & Relations 4 Sets of numbers • The domain & range of a function are each a subset of a particular larger set of numbers.
    [Show full text]
  • A Theory of Particular Sets, As It Uses Open Formulas Rather Than Sequents
    A Theory of Particular Sets Paul Blain Levy, University of Birmingham June 14, 2019 Abstract ZFC has sentences that quantify over all sets or all ordinals, without restriction. Some have argued that sen- tences of this kind lack a determinate meaning. We propose a set theory called TOPS, using Natural Deduction, that avoids this problem by speaking only about particular sets. 1 Introduction ZFC has long been established as a set-theoretic foundation of mathematics, but concerns about its meaningfulness have often been raised. Specifically, its use of unrestricted quantifiers seems to presuppose an absolute totality of sets. The purpose of this paper is to present a new set theory called TOPS that addresses this concern by speaking only about particular sets. Though weaker than ZFC, it is adequate for a large amount of mathematics. To explain the need for a new theory, we begin in Section 2 by surveying some basic mathematical beliefs and conceptions. Section 3 presents the language of TOPS, and Section 4 the theory itself, using Natural Deduction. Section 5 adapts the theory to allow theorems with free variables. Related work is discussed in Section 6. While TOPS is by no means the first set theory to use restricted quantifiers in order to avoid assuming a totality of sets, it is the first to do so using Natural Deduction, which turns out to be very helpful. This is apparent when TOPS is compared to a previously studied system [26] that proves essentially the same sentences but includes an inference rule that (we argue) cannot be considered truth-preserving.
    [Show full text]
  • Real Valued Functions
    REAL VALUED FUNCTIONS In mathematics, a real-valued function is a function whose domain is a subset D R of the set R of real numbers and the codomain is R; such a function can be represented by a graph in the Cartesian plane. In simplest terms the domain of a function is the set of all values that can be plugged into a function and have the function exist and have a real number for a value. So, for the domain we need to avoid division by zero, square roots of negative numbers, logarithms of zero and logarithms of negative numbers. The range of a function is simply the set of all possible values that a function can take. Continuous functions. A function f is said to be continuous if, roughly speaking, its graph can be drawn without lifting the pen so that such a graph is a curve with no "holes" or "jumps" or “breaks”. Intuitively, that’s easy to understand but we need to make this definition mathematically rigorous. Definition in terms of limits of functions Assume that is a function defined on an interval The function f is continuous at some point c of its domain if the limit of f(x) as x approaches c exists and is equal to f(c). In mathematical notation, this is written as In detail this means three conditions: a) first, f has to be defined at c. b) second, the limit on the left hand side of that equation has to exist. c) third, the value of this limit must equal f(c).
    [Show full text]
  • Preliminaries About Functions
    Preliminaries About Functions Noel DeJarnette and Austin Rochford August 21, 2012 Navigation Symbols 2, "in" or "an element of", 1 f0; 1; 2; 3; 4g ⊂, "subset of" or "contained in", f0; 1; 2; 3; 4g ⊂ N ⊂ Z ⊂ Q ⊂ R (a; b), interval notation for fx 2 R : a < x < bg,(−∞; 1) is all of R. fx 2 R : x ≥ ag, set notation for [a; 1). N, natural numbers, f1; 2; 3; 4;:::g Z, integers, f:::; −4; −3; −2; −1; 0; 1; 2; 3; 4;:::g n p o Q, rational numbers, x 2 R : x = q where p; q 2 Z; q 6= 0 so f takes pts from a set, A, of the real numbers (it could be all of R Functions, a Doodle The functions we will deal with in Calc 1 (and probably all the functions you have seen and will see until Calc 3) send one real number to another real number. so f takes pts from a set, A, of the real numbers (it could be all of R Functions, a Doodle The functions we will deal with in Calc 1 (and probably all the functions you have seen and will see until Calc 3) send one real number to another real number. Functions, a Doodle The functions we will deal with in Calc 1 (and probably all the functions you have seen and will see until Calc 3) send one real number to another real number. so f takes pts from a set, A, of the real numbers (it could be all of R Functions, a Doodle The functions we will deal with in Calc 1 (and probably all the functions you have seen and will see until Calc 3) send one real number to another real number.
    [Show full text]
  • 3.1 Functions a Relation Is a Set of Ordered Pairs (X, Y). Example
    3.1 Functions A relation is a set of ordered pairs (x, y). Example: The set {(1,a), (1, b), (2,b), (3,c), (3, a), (4,a)} is a relation A function is a relation (so, it is the set of ordered pairs) that does not contain two pairs with the same first component. Sometimes we say that a function is a rule (correspondence) that assigns to each element of one set , X, one and only one element of another set, Y. The elements of the set X are often called inputs and the elements of the set Y are called outputs. A function can be visualized as a machine, that takes x as an input and returns y as an output. The domain of a function is the set of all first components, x, in the ordered pairs. The range of a function is the set of all second components, y, in the ordered pairs. We will deal with functions for which both domain and the range are the set (or subset) of real numbers A function can be defined by: (i) Set of ordered pairs Example: {(1,a), (2,b), (3,c), (4,a)} is a function, since there are no two pairs with the same first component. The domain is then the set {1,2,3,4} and the range is the set {a,b,c} Example: {(1,a), (2,b), (1,c), (4,a)} is not a function, since there are two pairs with the first component 1 (ii) Diagram which shows how the elements of two sets are paired.
    [Show full text]
  • The Function Concept
    THE FUNCTION CONCEPT INTRODUCTION. Perhaps the single most important concept in mathematics is that of a function. However, the application and use of this concept goes far beyond “mathematics.” At the heart of the function concept is the idea of a correspondence between two sets of objects. One of the definitions of “function” given in the Random House Dictionary of the English Language is: A factor related to or dependent on other factors: price is a function of supply and demand. Correspondences between two sets of objects (functions) occur frequently in every day life. Examples 1.1: • To each item in supermarket there corresponds a price (item → price). • To each student in a classroom there corresponds the chair that the student occupies (student → chair – i.e., the seating chart for the teacher). • To each income earner in the U.S. in 2003 there corresponds the earner’s federal income tax (income earner → federal income tax). • To each registered student in a university there corresponds a grade-point average (student → GPA). Here are some mathematical examples: • To each real number x there corresponds its square x 2 . • Let S be the set of outcomes of a probability experiment. To each subset (event) E of S there corresponds the probability that E occurs, denoted by P(E). J Each of these correspondences is an example of a function. Definition of “Function”: As suggested by the examples, a function consists of two sets of objects and a correspondence or rule that associates an object in one of the sets with an object in the other set, (item → price) (student → chair) x→ x 2 E→ P(E) and so on.
    [Show full text]