Report Highlights
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Fundamentals of Impulsive Energy Release in the Corona Heliophysics 2050 Workshop White Paper A
Heliophysics 2050 White Papers (2021) 4093.pdf Fundamentals of impulsive energy release in the corona Heliophysics 2050 Workshop white paper A. Y. Shih (NASA Goddard Space Flight Center), L. Glesener (UMN), S. Krucker (UCB), S. Guidoni (Amer. Univ.), S. Christe (GSFC), K. Reeves (SAO), S. Gburek (PAS), A. Caspi (SwRI), M. Alaoui (GSFC/CUA), J. Allred (GSFC), M. Battaglia (FHNW), W. Baumgartner (MSFC), B. Dennis (GSFC), J. Drake (UMD), K. Goetz (UMN), L. Golub (SAO), I. Hannah (Univ. of Glasgow), L. Hayes (GSFC/USRA), G. Holman (GSFC/Emeritus), A. Inglis (GSFC/CUA), J. Ireland (GSFC), G. Kerr (GSFC/CUA), J. Klimchuk (GSFC), D. McKenzie (MSFC), C. Moore (SAO), S. Musset (Univ. of Glasgow), J. Reep (NRL), D. Ryan (GSFC/AU), P. Saint-Hilaire (UCB), S. Savage (MSFC), R. Schwartz (GSFC/AU), D. Seaton (NOAA), M. Stęślicki (PAS), T. Woods (LASP) Introduction Solar eruptive events are the most energetic and geo-effective space-weather drivers. They originate in the corona near the Sun’s surface as a combination of solar flares (impulsive bursts of radiation across the entire electromagnetic spectrum) and coronal mass ejections (CMEs; expulsions of magnetized plasma into interplanetary space). The radiation and energetic particles they produce can damage satellites, disrupt telecommunications and GPS navigation, and endanger astronauts in space. Many of the processes involved in triggering, driving, and sustaining solar eruptive events–including magnetic reconnection, particle acceleration, plasma heating, and energy transport in magnetized plasmas–also play important roles in phenomena throughout the Universe, such as in magnetospheric substorms, gamma-ray bursts, and accretion disks. The Sun is a unique laboratory to better understand these fundamental physical processes. -
Space Climate Characterization Via Geomagnetic Indices. an Attempt of Integrating Solar, Heliospheric, and Geomagnetic Indices at Various Time-Scales
Geophysical Research Abstracts Vol. 15, EGU2013-8930, 2013 EGU General Assembly 2013 © Author(s) 2013. CC Attribution 3.0 License. Space climate characterization via geomagnetic indices. An attempt of integrating solar, heliospheric, and geomagnetic indices at various time-scales Crisan Demetrescu and Venera Dobrica Institute of Geodynamics, Bucharest, Romania ([email protected]) The so-called space climate concerns the long-term change in the Sun and its effects in the heliosphere and upon the Earth, including the atmosphere and climate. Annual means of measured and reconstructed solar, heliospheric, and magnetospheric parameters are used to infer solar activity signatures at the Hale and Gleissberg cycles timescales. Available open solar flux, modulation strength, cosmic ray flux, total solar irradiance data, reconstructed back to 1700, solar wind parameters (speed, density, dynamic pressure) and the magnitude of the heliospheric magnetic field at 1 AU, reconstructed back to 1870, as well as the time series of geomagnetic activity indices (aa, IDV, IHV), going back to 1870, have been considered. Also, shorter time series of some other geomagnetic indices, designed as proxies for specific current systems, such as the ring current and the auroral electrojet, that develop in the magnetosphere and ionosphere as a consequence of the interraction with the solar wind and heliosperic magnetic field (the Dst and, respectively, AE indices), as well as the merging electric field and convection in the polar ionosphere (the PC index) have been taken into -
Is Earth's Magnetic Field Reversing? ⁎ Catherine Constable A, , Monika Korte B
Earth and Planetary Science Letters 246 (2006) 1–16 www.elsevier.com/locate/epsl Frontiers Is Earth's magnetic field reversing? ⁎ Catherine Constable a, , Monika Korte b a Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0225, USA b GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany Received 7 October 2005; received in revised form 21 March 2006; accepted 23 March 2006 Editor: A.N. Halliday Abstract Earth's dipole field has been diminishing in strength since the first systematic observations of field intensity were made in the mid nineteenth century. This has led to speculation that the geomagnetic field might now be in the early stages of a reversal. In the longer term context of paleomagnetic observations it is found that for the current reversal rate and expected statistical variability in polarity interval length an interval as long as the ongoing 0.78 Myr Brunhes polarity interval is to be expected with a probability of less than 0.15, and the preferred probability estimates range from 0.06 to 0.08. These rather low odds might be used to infer that the next reversal is overdue, but the assessment is limited by the statistical treatment of reversals as point processes. Recent paleofield observations combined with insights derived from field modeling and numerical geodynamo simulations suggest that a reversal is not imminent. The current value of the dipole moment remains high compared with the average throughout the ongoing 0.78 Myr Brunhes polarity interval; the present rate of change in Earth's dipole strength is not anomalous compared with rates of change for the past 7 kyr; furthermore there is evidence that the field has been stronger on average during the Brunhes than for the past 160 Ma, and that high average field values are associated with longer polarity chrons. -
Doc.10100.Space Weather Manual FINAL DRAFT Version
Doc 10100 Manual on Space Weather Information in Support of International Air Navigation Approved by the Secretary General and published under his authority First Edition – 2018 International Civil Aviation Organization TABLE OF CONTENTS Page Chapter 1. Introduction ..................................................................................................................................... 1-1 1.1 General ............................................................................................................................................... 1-1 1.2 Space weather indicators .................................................................................................................... 1-1 1.3 The hazards ........................................................................................................................................ 1-2 1.4 Space weather mitigation aspects ....................................................................................................... 1-3 1.5 Coordinating the response to a space weather event ......................................................................... 1-3 Chapter 2. Space Weather Phenomena and Aviation Operations ................................................................. 2-1 2.1 General ............................................................................................................................................... 2-1 2.2 Geomagnetic storms .......................................................................................................................... -
Department of Physics and Astronomy 1
Department of Physics and Astronomy 1 PHSX 216 and PHSX 236, provide a calculus-based foundation in Department of Physics physics for students in physical science, engineering, and mathematics. PHSX 313 and the laboratory course, PHSX 316, provide an introduction and Astronomy to modern physics for majors in physics and some engineering and physical science programs. Why study physics and astronomy? Students in biological sciences, health sciences, physical sciences, mathematics, engineering, and prospective elementary and secondary Our goal is to understand the physical universe. The questions teachers should see appropriate sections of this catalog and major addressed by our department’s research and education missions range advisors for guidance about required physics course work. Chemistry from the applied, such as an improved understanding of the materials that majors should note that PHSX 211 and PHSX 212 are prerequisites to can be used for solar cell energy production, to foundational questions advanced work in chemistry. about the nature of mass and space and how the Universe was formed and subsequently evolved, and how astrophysical phenomena affected For programs in engineering physics (http://catalog.ku.edu/engineering/ the Earth and its evolution. We study the properties of systems ranging engineering-physics/), see the School of Engineering section of the online in size from smaller than an atom to larger than a galaxy on timescales catalog. ranging from billionths of a second to the age of the universe. Our courses and laboratory/research experiences help students hone their Graduate Programs problem solving and analytical skills and thereby become broadly trained critical thinkers. While about half of our majors move on to graduate The department offers two primary graduate programs: (i) an M.S. -
Solar and Space Physics: a Science for a Technological Society
Solar and Space Physics: A Science for a Technological Society The 2013-2022 Decadal Survey in Solar and Space Physics Space Studies Board ∙ Division on Engineering & Physical Sciences ∙ August 2012 From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outwards to a region far beyond Pluto where the Sun’s influence wanes, advances during the past decade in space physics and solar physics have yielded spectacular insights into the phenomena that affect our home in space. This report, the final product of a study requested by NASA and the National Science Foundation, presents a prioritized program of basic and applied research for 2013-2022 that will advance scientific understanding of the Sun, Sun- Earth connections and the origins of “space weather,” and the Sun’s interactions with other bodies in the solar system. The report includes recommendations directed for action by the study sponsors and by other federal agencies—especially NOAA, which is responsible for the day-to-day (“operational”) forecast of space weather. Recent Progress: Significant Advances significant progress in understanding the origin from the Past Decade and evolution of the solar wind; striking advances The disciplines of solar and space physics have made in understanding of both explosive solar flares remarkable advances over the last decade—many and the coronal mass ejections that drive space of which have come from the implementation weather; new imaging methods that permit direct of the program recommended in 2003 Solar observations of the space weather-driven changes and Space Physics Decadal Survey. For example, in the particles and magnetic fields surrounding enabled by advances in scientific understanding Earth; new understanding of the ways that space as well as fruitful interagency partnerships, the storms are fueled by oxygen originating from capabilities of models that predict space weather Earth’s own atmosphere; and the surprising impacts on Earth have made rapid gains over discovery that conditions in near-Earth space the past decade. -
Solar Chromospheric Flares
Solar Chromospheric Flares A proposal for an ISSI International Team Lyndsay Fletcher (Glasgow) and Jana Kasparova (Ondrejov) Summary Solar flares are the most energetic energy release events in the solar system. The majority of energy radiated from a flare is produced in the solar chromosphere, the dynamic interface between the Sun’s photosphere and corona. Despite solar flare radiation having been known for decades to be principally chromospheric in origin, the attention of the community has re- cently been strongly focused on the corona. Progress in understanding chromospheric flare physics and the diagnostic potential of chromospheric observations has stagnated accord- ingly. But simultaneously, motivated by the available chromospheric observations, the ‘stan- dard flare model’, of energy transport by an electron beam from the corona, is coming under scrutiny. With this team we propose to return to the chromosphere for basic understanding. The present confluence of high quality chromospheric flare observations and sophisticated numerical simulation techniques, as well as the prospect of a new generation of missions and telescopes focused on the chromosphere, makes it an excellent time for this endeavour. The international team of experts in the theory and observation of solar chromospheric flares will focus on the question of energy deposition in solar flares. How can multi-wavelength, high spatial, spectral and temporal resolution observations of the flare chromosphere from space- and ground-based observatories be interpreted in the context of detailed modeling of flare radiative transfer and hydrodynamics? With these tools we can pin down the depth in the chromosphere at which flare energy is deposited, its time evolution and the response of the chromosphere to this dramatic event. -
Manual Ls40tha H-Alpha Solar-Telescope
Manual LS40THa H-alpha Solar-Telescope Telescope for solar observation in the H-Alpha wavelength. The H-alpha wavelength is the most impressive way to observe the sun, here prominences at the solar edge become visible, filaments and flares on the surface, and much more. Included Contents: - LS40THa telescope - H-alpha unit with tilt-tuning - Blocking-filter B500, B600, or B1200 - 1.25 inch Helical focuser - Dovetail bar (GP level) for installing at astronomical mounts - 1/4-20 tapped base (standard thread for photo-tripods) inside the dovetail for installing at photo-tripods - Sol-searcher Please note: Please keep the foam insert from the delivery box. The optionally available transport-case for the LS40THa (item number 0554010) is not supplied without such a foam insert, the original foam insert from the delivery box fits exactly into this transport-case. Congratulations and thank you for purchasing the LS40THa telescope from Lunt Solar Systems! The easy handling makes this telescope ideal for starting H-Alpha solar observation. Due to its compact dimensions it is also a good travel telescope for the experienced solar observers. Safety Information: There are inherent dangers when looking at the Sun thru any instrument. Lunt Solar Systems has taken your safety very seriously in the design of our systems. With safety being the highest priority we ask that you read and understand the operation of your telescope or filter system prior to use. Never attempt to disassemble the telescope! Do not use your system if it is in someway compromised due to mishandling or damage. Please contact our customer service with any questions or concerns regarding the safe use of your instrument. -
Formation and Evolution of Coronal Rain Observed by SDO/AIA on February 22, 2012?
A&A 577, A136 (2015) Astronomy DOI: 10.1051/0004-6361/201424101 & c ESO 2015 Astrophysics Formation and evolution of coronal rain observed by SDO/AIA on February 22, 2012? Z. Vashalomidze1;2, V. Kukhianidze2, T. V. Zaqarashvili1;2, R. Oliver3, B. Shergelashvili1;2, G. Ramishvili2, S. Poedts4, and P. De Causmaecker5 1 Space Research Institute, Austrian Academy of Sciences, Schmiedlstrasse 6, 8042 Graz, Austria e-mail: [teimuraz.zaqarashvili]@oeaw.ac.at 2 Abastumani Astrophysical Observatory at Ilia State University, Cholokashvili Ave.3/5, Tbilisi, Georgia 3 Departament de Física, Universitat de les Illes Balears, 07122, Palma de Mallorca, Spain 4 Dept. of Mathematics, Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Leuven, Belgium 5 Dept. of Computer Science, CODeS & iMinds-iTEC, KU Leuven, KULAK, E. Sabbelaan 53, 8500 Kortrijk, Belgium Received 30 April 2014 / Accepted 25 March 2015 ABSTRACT Context. The formation and dynamics of coronal rain are currently not fully understood. Coronal rain is the fall of cool and dense blobs formed by thermal instability in the solar corona towards the solar surface with acceleration smaller than gravitational free fall. Aims. We aim to study the observational evidence of the formation of coronal rain and to trace the detailed dynamics of individual blobs. Methods. We used time series of the 171 Å and 304 Å spectral lines obtained by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO) above active region AR 11420 on February 22, 2012. Results. Observations show that a coronal loop disappeared in the 171 Å channel and appeared in the 304 Å line more than one hour later, which indicates a rapid cooling of the coronal loop from 1 MK to 0.05 MK. -
Sources for the History of Space Concepts in Physics: from 1845 to 1995
CBPF-NF-084/96 SOURCES FOR THE HISTORY OF SPACE CONCEPTS IN PHYSICS: FROM 1845 TO 1995 Francisco Caruso(∗) & Roberto Moreira Xavier Centro Brasileiro de Pesquisas F´ısicas Rua Dr. Xavier Sigaud 150, Urca, 22290–180, Rio de Janeiro, Brazil Dedicated to Prof. Juan Jos´e Giambiagi, in Memoriam. “Car l`a-haut, au ciel, le paradis n’est-il pas une immense biblioth`eque? ” — Gaston Bachelard Brief Introduction Space — as other fundamental concepts in Physics, like time, causality and matter — has been the object of reflection and discussion throughout the last twenty six centuries from many different points of view. Being one of the most fundamental concepts over which scientific knowledge has been constructed, the interest on the evolution of the ideas of space in Physics would per se justify a bibliography. However, space concepts extrapolate by far the scientific domain, and permeate many other branches of human knowledge. Schematically, we could mention Philosophy, Mathematics, Aesthetics, Theology, Psychology, Literature, Architecture, Art, Music, Geography, Sociology, etc. But actually one has to keep in mind Koyr´e’s lesson: scientific knowledge of a particular epoch can not be isolated from philosophical, religious and cultural context — to understand Copernican Revolution one has to focus Protestant Reformation. Therefore, a deeper understanding of this concept can be achieved only if one attempts to consider the complex interrelations of these different branches of knowledge. A straightforward consequence of this fact is that any bibliography on the History and Philosophy of space would result incomplete and grounded on arbitrary choices: we might thus specify ours. From the begining of our collaboration on the History and Philosophy of Space in Physics — born more than ten years ago — we have decided to build up a preliminary bibliography which should include just references available at our libraries concerning a very specific problem we were mainly interested in at that time, namely, the problem of space dimensionality. -
Journal of Geophysical Research: Space Physics
Journal of Geophysical Research: Space Physics RESEARCH ARTICLE Zonally Symmetric Oscillations of the Thermosphere at 10.1002/2018JA025258 Planetary Wave Periods Key Points: • A dissipating tidal spectrum Jeffrey M. Forbes1 , Xiaoli Zhang1, Astrid Maute2 , and Maura E. Hagan3 modulated by planetary waves (PW) causes the thermosphere to “vacillate” 1Ann and H. J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO, USA, 2 over a range of PW periods 3 • The same tidal spectrum can amplify High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA, Department of Physics, Utah penetration of westward propagating State University, Logan, UT, USA PW into the dynamo region, through nonlinear wave-wave interactions • Zonally symmetric ionospheric Abstract New mechanisms for imposing planetary wave (PW) variability on the oscillations arising from thermospheric vacillation are ionosphere-thermosphere system are discovered in numerical experiments conducted with the National potentially large Center for Atmospheric Research thermosphere-ionosphere-electrodynamics general circulation model. First, it is demonstrated that a tidal spectrum modulated at PW periods (3–20 days) entering the Supporting Information: ionosphere-thermosphere system near 100 km is responsible for producing ±40 m/s and ±10–15 K • Supporting Information S1 PW period oscillations between 110 and 150 km at low to middle latitudes. The dominant response is broadband and zonally symmetric (i.e., “S0”) over a range of periods and is attributable to tidal dissipation; essentially, the ionosphere-thermosphere system “vacillates” in response to dissipation of Correspondence to: J. M. Forbes, the PW-modulated tidal spectrum. In addition, some specific westward propagating PWs such as the [email protected] quasi-6-day wave are amplified by the presence of the tidal spectrum; the underlying mechanism is hypothesized to be a second-stage nonlinear interaction. -
Predictability of the Variable Solar-Terrestrial Coupling Ioannis A
https://doi.org/10.5194/angeo-2020-94 Preprint. Discussion started: 26 January 2021 c Author(s) 2021. CC BY 4.0 License. Predictability of the variable solar-terrestrial coupling Ioannis A. Daglis1,15, Loren C. Chang2, Sergio Dasso3, Nat Gopalswamy4, Olga V. Khabarova5, Emilia Kilpua6, Ramon Lopez7, Daniel Marsh8,16, Katja Matthes9,17, Dibyendu Nandi10, Annika Seppälä11, Kazuo Shiokawa12, Rémi Thiéblemont13 and Qiugang Zong14 5 1Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece 2Department of Space Science and Engineering, Center for Astronautical Physics and Engineering, National Central University, Taiwan 3Department of Physics, Universidad de Buenos Aires, Buenos Aires, Argentina 10 4Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 5Solar-Terrestrial Department, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of RAS (IZMIRAN), Moscow, 108840, Russia 6Department of Physics, University of Helsinki, Helsinki, Finland 7Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA 15 8National Center for Atmospheric Research, Boulder, CO 80305, USA 9GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany 10IISER, Kolkata, India 11Department of Physics, University of Otago, Dunedin, New Zealand 12Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan 20 13LATMOS, Universite Pierre et Marie Curie, Paris, France 14School of Earth and Space Sciences, Peking University, Beijing, China 15Hellenic Space Center, Athens, Greece 16Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK 17Christian-Albrechts Universität, Kiel, Germany 25 Correspondence to: Ioannis A. Daglis ([email protected]) Abstract. In October 2017, the Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) Bureau established a 30 committee for the design of SCOSTEP’s Next Scientific Program (NSP).