Downstream Signaling Pathway in Bone Stromal Cells Induced with Basic Fibroblast Growth Factor (FGF2)

Total Page:16

File Type:pdf, Size:1020Kb

Downstream Signaling Pathway in Bone Stromal Cells Induced with Basic Fibroblast Growth Factor (FGF2) i Downstream Signaling Pathway in Bone Stromal Cells Induced with Basic Fibroblast Growth Factor (FGF2) Paweena Wongwitwichot A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Pharmaceutical Sciences Prince of Songkla University 2015 Copyright of Prince of Songkla University ii Thesis Title Downstream Signaling Pathway in Bone Stromal Cells Induced with Basic Fibroblast Growth Factor (FGF2) Author Miss Paweena Wongwitwichot Major Program Pharmaceutical Sciences Major Advisor Examining Committee: ……………………………….……….............. ……………………………………Chairperson (Assoc. Prof. Dr. Jasadee Kaewsrichan) (Asst. Prof. Dr. Bhutorn Canyuk) ……………………………….………............... Co-advisor (Dr. Danai Tiwawech) ……………………………….……….............. ……………………………….………............... (Asst. Prof. Dr. Potchanapond Graidist) (Assoc. Prof. Dr. Chua Kien Hui) ……………………………….………............... (Assoc. Prof. Dr. Jasadee Kaewsrichan) ……………………………….………............... (Asst. Prof. Dr. Potchanapond Graidist) The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Pharmaceutical Sciences. ……………………………….………............... (Assoc. Prof. Dr. Teerapol Srichana) Dean of Graduate School iii This is to certify that the work here submitted is the result of the candidate’s own investigations. Due acknowledgement has been made of any assistance received. …………………………………..……Signature (Assoc. Prof. Dr. Jasadee Kaewsrichan) Major Advisor …………………………………..……Signature (Miss Paweena Wongwitwichot) Candidate iv I hereby certify that this work has not been accepted in substance for any degree, and is not being currently submitted in candidature for any degree. …………………………………..……Signature (Miss Paweena Wongwitwichot) Candidate v ชื่อวิทยานิพนธ ์ การสงต่ ่อสญญาณในเซลลั ต์ นก้ าเนํ ิดกระดกเมู อถ่ื กเหนู ่ียวนําดวย้ Basic Fibroblast Growth Factor (FGF2) ผ้เขู ียน นางสาวปวณาี วงศว์ ทยิ ว์ โชติ ิ สาขาวิชา เภสชศาสตรั ์ ปี การศึกษา 2557 บทคดยั ่อ วศวกรรมเนิ ้ือเยอกระด่ื กจากเซลลู ต์ นก้ าเนํ ิด เป็นเทคโนโลยที ถ่ี กพู ฒนาขั นเพ้ึ อการ่ื รกษาและทดแทนกระดั กทู ส่ี ญเสู ยไปในปรี มาณมากิ เกนความสามารถของริ างกายท่ จะซ่ี ่อมแซมได้ เอง เซลลต์ นก้ าเนํ ิดจากไขกระดกเปู ็นแหลงท่ มาของเซลล่ี ท์ เข่ี าถ้ งไดึ ง้ าย่ และหากเป็นของผปู้ วยเองก่ ็ จะไมม่ ปี ญหาเรั ่องการเขื าก้ นไมั ได่ ของเน้ ้ือเยอ่ื แต่มขี อจ้ ากํ ดทั ส่ี าคํ ญคั อปรื มาณเซลลิ ต์ นก้ าเนํ ิดในไข กระดกมู นี ้อยมาก กลาวค่ อนื ้อยกวา่ 0.01 เปอรเซ์ นต็ ์ สาหรํ บการรั กษาดั วยเทคน้ ิคน้ีซงต่ึ องใช้ เซลล้ ์ ปรมาณมากจิ งเปึ ็นขอเส้ ยเปรี ยบที ส่ี าคํ ญั การเพมจิ่ านวนเซลลํ ในห์ องทดลองถ้ อไดื ว้ าเป่ ็นทางเลอกทื ่ี เหมาะสม แต่เกดปิ ญหาทั ช่ี ดเจนจากปฏั บิ ตั การดิ งกลั าว่ นนคั่ อเซลลื แบ์ ่งตวไดั น้ ้อยลงและไมสามารถ่ คงความเป็นเซลลต์ นก้ าเนํ ิดไวได้ เม้ อผ่ื านการเพาะเล่ ยงหลายๆคร้ี งั้ จงเปึ ็นทมาของงานว่ี จิ ยชั นน้ิ ้ี ทม่ี ุง่ พฒนาสภาวะสั าหรํ บแยกเซลลั ต์ นก้ าเนํ ิดจากไขกระดกู เพาะเลยงเซลล้ี ในหลอดทดลอง์ กระตุนเซลล้ ์ ดวยสารกระต้ ุนการเจร้ ญิ (growth factor) ทเหน่ี ่ียวนําใหเก้ ดการแบิ งเซลล่ และเปล์ ยนแปลงเป่ี ็นเซลล์ กระดกู (osteoblasts) ใหมากข้ น้ึ ศกษาการสรึ างกระด้ กใหมู ส่ วนนอก่ (ectopic bone) ในสตวั ทดลองท์ ่ี ไดร้ บการปลั กเซลลู ด์ งกลั ่าวลงไป และศกษากลไกการเหนึ ่ยวนี ําการสรางกระด้ กใหมู ระด่ บโมเลกั ุลของ สารกระตุนการเจร้ ญเหลิ าน่ นั้ โดยมเปี ้าหมายทจะลดค่ี าใช่ จ้ ายในการเตร่ ยมเซลลี ต์ นก้ าเนํ ิด และเพมิ่ ประสทธิ ภาพของเทคนิ ิควศวกรรมเนิ ้อเยื อกระด่ื กทางคลู นิ ิกใหส้ งขู น้ึ งานวจิ ยชั ให้ี เห้ นว็ า่ เทคนิคทใช่ี แยกเซลล้ ต์ นก้ าเนํ ิดจากไขกระดกมู ประสี ทธิ ภาพดิ ี และงายหากจะน่ ําไปใชในห้ องปฏ้ บิ ตั การทางคลิ นิ ิก การกระตุนเซลล้ ตามล์ าดํ บดั วย้ basic fibroblast growth factor (หรอื fibroblast growth factor 2; FGF2) ความเขมข้ น้ 2.5 ng/ml เสรมดิ วยอ้ นซิ ูลนิ ความเขมข้ น้ 60 ng/ml เป็นเวลา 1 วนั พกเซลลั เป์ ็นเวลา 2 วนั กระตุนเซลล้ ต์ ่อดวย้ Bone Morphogenetic Protein 2 (BMP2) ความเขมข้ น้ 10 ng/ml หรอื bone morphogenetic protein 7 (BMP7) ความเขมข้ น้ 10 ng/ml อกี 1 วนั สงผลเหน่ ่ียวนําใหเก้ ดการสริ างกระด้ กใหมู ่ทงในหลอดั้ ทดลองและในสตวั ทดลอง์ การกระตุนเซลล้ ช์ วงแรกนอกจากจะส่ งผลให่ เซลล้ แบ์ ่งตวเพั มขิ่ นแล้ึ ว้ ยงั สามารถชกนั ําเซลลต์ นก้ าเนํ ิดใหโน้ ้มเอยงที จะเปล่ี ยนไปเป่ี ็นเซลลต์ วอั ่อนกระดกู (pre-osteoblast) เพมขิ่ นด้ึ วย้ สวนการกระต่ ุนเซลล้ ช์ วงหล่ งสั งผลให่ เซลล้ ต์ นก้ าเนํ ิดทงหมดเปลั้ ยนไปเป่ี ็นเซลลต์ วอั ่อน กระดกทู พร่ี อมจะสะสมแคลเซ้ ยมและฟอสฟอรี สั (mineralization) และเปลยนเป่ี ็นกระดกในทู ส่ี ดุ พบว่าการเพมจิ่ านวนเซลลํ เก์ ดจากการกระติ ุนผ้ านว่ ถิ ของี Wingless and Int1 (WNT pathway) สวนการเพ่ มแนวโนิ่ ้มใหเซลล้ เปล์ ยนเป่ี ็นเซลลต์ วอั ่อนกระดกู เกดจากการทิ เซลล่ี ์ สราง้ Runt-related transcription factor 2 (Runx2) เพมขิ่ นเม้ึ อถ่ื กกระตู ุนด้ วย้ FGF2 vi Runx2 เป็นโปรตนหลี กทั ท่ี าหนํ ้าทในการการควบค่ี มการถอดรหุ สของยั นที เซลล่ี ์ สรางเพ้ มขิ่ น้ึ และจะส่งผลต่อใหเซลล้ สร์ างโปรต้ นที เก่ี ยวข่ี องก้ บการสรั างกระด้ กเพู มขิ่ นด้ึ วย้ ไดแก้ ่ BMP2 และ alkaline phosphatase (ALP) ปรมาณการสะสมแคลเซิ ยมและฟอสฟอรี สสามารถั ตรวจสอบดวยเทคน้ ิคสยี อมจ้ าเพาะํ Alizarin Red S กลไกกระตุนระด้ บเซลลั เก์ ดจากิ Runx2 จบกั บั สวนของด่ เอี นเอ็ ap1 ทอย่ี เหนู่ ือยนี runx2 แลวส้ งผลเช่ งบวกใหิ เซลล้ สร์ าง้ Runx2 เพมขิ่ น้ึ ตามดวย้ การสราง้ BMP2 และ ALP ทเพ่ี มขิ่ น้ึ เทคนิคการเพาะเลยงเซลล้ี ต์ นก้ าเนํ ิดเพอใช่ื ในว้ ศวกรรมเนิ ้ือเยอกระด่ื กทู พ่ี ฒนาขั น้ึ ใหมน่ ้ีเป็นวธิ ที ง่ี าย่ ปลอดภยั มคี าใช่ จ้ ายท่ เหมาะสม่ี และสามารถนําไปใชได้ จร้ งทางคลิ นิ ิก vii Thesis Title Downstream Signaling Pathway in Bone Stromal Cells Induced with Basic Fibroblast Growth Factor (FGF2) Author Miss Paweena Wongwitwichot Major Program Pharmaceutical Sciences Academic Year 2014 ABSTRACT Bone tissue engineering using mesenchymal stromal cells (MSCs) becomes a promising technique for treatment of severe bone defect. Bone marrow is an easily accessible source of MSCs, which are autologous if own to the patient. Because of the rare population of MSCs (< 0.01%), this has been the major drawback of the repair technique as it requires large cell numbers. In vitro propagation is generally applied to increase the numbers of cells. However, the cells grow with reduced rate and have lowered differentiation potential during the expansion. Accordingly, this research is aimed to (1) improve techniques of MSC separation and cultivation with enhanced growth rate and preserved differentiation potential, by using suitable bone growth- related factors; (2) to determine the ability of the induced cells to form new bone in vitro and in vivo; and (3) to clarify the induction mechanisms by the used growth factors at molecular levels. Results showed that the cell isolation method developed was efficient and could be applied in clinics. Improved in vitro and in vivo bone formation was apparent when the cells were sequentially induced by using 2.5 ng/ml basic fibroblast growth factor (or fibroblast growth factor 2; FGF2) plus 60 ng/ml insulin for 1 day (the 1st induction), followed by cell starvation for 2 days, and finally challenged by 10 ng/ml bone morphogenetic protein 2 (BMP2) or 10 ng/ml bone morphogenetic protein 7 (BMP7) for 1 day (the 2nd induction). The increase of cell growth and pre-osteoblastic commitment was achieved by the 1st induction phase, while the improvement of osteoblastic differentiation and mineralization processes was accomplished by the 2nd induction phase. The effect on cell proliferation was found to involve in the Wingless and Int1 (WNT) pathway. Instead, the cells trended to produce Runt-related transcription viii factor 2 (Runx2) after induced by FGF2, resulting in increased pre-osteoblastic commitment. Since Runx2 was the principal transcription factor produced, it then positively regulated the synthesis of osteogenic proteins including BMP2 and alkaline phosphatase (ALP). The degree of mineralization was determined by Alizarin red s (ARS) staining. The proposed mechanism of Runx2 on accelerating new bone formation would be via the activation of ap1 consensus sequence located up-stream of runx2 gene by Runx2, resulting in increased production of BMP2 and ALP. The newly developed method for cultivating MSCs isolated from bone marrow was simple, safe, cost-effective, and possible to be applied for bone tissue engineering in clinics. x CONTENTS Page ABSTRACT (in Thai) v ABSTRACT (in English) vii ACKNOWLEDGEMENT ix CONTENTS x LIST OF TABLES xv LIST OF FIGURES xvii LIST OF ABBREVIATIONS AND SYMBOLS xx CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.1.1 Bone 1 1.1.2 Bone cells 2 1.1.3 Osteogenesis 4 1.1.3.1 Bone tissue formation process 4 1.1.3.2 Transcriptional regulation of osteogenesis 6 1.1.3.3 Major signaling pathways controlling bone formation 10 1.1.3.4 Signaling crosstalk in bone development 16 1.1.4 Bone defects and treatment 17 1.1.4.1 Defects of bone tissue 17 1.1.4.2 Bone fracture healing process 18 1.1.4.3 Treatments of lost bone tissue 19 1.1.5 Tissue engineering 20 1.1.5.1 The concept 20 1.1.5.2 Osteogenic cells 21 1.1.5.3 Scaffolds 22 1.1.5.4 Growth factors 23 1.2 Research rationale 23 1.3 Objectives 25 xi CONTENTS (continued) Page CHAPTER 2 RESEARCH METHODOLOGY 26 2.1 Materials 26 2.1.1 General reagents 26 2.1.2 Reagents for cell isolation, culture, and characterization 26 2.1.3 Reagents for in vitro evaluation of induction conditions 27 2.1.4 Reagents for in vivo experiment 27 2.1.5 Reagents for plasmid construction 28 2.1.5.1 Plasmids 28 2.1.6 Reagents for transfection experiment 32 2.1.7 Laboratory animal 32 2.1.8 Primers and oligonucleotides 32 2.2 Experimental scheme 39 2.3 Methods 40 2.3.1 MSCs isolation and culture 40 2.3.1.1 Human bone marrow-derived
Recommended publications
  • Watsonjn2018.Pdf (1.780Mb)
    UNIVERSITY OF CENTRAL OKLAHOMA Edmond, Oklahoma Department of Biology Investigating Differential Gene Expression in vivo of Cardiac Birth Defects in an Avian Model of Maternal Phenylketonuria A THESIS SUBMITTED TO THE GRADUATE FACULTY In partial fulfillment of the requirements For the degree of MASTER OF SCIENCE IN BIOLOGY By Jamie N. Watson Edmond, OK June 5, 2018 J. Watson/Dr. Nikki Seagraves ii J. Watson/Dr. Nikki Seagraves Acknowledgements It is difficult to articulate the amount of gratitude I have for the support and encouragement I have received throughout my master’s thesis. Many people have added value and support to my life during this time. I am thankful for the education, experience, and friendships I have gained at the University of Central Oklahoma. First, I would like to thank Dr. Nikki Seagraves for her mentorship and friendship. I lucked out when I met her. I have enjoyed working on this project and I am very thankful for her support. I would like thank Thomas Crane for his support and patience throughout my master’s degree. I would like to thank Dr. Shannon Conley for her continued mentorship and support. I would like to thank Liz Bullen and Dr. Eric Howard for their training and help on this project. I would like to thank Kristy Meyer for her friendship and help throughout graduate school. I would like to thank my committee members Dr. Robert Brennan and Dr. Lilian Chooback for their advisement on this project. Also, I would like to thank the biology faculty and staff. I would like to thank the Seagraves lab members: Jailene Canales, Kayley Pate, Mckayla Muse, Grace Thetford, Kody Harvey, Jordan Guffey, and Kayle Patatanian for their hard work and support.
    [Show full text]
  • Long Noncoding Rnas in Vascular Smooth Muscle Cells Regulate
    www.nature.com/scientificreports OPEN Long noncoding RNAs in vascular smooth muscle cells regulate vascular calcifcation Received: 21 November 2018 Geon Jeong1,2,3, Duk-Hwa Kwon1,4, Sera Shin1,4, Nakwon Choe1,4, Juhee Ryu1,2,3,4, Accepted: 27 March 2019 Yeong-Hwan Lim1,2,3, Jaetaek Kim1,5, Woo Jin Park1,6, Hyun Kook1,3,4 & Young-Kook Kim 1,2,3 Published: xx xx xxxx Vascular calcifcation is characterized by the accumulation of hydroxyapatite crystals, which is a result of aberrant mineral metabolism. Although many clinical studies have reported its adverse efects on cardiovascular morbidity, the molecular mechanism of vascular calcifcation, especially the involvement of long noncoding RNAs (lncRNAs), is not yet reported. From the transcriptomic analysis, we discovered hundreds of lncRNAs diferentially expressed in rat vascular smooth muscle cells (VSMCs) treated with inorganic phosphate, which mimics vascular calcifcation. We focused on Lrrc75a-as1 and elucidated its transcript structure and confrmed its cytoplasmic localization. Our results showed that calcium deposition was elevated after knockdown of Lrrc75a-as1, while its overexpression inhibited calcium accumulation in A10 cells. In addition, Lrrc75a-as1 attenuated VSMCs calcifcation by decreasing the expression of osteoblast-related factors. These fndings suggest that Lrrc75a-as1 acts as a negative regulator of vascular calcifcation, and may serve as a possible therapeutic target in vascular calcifcation. Vascular calcifcation is caused by an imbalance of mineral metabolism, especially calcium phosphate metabo- lism1. It decreases vessel wall tension and increases vascular stifness, thereby increasing the risk of myocardial ischemia, heart failure, arrhythmias, and other cardiovascular diseases2. Vascular calcifcation includes several major types including medial arterial calcifcation, intimal atherosclerosis, and arterial calcifcation of chronic kidney diseases3.
    [Show full text]
  • SUPPLEMENTARY MATERIAL Bone Morphogenetic Protein 4 Promotes
    www.intjdevbiol.com doi: 10.1387/ijdb.160040mk SUPPLEMENTARY MATERIAL corresponding to: Bone morphogenetic protein 4 promotes craniofacial neural crest induction from human pluripotent stem cells SUMIYO MIMURA, MIKA SUGA, KAORI OKADA, MASAKI KINEHARA, HIROKI NIKAWA and MIHO K. FURUE* *Address correspondence to: Miho Kusuda Furue. Laboratory of Stem Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan. Tel: 81-72-641-9819. Fax: 81-72-641-9812. E-mail: [email protected] Full text for this paper is available at: http://dx.doi.org/10.1387/ijdb.160040mk TABLE S1 PRIMER LIST FOR QRT-PCR Gene forward reverse AP2α AATTTCTCAACCGACAACATT ATCTGTTTTGTAGCCAGGAGC CDX2 CTGGAGCTGGAGAAGGAGTTTC ATTTTAACCTGCCTCTCAGAGAGC DLX1 AGTTTGCAGTTGCAGGCTTT CCCTGCTTCATCAGCTTCTT FOXD3 CAGCGGTTCGGCGGGAGG TGAGTGAGAGGTTGTGGCGGATG GAPDH CAAAGTTGTCATGGATGACC CCATGGAGAAGGCTGGGG MSX1 GGATCAGACTTCGGAGAGTGAACT GCCTTCCCTTTAACCCTCACA NANOG TGAACCTCAGCTACAAACAG TGGTGGTAGGAAGAGTAAAG OCT4 GACAGGGGGAGGGGAGGAGCTAGG CTTCCCTCCAACCAGTTGCCCCAAA PAX3 TTGCAATGGCCTCTCAC AGGGGAGAGCGCGTAATC PAX6 GTCCATCTTTGCTTGGGAAA TAGCCAGGTTGCGAAGAACT p75 TCATCCCTGTCTATTGCTCCA TGTTCTGCTTGCAGCTGTTC SOX9 AATGGAGCAGCGAAATCAAC CAGAGAGATTTAGCACACTGATC SOX10 GACCAGTACCCGCACCTG CGCTTGTCACTTTCGTTCAG Suppl. Fig. S1. Comparison of the gene expression profiles of the ES cells and the cells induced by NC and NC-B condition. Scatter plots compares the normalized expression of every gene on the array (refer to Table S3). The central line
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • Bone Morphogenetic Protein-4 Affects Both Trophoblast and Non-Trophoblast Lineage-Associated Gene Expression in Human Embryonic Stem Cells
    Vol.2, No.4, 163-175 (2012) Stem Cell Discovery http://dx.doi.org/10.4236/scd.2012.24021 Bone morphogenetic protein-4 affects both trophoblast and non-trophoblast lineage-associated gene expression in human embryonic stem cells Margaret L. Shirley1,2*, Alison Venable1*, Raj R. Rao3, Nolan L. Boyd4, Steven L. Stice1,5,6, David Puett1#, Prema Narayan7# 1Department of Biochemistry and Molecular Biology, University of Georgia, Athens, USA; #Corresponding Author: [email protected] 2Department of Psychiatry, University of California, San Francisco, USA 3Department of Chemical and Life Science Engineering, School of Engineering, Virginia Commonwealth University, Richmond, USA 4Cardiovascular Innovation Institute, University of Louisville, Louisville, USA 5Regenerative Bioscience Center, University of Georgia, Athens, USA 6Department of Animal and Dairy Sciences, University of Georgia, Athens, USA 7Department of Physiology, Southern Illinois University School of Medicine, Carbondale, USA; #Corresponding Author: [email protected] Received 5 May 2012; revised 4 June 2012; accepted 1 July 2012 ABSTRACT cells were obtained. Gene expression by EB was characterized by an up-regulation of a num- Human embryonic stem cells (hESC) can be in- ber of genes associated with trophoblast, ecto- duced to differentiate to trophoblast by bone derm, endoderm, and mesoderm, and the pro- morphogenetic proteins (BMPs) and by aggre- duction of hCG and progesterone confirmed that gation to form embryoid bodies (EB), but there trophoblast-like cells were formed. These re- are many differences and controversies regard- sults suggest that, in the presence of FGF-2, ing the nature of the differentiated cells. Our BG02 cells respond to BMP4 to yield tropho- goals herein were to determine if BG02 cells form trophoblast-like cells (a) in the presence of blast-like cells, which are also obtained upon EB BMP4-plus-basic fibroblast growth factor (FGF-2) formation.
    [Show full text]
  • Transcription Factor Gene Expression Profiling and Analysis of SOX Gene Family Transcription Factors in Human Limbal Epithelial
    Transcription factor gene expression profiling and analysis of SOX gene family transcription factors in human limbal epithelial progenitor cells Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Dr. med. Johannes Menzel-Severing aus Bonn Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 7. Februar 2018 Vorsitzender des Promotionsorgans: Prof. Dr. Georg Kreimer Gutachter: Prof. Dr. Andreas Feigenspan Prof. Dr. Ursula Schlötzer-Schrehardt 1 INDEX 1. ABSTRACTS Page 1.1. Abstract in English 4 1.2. Zusammenfassung auf Deutsch 7 2. INTRODUCTION 2.1. Anatomy and histology of the cornea and the corneal surface 11 2.2. Homeostasis of corneal epithelium and the limbal stem cell paradigm 13 2.3. The limbal stem cell niche 15 2.4. Cell therapeutic strategies in ocular surface disease 17 2.5. Alternative cell sources for transplantation to the corneal surface 18 2.6. Transcription factors in cell differentiation and reprogramming 21 2.7. Transcription factors in limbal epithelial cells 22 2.8. Research question 25 3. MATERIALS AND METHODS 3.1. Human donor corneas 27 3.2. Laser Capture Microdissection (LCM) 28 3.3. RNA amplification and RT2 profiler PCR arrays 29 3.4. Real-time PCR analysis 33 3.5. Immunohistochemistry 34 3.6. Limbal epithelial cell culture 38 3.7. Transcription-factor knockdown/overexpression in vitro 39 3.8. Proliferation assay 40 3.9. Western blot 40 3.10. Statistical analysis 41 2 4. RESULTS 4.1. Quality control of LCM-isolated and amplified RNA 42 4.2.
    [Show full text]
  • SPEN Protein Expression and Interactions with Chromatin in Mouse Testicular Cells
    156 3 REPRODUCTIONRESEARCH SPEN protein expression and interactions with chromatin in mouse testicular cells Joanna Korfanty1, Tomasz Stokowy2, Marek Chadalski1, Agnieszka Toma-Jonik1, Natalia Vydra1, Piotr Widłak1, Bartosz Wojtaś3, Bartłomiej Gielniewski3 and Wieslawa Widlak1 1Maria Sklodowska-Curie Institute – Oncology Center, Gliwice Branch, Gliwice, Poland, 2Department of Clinical Science, University of Bergen, Bergen, Norway and 3Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland Correspondence should be addressed to W Widlak; Email: [email protected] Abstract SPEN (spen family transcription repressor) is a nucleic acid-binding protein putatively involved in repression of gene expression. We hypothesized that SPEN could be involved in general downregulation of the transcription during the heat shock response in mouse spermatogenic cells through its interactions with chromatin. We documented predominant nuclear localization of the SPEN protein in spermatocytes and round spermatids, which was retained after heat shock. Moreover, the protein was excluded from the highly condensed chromatin. Chromatin immunoprecipitation experiments clearly indicated interactions of SPEN with chromatin in vivo. However, ChIP-Seq analyses did not reveal any strong specific peaks both in untreated and heat shocked cells, which might suggest dispersed localization of SPEN and/or its indirect binding to DNA. Using in situ proximity ligation assay we found close in vivo associations of SPEN with MTA1 (metastasis-associated 1), a member of the nucleosome remodeling complex with histone deacetylase activity, which might contribute to interactions of SPEN with chromatin. Reproduction (2018) 156 195–206 Introduction However, regulation of osteocalcin expression by SPEN depends on its interactions with other proteins.
    [Show full text]
  • TP53 9606.ENSP00000269305 Tumor Protein P53; Acts As a Tumor
    TP53 9606.ENSP00000269305 tumor protein p53; Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression. Implicated in Notch signaling cross-over TAF1 9606.ENSP00000276072 TAF1 RNA polymerase II, TATA box binding protein (TBP)-associated factor, 250kDa; Largest component and core scaffold of the TFIID basal transcription factor complex. Contains novel N- and C-terminal Ser/Thr kinase domains which can autophosphorylate or transphosphorylate other transcription factors. Phosphorylates TP53 on 'Thr-55' which leads to MDM2-mediated degradation of TP53. Phosphorylates GTF2A1 and GTF2F1 on Ser residues. Possesses DNA- binding activity. Essential for progression of the G1 phase of the cell cycle SUMO2 9606.ENSP00000405965 SMT3 suppressor of mif two 3 homolog 2 (S. cerevisiae); Ubiquitin-like protein which can be covalently attached to target lysines either as a monomer or as a lysine-linked polymer. Does not seem to be involved in protein degradation and may function as an antagonist of ubiquitin in the degradation process. Plays a role in a number of cellular processes such as nuclear transport, DNA
    [Show full text]
  • Degs) in NF639R Cells Vs
    Supplementary Table 1. List of the differentially expressed genes (DEGs) in NF639R cells vs. NF639 cells MeanTPM MeanTPM Gene ID Gene Symbol log2FoldChange p-value q-value Result Gene Description (NF639R) (NF639) ENSMUSG00000078915 Hsp25-ps1 6.641855 0.000824333 12.97607077 2.38E-11 1.27E-09 up heat shock protein 25, pseudogene 1 [Source:MGI Symbol;Acc:MGI:96241] ENSMUSG00000031379 Pir 7.332141 0.043030667 7.412725528 1.19E-09 4.67E-08 up pirin [Source:MGI Symbol;Acc:MGI:1916906] ENSMUSG00000031980 Agt 32.483909 0.434484333 6.224277284 1.52E-147 1.19E-143 up angiotensinogen (serpin peptidase inhibitor, clade A, member 8) [Source:MGI Symbol;Acc:MGI:87963] ENSMUSG00000027375 Mal 7.743187667 0.275256333 4.814079944 5.66E-63 7.40E-60 up myelin and lymphocyte protein, T cell differentiation protein [Source:MGI Symbol;Acc:MGI:892970] ENSMUSG00000000753 Serpinf1 135.1986237 5.409637667 4.643404688 2.41E-200 3.77E-196 up serine (or cysteine) peptidase inhibitor, clade F, member 1 [Source:MGI Symbol;Acc:MGI:108080] ENSMUSG00000036908 Unc93b1 5.739695333 0.254224 4.49680202 0.000207731 0.001892764 up unc-93 homolog B1, TLR signaling regulator [Source:MGI Symbol;Acc:MGI:1859307] ENSMUSG00000050896 Rtn4rl2 9.2162 0.421229 4.451495356 4.09E-40 1.73E-37 up reticulon 4 receptor-like 2 [Source:MGI Symbol;Acc:MGI:2669796] ENSMUSG00000029755 Dlx5 16.326984 0.820884 4.313936136 2.92E-65 4.58E-62 up distal-less homeobox 5 [Source:MGI Symbol;Acc:MGI:101926] ENSMUSG00000019102 Aldh3a1 222.322291 12.196711 4.188088542 3.05E-77 7.97E-74 up aldehyde dehydrogenase
    [Show full text]
  • BMC Biology Biomed Central
    BMC Biology BioMed Central Research article Open Access Classification and nomenclature of all human homeobox genes PeterWHHolland*†1, H Anne F Booth†1 and Elspeth A Bruford2 Address: 1Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK and 2HUGO Gene Nomenclature Committee, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK Email: Peter WH Holland* - [email protected]; H Anne F Booth - [email protected]; Elspeth A Bruford - [email protected] * Corresponding author †Equal contributors Published: 26 October 2007 Received: 30 March 2007 Accepted: 26 October 2007 BMC Biology 2007, 5:47 doi:10.1186/1741-7007-5-47 This article is available from: http://www.biomedcentral.com/1741-7007/5/47 © 2007 Holland et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The homeobox genes are a large and diverse group of genes, many of which play important roles in the embryonic development of animals. Increasingly, homeobox genes are being compared between genomes in an attempt to understand the evolution of animal development. Despite their importance, the full diversity of human homeobox genes has not previously been described. Results: We have identified all homeobox genes and pseudogenes in the euchromatic regions of the human genome, finding many unannotated, incorrectly annotated, unnamed, misnamed or misclassified genes and pseudogenes.
    [Show full text]
  • Modifiers and Mediators of Craniosynostosis Severity
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.28.923508; this version posted January 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Modifiers and Mediators of Craniosynostosis Severity 2 Revealed by Differential Gene Expression 3 4 Authors: Amel Dudakovicb, Hwa Kyung Nama, Andre vanWijnenb, Nan E. Hatcha* 5 6 a Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of 7 Michigan, Ann Arbor, Michigan, United States of America 8 9 b Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo 10 Clinic, Rochester, Minnesota, United States of America 11 12 * Corresponding author 13 e-mail: [email protected] 14 15 16 Abstract 17 Severity of craniosynostosis in humans varies widely even in patients with identical genetic 18 mutations. In this study we compared RNA sequencing data from cranial tissues of a severe 19 form of Crouzon craniosynostosis syndrome (C57BL/6 FGFR2C342Y/+ mice) with those of a less 20 severe form of Crouzon craniosynostosis (BALB/c FGFR2C342Y/+ mice) to identify genetic 21 modifiers that influence craniosynostosis phenotype severity. Comparison of the mice revealed 22 neonatal onset of coronal suture fusion in the form of suture obliteration in C57BL/6 mice (88% 23 incidence, p<.001 between genotypes). Coronal suture fusion in the form of point fusions across 24 the suture occurred at approximately 4 weeks after birth, with less severe skull shape 25 abnormalities, in BALB/c mice. Substantially fewer genes were differentially expressed in 26 BALB/c FGFR2+/+ vs.
    [Show full text]
  • Data of Methylome and Transcriptome Derived from Human Dilated Cardiomyopathy
    Data in Brief 9 (2016) 382–387 Contents lists available at ScienceDirect Data in Brief journal homepage: www.elsevier.com/locate/dib Data Article Data of methylome and transcriptome derived from human dilated cardiomyopathy Bong-Seok Jo a, In-Uk Koh b, Jae-Bum Bae b, Ho-Yeong Yu b, Eun-Seok Jeon c, Hae-Young Lee d, Jae-Joong Kim e, Murim Choi f, Sun Shim Choi a,n a Division of Biomedical Convergence, College of Biomedical Science, and Institute of Bioscience & Biotechnology, Kangwon National University, Chuncheon 24341, South Korea b Division of Structural and Functional Genomics, Center of Genome Science, National Research Institute of Health, Chuncheongbuk-do 28159, South Korea c Division of Cardiology, Cardiac and Vascular Center, Department of Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, South Korea d Division of Cardiology, Seoul National University College of Medicine, Seoul 03080, South Korea e Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 44033, South Korea f Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea article info abstract Article history: Alterations in DNA methylation and gene expression have been Received 12 July 2016 implicated in the development of human dilated cardiomyopathy Received in revised form (DCM). Differentially methylated probes (DMPs) and differentially 29 August 2016 expressed genes (DEGs) were identified between the left ventricle Accepted 6 September 2016 (LV, a pathological locus for DCM) and the right ventricle (RV, a Available online 14 September 2016 proxy for normal hearts). The data in this DiB are for supporting Keywords: our report entitled “Methylome analysis reveals alterations in DNA Methylome methylation in the regulatory regions of left ventricle development Transcriptome genes in human dilated cardiomyopathy” (Bong-Seok Jo, In-Uk DMP Koh, Jae-Bum Bae, Ho-Yeong Yu, Eun-Seok Jeon, Hae-Young Lee, DEG DCM Jae-Joong Kim, Murim Choi, Sun Shim Choi, 2016) [1].
    [Show full text]