Biochemistry and Molecular Biology Elevated Endogenous SDHA Drives Pathological Metabolism in Highly Metastatic Uveal Melanoma Chandrani Chattopadhyay,1 Junna Oba,1 Jason Roszik,1,2 Joseph R. Marszalek,3 Ken Chen,4 Yuan Qi,4 Karina Eterovic,4 A. Gordon Robertson,5 Jared K. Burks,6 Tara A. McCannel,7 Elizabeth A. Grimm,1 and Scott E. Woodman1,8 1Melanoma Medical Oncology, UT MD Anderson Cancer Center, Houston, Texas, United States 2Genomic Medicine, UT MD Anderson Cancer Center, Houston, Texas, United States 3Institute of Applied Cancer Science & Center for Co-Clinical Trials, UT MD Anderson Cancer Center, Houston, Texas, United States 4Bioinformatics & Computational Biology, UT MD Anderson Cancer Center, Houston, Texas, United States 5Canada’s Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, Canada 6Leukemia, UT MD Anderson Cancer Center, Houston, Texas, United States 7Stein Eye and Doheny Eye Institutes, University of California Los Angeles, Los Angeles, California, United States 8Systems Biology, UT MD Anderson Cancer Center, Houston, Texas, United States Correspondence: Scott E. Woodman, PURPOSE. Metastatic uveal melanoma (UM) has a very poor prognosis and no effective therapy. The University of Texas MD Ander- Despite remarkable advances in treatment of cutaneous melanoma, UM remains recalcitrant son Cancer Center, 7455 Fannin to chemotherapy, small-molecule kinase inhibitors, and immune-based therapy. Street, Houston, TX 77054, USA;
[email protected]. METHODS. We assessed two sets of oxidative phosphorylation (OxPhos) genes within 9858 Chandrani Chattopadhyay, The Uni- tumors across 31 cancer types. An OxPhos inhibitor was used to characterize differential versity of Texas MD Anderson Can- metabolic programming of highly metastatic monosomy 3 (M3) UM.