Toxicological Review of Tert-Butyl Alcohol (Tert-Butanol)

Total Page:16

File Type:pdf, Size:1020Kb

Toxicological Review of Tert-Butyl Alcohol (Tert-Butanol) EPA/635/R-20/370Fa www.epa.gov/iris Toxicological Review of tert-Butyl Alcohol (tert-Butanol) [CASRN 75-65-0] August 2021 Integrated Risk Information System Center for Public Health and Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC Toxicological Review of tert-Butyl Alcohol (tert-Butanol) DISCLAIMER This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. ii Toxicological Review of tert-Butyl Alcohol (tert-Butanol) CONTENTS AUTHORS | CONTRIBUTORS | REVIEWERS ................................................................................................... x PREFACE ...................................................................................................................................................... xiv PREAMBLE TO IRIS TOXICOLOGICAL REVIEWS.......................................................................................... xviii EXECUTIVE SUMMARY .............................................................................................................................. xxvi LITERATURE SEARCH STRATEGY | STUDY SELECTION AND EVALUATION ............................................... xxxii 1. HAZARD IDENTIFICATION .................................................................................................................... 1-1 1.1. OVERVIEW OF CHEMICAL PROPERTIES AND TOXICOKINETICS ..................................................... 1-1 1.1.1. Chemical Properties .......................................................................................................... 1-1 1.1.2. Toxicokinetics .................................................................................................................... 1-1 1.1.3. Description of Toxicokinetic Models ................................................................................. 1-3 1.1.4. Chemicals Extensively Metabolized to tert-Butanol ......................................................... 1-4 1.2. PRESENTATION AND SYNTHESIS OF EVIDENCE BY ORGAN/SYSTEM ............................................ 1-4 1.2.1. Kidney Effects .................................................................................................................... 1-4 1.2.2. Thyroid Effects ................................................................................................................. 1-45 1.2.3. Developmental Effects .................................................................................................... 1-54 1.2.4. Neurodevelopmental Effects........................................................................................... 1-62 1.2.5. Reproductive Effects ....................................................................................................... 1-66 1.2.6. Other Toxicological Effects .............................................................................................. 1-72 1.3. INTEGRATION AND EVALUATION ............................................................................................... 1-72 1.3.1. Effects Other Than Cancer ............................................................................................... 1-72 1.3.2. Carcinogenicity ................................................................................................................ 1-74 1.3.3. Susceptible Populations and Lifestages for Cancer and Noncancer Outcomes .............. 1-77 2. DOSE-RESPONSE ANALYSIS ................................................................................................................. 2-1 2.1. ORAL REFERENCE DOSE FOR EFFECTS OTHER THAN CANCER ...................................................... 2-1 2.1.1. Identification of Studies and Effects for Dose-Response Analysis .................................... 2-1 2.1.2. Methods of Analysis .......................................................................................................... 2-2 2.1.3. Derivation of Candidate Values ......................................................................................... 2-4 2.1.4. Derivation of Organ/System-Specific Reference Doses .................................................... 2-8 2.1.5. Selection of the Overall Reference Dose ........................................................................... 2-8 iii Toxicological Review of tert-Butyl Alcohol (tert-Butanol) 2.1.6. Confidence Statement ....................................................................................................... 2-9 2.1.7. Previous Integrated Risk Information System (IRIS) Assessment ...................................... 2-9 2.2. INHALATION REFERENCE CONCENTRATION FOR EFFECTS OTHER THAN CANCER ....................... 2-9 2.2.1. Identification of Studies and Effects for Dose-Response Analysis .................................... 2-9 2.2.2. Methods of Analysis ........................................................................................................ 2-10 2.2.3. Derivation of Candidate Values ....................................................................................... 2-15 2.2.4. Derivation of Organ/System-Specific Reference Concentrations ................................... 2-18 2.2.5. Selection of the Overall Reference Concentration .......................................................... 2-18 2.2.6. Confidence Statement ..................................................................................................... 2-19 2.2.7. Previous Integrated Risk Information System (IRIS) Assessment .................................... 2-19 2.2.8. Uncertainties in the Derivation of the Reference Dose and Reference Concentration .................................................................................................................. 2-19 2.3. ORAL SLOPE FACTOR FOR CANCER ............................................................................................. 2-20 2.3.1. Analysis of Carcinogenicity Data ..................................................................................... 2-20 2.3.2. Dose-Response Analysis―Adjustments and Extrapolations Methods ........................... 2-21 2.3.3. Derivation of the Oral Slope Factor ................................................................................. 2-23 2.3.4. Uncertainties in the Derivation of the Oral Slope Factor ................................................ 2-24 2.3.5. Previous Integrated Risk Information System (IRIS) Assessment .................................... 2-26 2.4. INHALATION UNIT RISK FOR CANCER ......................................................................................... 2-26 2.4.1. Previous Integrated Risk Information System (IRIS) Assessment .................................... 2-27 2.5. APPLICATION OF AGE-DEPENDENT ADJUSTMENT FACTORS ...................................................... 2-27 REFERENCES ............................................................................................................................................... R-1 SUPPLEMENTAL INFORMATION ............................................................................................. (see Volume 2) iv Toxicological Review of tert-Butyl Alcohol (tert-Butanol) TABLES Table ES-1. Organ/system-specific oral reference doses (RfDs) and overall RfD for tert-butanol ......... xxvii Table ES-2. Organ/system-specific inhalation reference concentrations (RfCs) and overall RfC for tert-butanol ................................................................................................................... xxviii Table LS-1. Details of the search strategy employed for tert-butanol ................................................... xxxvi Table LS-2. Summary of additional search strategies for tert-butanol ................................................. xxxvii Table LS-3. Inclusion-exclusion criteria ................................................................................................ xxxviii Table LS-4. Considerations for evaluation of experimental animal studies................................................ xli Table LS-5. Summary of experimental animal evidence base ................................................................... xlii Table 1-1. Chemical identity and physicochemical properties of tert-Butanol as curated by EPA’s CompTox Chemicals Dashboard ...................................................................................... 1-2 Table 1-2. Changes in kidney histopathology in animals following exposure to tert-butanol ............... 1-15 Table 1-3. Changes in kidney tumors in animals following exposure to tert-butanol ............................ 1-19 Table 1-4. Comparison of nephropathy and suppurative inflammation in individual male rats from the 2-year National Toxicology Program (NTP) tert-butanol bioassay ................. 1-21 Table 1-5. Comparison of nephropathy and suppurative inflammation in individual female rats from the 2-year National Toxicology Program (NTP) tert-butanol bioassay ................. 1-21 Table 1-6. Comparison of nephropathy and transitional epithelial hyperplasia in individual male rats from the 2-year National Toxicology Program (NTP) tert-butanol bioassay .......... 1-21 Table 1-7. Comparison of nephropathy and transitional epithelial hyperplasia in individual female rats from the 2-year National Toxicology Program (NTP) tert-butanol bioassay ........................................................................................................................
Recommended publications
  • Effect of Enzymes on Strawberry Volatiles During Storage, at Different Ripeness
    Effect of Enzymes on Strawberry Volatiles During Storage, at Different Ripeness Level, in Different Cultivars and During Eating Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Gulsah Ozcan Graduate Program in Food Science and Technology The Ohio State University 2010 Thesis Committee: Sheryl Ann Barringer, Adviser W. James Harper John Litchfield 1 Copyright by Gülşah Özcan 2010 ii ABSTRACT Strawberry samples with enzyme activity and without enzyme activity (stannous chloride added) were measured for real time formation of lipoxygenase (LOX) derived aroma compounds after 5 min pureeing using selected ion flow tube mass spectrometry (SIFT-MS). The concentration of (Z)-3-hexenal and (E)-2-hexenal increased immediately after blending and gradually decreased over time while hexanal concentration increased for at least 5 min in ground strawberries. The formation of hexanal was slower than the formation of (Z)-3-hexenal and (E)-2-hexenal in the headspace of pureed strawberries. The concentration of LOX aldehydes and esters significantly increased during refrigerated storage. Damaging strawberries increased the concentration of LOX aldehydes but did not significantly affect the concentration of esters. The concentrations of many of the esters were strongly correlated to their corresponded acids and/or aldehydes. The concentration of LOX generated aldehydes decreased during ripening, while fruity esters increased. Different varieties had different aroma profiles and esters were the greatest percentage of the volatiles. The aroma release of some of the LOX derived aldehydes in the mouthspace in whole strawberries compared to chopped strawberries showed that these volatiles are formed in the mouth during chewing.
    [Show full text]
  • Cell Proliferation Or Cell Labeling
    ALZET® Bibliography References on the Cell Proliferation Studies Using ALZET Osmotic Pumps 1. BrdU Q8564: K. Kawamoto, et al. Cell proliferation analysis is a reliable predictor of lack of carcinogenicity: Case study using the pyrethroid imiprothrin on lung tumorigenesis in mice. Regul Toxicol Pharmacol 2020;113(104646 Agents: uridine, bromodeoxy-; Vehicle: DMSO; Route: SC; Species: Mice; Pump: 2001; Duration: 7 days; ALZET Comments: Dose (40 mg BrdU/mL); 10% DMSO used; animal info (Male mice aged 9 weeks); bromodeoxyuridine aka BrdU; cancer (carcinogenicity); R0384: A. A. Pieper, et al. Benefits of Enhancing Nicotinamide Adenine Dinucleotide Levels in Damaged or Diseased Nerve Cells. Cold Spring Harbor Symposia on Quantitative Biology 2019; Agents: Uridine, bromodeoxy-; aminopropylcarbazole Vehicle: Not stated; Route: CSF/CNS; Species: Mice; Pump: Not stated; Duration: 1 week; ALZET Comments: neurodegenerative (missing NPAS3 impaired hippocampal neurogenesis ); Therapeutic indication (Missing NPAS1 inhanced hippocampal neurogenesis); Q6967: M. Kondo, et al. Involvement of peroxisome proliferator-activated receptor-alpha in liver tumor production by permethrin in the female mouse. Toxicol Sci 2019; Agents: Uridine, Bromodeoxy Vehicle: DMSO; Route: SC; Species: Mice; Rat; Pump: 2001; 2ML2; Duration: 7 days; 14 days; ALZET Comments: Dose (8.4 mgBrdU/mouse.; 33.6 mg BrdU/rat); 10% DMSO used; cancer (liver); stress/adverse reaction: One animal was dead due to anesthesia at implantation of osmotic pump; Q8139: H. Mziaut, et al. miR-132 controls pancreatic beta cell proliferation and survival in mouse model through the Pten/Akt/Foxo3 signaling. bioRxiv 2018; Agents: Uridine, Bromodeoxy- Vehicle: DMSO; Route: IP; Species: Mice; Pump: 1007D; Duration: 7 days; ALZET Comments: Dose (0.5 ul/hr/day); 50% DMSO used; animal info (C57Bl/6N mice with an age of 13-19 weeks and a body weight of 28-34 g); Bromodeoxyuridine aka BrdU ; cardiovascular; Q8107: E.
    [Show full text]
  • Isoamyl Acetate
    SUMMARY OF DATA FOR CHEMICAL SELECTION Isoamyl Acetate CAS No. 123-92-2 Prepared for NTP by Technical Resources International, Inc Prepared on 11/94 Under NCI Contract No. N01-CP-56019 Table of Contents I. Chemical Identification II. Exposure Information Table 1. Levels of isoamyl acetate reported in foods III. Evidence for Possible Carcinogenic Activity Appendix A: Structural Analogs of Isoamyl Acetate IV. References SUMMARY OF DATA FOR CHEMICAL SELECTION CHEMICAL IDENTIFICATION CAS Registry No.: 123-92-2 Chem. Abstr. Name: 1-Butanol, 3-methyl-, acetate Synonyms: Acetic acid 3-methylbutyl ester; acetic acid, isopentyl ester; AI3-00576; banana oil; isoamyl ethanoate; isopentyl acetate; isopentyl alcohol, acetate; pear oil; 3-methyl-1-butanol acetate; 3-methyl-1-butyl acetate; 3-methylbutyl acetate; 3-methylbutyl ethanoate; i-amyl acetate Structure: Molecular Formula and Molecular Weight: C7H14O2 Mol. Wt.: 130.18 Chemical and Physical Properties: Description: Colorless, flammable liquid with a banana-like odor (ACGIH, 1993). Boiling Point: 142°C (Lide, 1993) Melting Point: -78.5°C (Mark, et al, 1984; Lide, 1993) Solubility: Soluble in water (2000 mg/L at 25°C) (Howard, 1990); soluble in ethanol, diethyl ether, and acetone (Lide, 1993). Vapor 4.5 mm Hg at 20°C (Howard, 1990) Pressure: Refractive 1.4003 (Lide, 1993) Index: Flash Point: closed cup, 33°C; open cup, 38°:C (Budavari, 1989) Density: 0.876 (Lewis, 1993) Reactivity: Thermal decomposition of isoamyl acetate may produce acrid fumes. Contact with strong oxidizing agents, strong acids, and alkaline materials should be avoided (Haarmann & Reimer Corp., 1994). Hazardous decomposition products of isoamyl acetate include CO and CO2 (AESAR/Alfa, 1994) Log 2.13 (Howard, 1990) P(octanol/water partition coefficient): Technical Isoamyl acetate is commercially available as both a natural and synthetic product with a purity Products and range of 95-99+%.
    [Show full text]
  • Bromodeoxyuridine-Induced Mutations in Synchronous Chinese Hamster Cells: Temporal Induction of 6-Thioguanine and Ouabain Resistance During Dna Replication
    BROMODEOXYURIDINE-INDUCED MUTATIONS IN SYNCHRONOUS CHINESE HAMSTER CELLS: TEMPORAL INDUCTION OF 6-THIOGUANINE AND OUABAIN RESISTANCE DURING DNA REPLICATION H. JOHN BURKP AND PAUL M. AEBERSOLD2 Group in Structural Biophysics, Biomedical Diuision, Lawrence Berkeley Laboratory', and Dept. of Molecular Biology2, Uniuersity of California, Berkeley, California 94720 Manuscript received November 14, 1977 Revised copy received April 25, 1978 ABSTRACT Mutations were induced in synchronous Chinese hamster cells by bromo- deoxyuridine (BUdR) incorporated into cells for one-hour periods in the cell cycle. There was a very pronounced temporal dependence during the first half of the DNA synthesis period for th:! induction of damage leading to 6-thio- guanine (6TG) and ouabain resistance. No mutants above background were induced by exposure to BUdR in GI and G2 cells, and very few mutants were induced in the latter part of the DNA synthesis period. The peak for the induction of 6TG resistance occurs at about two hr in the DNA synthesis period; one hour later there is a peak for the induction of ouabain resistance. Both peaks occur before the time of maximum incorporation of BUdR into DNA. These results suggest that the mutagenesis by BUdR is associated with at least two nuclear genes, which replicate at two hr and three hr in the DNA synthesis period. AMMALIAN cells replicate their several meters of DNA under culture Mconditions in about six to eight hr. Replicating units of the DNA replicate in two directions at a rate of about 1 micron per minute (HUBERMANand RIGGS 1968). The number of replicating units replicating during any one minute of the DNA synthesis period is on the average about lo4 (PAINTERand SCHAFER1969; PAINTER,JERMANY and RASMUSSEN1966).
    [Show full text]
  • Butyl Acetate Safety Data Sheet Sipchem Chemicals Company
    Butyl Acetate Safety Data Sheet Sipchem Chemicals Company SCC Sipchem Chemicals Company Safety Data Sheet According to Regulation (EC) No. 1272/2008, Regulation (EC) 1907/2006 1. Identification of the substance/mixture and of the responsible company 1.1. Product Identifier: Butyl Acetate (C6H12O2) BUTYL ACETATE; BUTYL ETHANOATE; 1-BUTYL ACETATE; ACETIC ACID N-BUTYL ESTER; ACETIC ACID, BUTYL ESTER; 1-ACETOXYBUTANE; UN 1123; C6H12O2 1.2. Relevant identified uses of the substance or mixture and uses advised against: Identified uses: Industrial solvent, solvent for coatings, films, perfumes and synthetic flavoring agents, extraction solvent for various products and laboratory procedures. 1.3. Details of the supplier of the safety data sheet: Sipchem Chemicals Company (SCC) PO Box 12021 Post Coe 31961 Jubail Industrial City Kingdom of Saudi Arabia Website: www.sipchem.com/en/affiliates.htm 1.4. Emergency telephone number: 00966-359 9985 (24 hours) 2. Hazards Identification Butyl Acetate CAS 123-86-4 Purity: >99.0% Trace Impurities: Butanol 2.1. Classification of the substance or mixture: Classification of Labeling in accordance with the CLP Regulations: Classification Labeling N International Hazard Class and Hazard statement Pictogram Hazard Suppl. Hazard Specific o Index No Chemical EC No CAS No Category Code(s) Code(s) Signal Statement statement Conc. Limits, t Identification Word Code(s) Code(s) M-factors e Code(s) s 607-025- R:10-66-67 GHS02 H225 123-86-4 Flam. Liq. 3 00-1 Butyl Acetate 204-658-1 GHS07 H319 #EUH066 100 STOT SE 3 H336 Classification according to Regulation 1272/2008/EC (CLP) Basis for Classification This substance is classified based on Directive 1272/2008/EC and its amendments (CLP Regulation,GHS) BUTYL ACETATE (123-86-4) SAFETY DATA SHEET according to Regulation (EC) No.
    [Show full text]
  • Dc349fr3501 A3 1/12
    DC349FR3501_A3 Safety Data Sheet DEVTHANE 349 LOW HAP ARMAG WHITE PTA Bulk Sales Reference No.: DC349FR3501 SDS Revision Date: 02/11/2019 SDS Revision Number: A3-7 1. Identification of the preparation and company 1.1. Product identifier Product Identity DEVTHANE 349 LOW HAP ARMAG WHITE PTA Bulk Sales Reference No. DC349FR3501 1.2. Relevant identified uses of the substance or mixture and uses advised against Intended Use See Technical Data Sheet. 1.3. Details of the supplier of the safety data sheet Company Name International Paint LLC Manufacturer: Akzo Nobel Coatings International Paint 6001 Antoine Drive Houston, Texas 77091 Emergency CHEMTREC (800) 424-9300 International Paint (713) 682-1711 Poison Control Center (800) 854-6813 Customer Service International Paint (800) 589-1267 Fax No. (800) 631-7481 2. Hazard identification of the product 2.1. Classification of the substance or mixture Flam. Liq. 3;H226 Flammable liquid and vapor. Skin Sens. 1;H317 May cause an allergic skin reaction. Aquatic Chronic 3;H412 Harmful to aquatic life with long lasting effects. 2.2. Label elements Using the Toxicity Data listed in section 11 & 12 the product is labelled as follows. Warning. H226 Flammable liquid and vapor. H317 May cause an allergic skin reaction. H412 Harmful to aquatic life with long lasting effects. P210 Keep away from heat / sparks / open flames / hot surfaces - No smoking. P235 Keep cool. P240 Ground / bond container and receiving equipment. 1/12 DC349FR3501_A3 P241 Use explosion-proof electrical / ventilating / light / equipment. P242 Use only non-sparking tools. P243 Take precautionary measures against static discharge. P261 Avoid breathing dust / fume / gas / mist / vapors / spray.
    [Show full text]
  • Analysis of Strawberry Volatiles in Different Hydrocolloids and Different
    Analysis of strawberry volatiles in different hydrocolloids and different conditions using Selected Ion Flow Tube – Mass Spectrometry THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of the Ohio State University By Yachen Zhang Graduate Program in Food Science and Technology The Ohio State University 2016 Master's Examination Committee: Dr. Sheryl Barringer, Advisor Dr. Dennis Heldman Dr. Christopher Simons © Copyright by Yachen Zhang 2016 i ABSTRACT Hydrocolloids and additives in gummy candies bind flavors, thus it is important to know how these additives affect flavor release. Selected Ion Flow Tube- Mass Spectrometry (SIFT-MS) was used to perform static headspace and mouthspace tests. The release of strawberry flavor in different hydrocolloids (gelatin, pectin, and starch) and conditions were analyzed. The factors that were considered were the type of hydrocolloid (gelatin, pectin, and starch), the concentration of the pectin (0, 2, 3, 5 g), sugar content (0, 55, 64, 74g), and acidity (pH 3.86, 3.65, 3.55, 3.47). Volatile release into the headspace of the samples containing no hydrocolloids was significantly higher than samples that contained hydrocolloids. The type of hydrocolloid significantly affected volatile compound concentration released into the headspace. Volatile levels in pectin and starch were lower than when no hydrocolloid was present, but they were not significant different with each other. Gelatin had the lowest volatile concentrations released into the headspace for most compounds. Increasing pectin decreased volatiles release compared to no hydrocolloids present. When the pectin content was further increased from 2g to 5g, most of volatiles had no significant difference.
    [Show full text]
  • BLUE BOOK 1 Methyl Acetate CIR EXPERT PANEL MEETING
    BLUE BOOK 1 Methyl Acetate CIR EXPERT PANEL MEETING AUGUST 30-31, 2010 Memorandum To: CIR Expert Panel Members and Liaisons From: Bart Heldreth Ph.D., Chemist Date: July 30, 2010 Subject: Draft Final Report of Methyl Acetate, Simple Alkyl Acetate Esters, Acetic Acid and its Salts as used in Cosmetics . This review includes Methyl Acetate and the following acetate esters, relevant metabolites and acetate salts: Propyl Acetate, Isopropyl Acetate, t-Butyl Acetate, Isobutyl Acetate, Butoxyethyl Acetate, Nonyl Acetate, Myristyl Acetate, Cetyl Acetate, Stearyl Acetate, Isostearyl Acetate, Acetic Acid, Sodium Acetate, Potassium Acetate, Magnesium Acetate, Calcium Acetate, Zinc Acetate, Propyl Alcohol, and Isopropyl Alcohol. At the June 2010 meeting, the Panel reviewed information submitted in response to an insufficient data announcement for HRIPT data for Cetyl Acetate at the highest concentration of use (lipstick). On reviewing the data in the report, evaluating the newly available unpublished studies and assessing the newly added ingredients, the Panel determined that the data are now sufficient, and issued a Tentative Report, with a safe as used conclusion. Included in this report are Research Institute for Fragrance Materials (RIFM) sponsored toxicity studies on Methyl Acetate and Propyl Acetate, which were provided in “wave 2” at the June Panel Meeting but are now incorporated in full. The Tentative Report was issued for a 60 day comment period (60 days as of the August panel meeting start date). The Panel should now review the Draft Final Report, confirm the conclusion of safe, and issue a Final Report. All of the materials are in the Panel book as well as in the URL for this meeting's web page http://www.cir- safety.org/aug10.shtml.
    [Show full text]
  • Simultaneous Recovery of High-Purity Cu and Poly(Vinyl Chloride)
    www.nature.com/scientificreports OPEN Simultaneous recovery of high‑purity Cu and poly(vinyl chloride) from waste wire harness via swelling followed by ball milling Harendra Kumar, Shogo Kumagai*, Tomohito Kameda, Yuko Saito & Toshiaki Yoshioka Poly(vinyl chloride) (PVC) swelling coupled with ball milling was employed for the simultaneous recovery of high‑purity Cu and PVC from waste wire harness under ambient conditions. The experimentally determined performances of 15 organic solvents for PVC swelling and phthalate plasticiser extraction were compared with those predicted considering Hansen solubility parameters. As a result, n-butyl acetate and acetone were identifed as the two best solvents for adequate PVC swelling without PVC dissolution and almost complete plasticiser extraction within 60 min. The swelling was concluded to contribute to the control of phthalate plasticisers, the use of which in wire harness has recently been limited by the Restriction of Hazardous Substances (RoHS) directive. Cables swollen with n-butyl acetate or acetone were subjected to dry ball milling for ~ 60 min to completely separate PVC and Cu and achieve the quantitative recovery of these components from 20-cm-long cables. Thus, this work unveils the high potential of recycling the otherwise non‑recyclable long and non‑uniform waste wire harness cables and is expected to impact the related (e.g., automotive, electrical, and electronics) industries, contributing to the establishment of a more sustainable society. Electric cables are indispensable for electricity/information transmission and contain poly(vinyl chloride) (PVC) and Cu as major constituents accounting for almost 16 and 42%, respectively, of the total material consumption in cable production 1.
    [Show full text]
  • Glycidyl Methacrylate
    SOME INDUSTRIAL CHEMICAL INTERMEDIATES AND SOLVENTS VOLUME 125 This publication represents the views and expert opinions of an IARC Working Group on the Identification of Carcinogenic Hazards to Humans, which met in Lyon, 5–11 November 2019 LYON, FRANCE - 2020 IARC MONOGRAPHS ON THE IDENTIFICATION OF CARCINOGENIC HAZARDS TO HUMANS GLYCIDYL METHACRYLATE 1. Exposure Characterization 1.1.3 Chemical and physical properties of the pure substance 1.1 Identification of the agent Description: colourless, combustible liquid 1.1.1 Nomenclature substance with a sweetish or fruity odour, which tends to polymerize spontaneously Chem. Abstr. Serv. Reg. No.: 106-91-2 (HSDB, 2003) Chem. Abstr. Serv. name: 2,3-epoxypropyl- Boiling point: 189 °C (HSDB, 2003) methacrylate Melting point: −41.5 °C (HSDB, 2003) IUPAC systematic name: (oxiran-2-yl)methyl Density: 1.04–1.07 g/cm3 (20 °C) (ECHA, 2-methylprop-2-enoate 2019; IFA, 2019) Synonyms: glycidyl methacrylate; (RS)-2,3- Solubility: < 10–50 g/L (in water at 20–25 °C) epoxypropylmethacrylate; (±)-2,3-epoxypro- (ECHA, 2019; IFA, 2019), very soluble in pylmethacrylate; 2-((methacryloxy)methyl) benzene, ethyl ether, and ethyl alcohol oxirane; 2-oxiranylmethyl ester; methacrylic (HSDB, 2003) acid-2,3-epoxypropylester; 2-propenoic acid, Vapour pressure: 4.2 hPa (25 °C) (ECHA, 2-methyl-; 1-propanol, 2,3-epoxy-,methacryl- 2019) ate. Flash point: 76–84 °C at 101.3 kPa (ECHA, 2019) 1.1.2 Structural and molecular formula, and Auto-ignition temperature: 389 °C at 101.3 kPa relative molecular mass (ECHA, 2019) O Vapour density: 4.91 (air = 1) (IFA, 2019) Octanol/water partition coefficient (P): O log Kow = 0.96 (ILO, 2006) O Conversion factor: 1 ppm = 5.91 mg/m3 (at 20 °C and 101.3 kPa).
    [Show full text]
  • EICG-Hot Spots
    State of California AIR RESOURCES BOARD PUBLIC HEARING TO CONSIDER AMENDMENTS TO THE EMISSION INVENTORY CRITERIA AND GUIDELINES REPORT FOR THE AIR TOXICS “HOT SPOTS” PROGRAM STAFF REPORT: INITIAL STATEMENT OF REASONS DATE OF RELEASE: September 29, 2020 SCHEDULED FOR CONSIDERATION: November 19, 2020 Location: Please see the Public Agenda which will be posted ten days before the November 19, 2020, Board Meeting for any appropriate direction regarding a possible remote-only Board Meeting. If the meeting is to be held in person, it will be held at the California Air Resources Board, Byron Sher Auditorium, 1001 I Street, Sacramento, California 95814. This report has been reviewed by the staff of the California Air Resources Board and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Air Resources Board, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. This Page Intentionally Left Blank TABLE OF CONTENTS EXECUTIVE SUMMARY .......................................................................................... 1 I. INTRODUCTION AND BACKGROUND ................................................................. 5 II. THE PROBLEM THAT THE PROPOSAL IS INTENDED TO ADDRESS .................... 6 III. BENEFITS ANTICIPATED FROM THE REGULATORY ACTION, INCLUDING THE BENEFITS OR GOALS PROVIDED IN THE AUTHORIZING STATUTE .................... 8 IV. AIR QUALITY ..........................................................................................................
    [Show full text]
  • Multiplex Cell Fate Tracking by Flow Cytometry
    Protocol Multiplex Cell Fate Tracking by Flow Cytometry Marta Rodríguez-Martínez 1,*, Stephanie A. Hills 2, John F. X. Diffley 2 and Jesper Q. Svejstrup 1,* 1 Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK 2 Chromosome Replication Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK * Correspondence: [email protected] (M.R.-M.); [email protected] (J.Q.S.) Received: 18 June 2020; Accepted: 15 July 2020; Published: 17 July 2020 Abstract: Measuring differences in cell cycle progression is often essential to understand cell behavior under different conditions, treatments and environmental changes. Cell synchronization is widely used for this purpose, but unfortunately, there are many cases where synchronization is not an option. Many cell lines, patient samples or primary cells cannot be synchronized, and most synchronization methods involve exposing the cells to stress, which makes the method incompatible with the study of stress responses such as DNA damage. The use of dual-pulse labelling using EdU and BrdU can potentially overcome these problems, but the need for individual sample processing may introduce a great variability in the results and their interpretation. Here, we describe a method to analyze cell proliferation and cell cycle progression by double staining with thymidine analogues in combination with fluorescent cell barcoding, which allows one to multiplex the study and reduces the variability due to individual sample staining, reducing also the cost of the experiment. Keywords: BrdU; EdU; fluorescent cell barcoding 1. Introduction Assessing cell proliferation and cell cycle distribution is often at the basis of cell behavior studies.
    [Show full text]