Recovering AES Keys with a Deep Cold Boot Attack
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Revention of Coldboot Attack on Linux Systems Measures to Prevent Coldboot Attack
Special Issue - 2017 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 ICIATE - 2017 Conference Proceedings Prevention of Coldboot Attack on Linux Systems Measures to Prevent Coldboot Attack Siddhesh Patil Ekta Patel Nutan Dhange Information Technology, Atharva Information Technology, Atharva Assistant Professor College of Engineering College of Engineering Information Technology, Atharva Mumbai University Mumbai University College of Engineering Mumbai, India Mumbai, India Mumbai University Mumbai, India Abstract— Contrary to the popular belief, DDR type RAM boot attack techniques. We implement measures to ensure that data modules retain stored memory even after power is cut off. stays secure on system shutdown. Data security is critical for most Provided physical access to the cryptosystem, a hacker or a of the business and even home computer users. RAM is used to store forensic specialist can retrieve information stored in the RAM non-persistent information into it. When an application is in use, by installing it on another system and booting from a USB drive user-specific or application-specific data may be stored in RAM. to take a RAM dump. With adequate disassembly and analytic This data can be sensitive information like client information, tools, this information stored in the RAM dump can be payment details, personal files, bank account details, etc. All this deciphered. Hackers thrive on such special-case attack information, if fallen into wrong hands, can be potentially techniques to gain access to systems with sensitive information. dangerous. The goal of most unethical hackers / attackers is to An unencrypted RAM module will contain the decryption key disrupt the services and to steal information. -
CIS 4360 Secure Computer Systems Attacks Against Boot And
CIS 4360 Secure Computer Systems Attacks against Boot and RAM Professor Qiang Zeng Spring 2017 Previous Class • BIOS-MBR: Generation I system boot – What BIOS and MBR are? – How does it boot the system? // Jumping to MBR – How does multi-boot work? // Chain-loading • The limitations of BIOS and MBR – Disk, memory, file system, multi-booting, security, … • UEFI-GPT: Generation II system boot – What UEFI and GPT are? – How does it boot the system? // UEFI boot manager – How does multi-boot work? // separate dirs in ESP CIS 4360 – Secure Computer Systems 2 Limitations of BIOS-MBR • MBR is very limited – Support ~2TB disk only – 4 primary partitions at most (so four OSes at most) – A MBR can store only one boot loader • BIOS is very restrictive – 16-bit processor mode; 1MB memory space (little spare space to accommodate a file system driver) – Blindly executes whatever code on MBR CIS 4360 – Secure Computer Systems 3 UEFI vs. BIOS • Disk partitioning schemes – GPT (GUID Partition Table): part of UEFI spec.; to replace MBR – MBR supports disk size 232 x 512B = 2TB, while UEFI supports much larger disks (264 x 512B = 8,000,000,000 TB) – MBR supports 4 partitions, while GPT supports 128 • Memory space – BIOS: 20-bit addressing; UEFI: 32-bit or 64-bit • Pre-OS environment – BIOS only provides raw disk access, while UEFI supports the FAT file system (so you can use file names to read files) • Booting – BIOS supports boot through boot sectors (MBR and VBR) – UEFI provides a boot partition of hundreds of megabytes (and boot manager and secure boot) CIS 4360 – Secure Computer Systems 4 Previous Class How does dual-boo-ng of Linux and Windows work in UEFI-GPT? Each vendor has a separate directory storing its own boot loader code and configuraon files in the ESP (EFI System Par--on). -
Low-Cost Mitigation Against Cold Boot Attacks for an Authentication Token
Low-cost Mitigation against Cold Boot Attacks for an Authentication Token Ian Goldberg?1, Graeme Jenkinson2, and Frank Stajano2 1 University of Waterloo (Canada) 2 University of Cambridge (United Kingdom) Abstract. Hardware tokens for user authentication need a secure and usable mechanism to lock them when not in use. The Pico academic project proposes an authentication token unlocked by the proximity of simpler wearable devices that provide shares of the token’s master key. This method, however, is vulnera- ble to a cold boot attack: an adversary who captures a running Pico could extract the master key from its RAM and steal all of the user’s credentials. We present a cryptographic countermeasure—bivariate secret sharing—that protects all the credentials except the one in use at that time, even if the token is captured while it is on. Remarkably, our key storage costs for the wearables that supply the cryp- tographic shares are very modest (256 bits) and remain constant even if the token holds thousands of credentials. Although bivariate secret sharing has been used before in slightly different ways, our scheme is leaner and more efficient and achieves a new property—cold boot protection. We validated the efficacy of our design by implementing it on a commercial Bluetooth Low Energy development board and measuring its latency and energy consumption. For reasonable choices of latency and security parameters, a standard CR2032 button-cell battery can power our prototype for 5–7 months, and we demonstrate a simple enhancement that could make the same battery last for over 9 months. -
The 2006 Analysis of Information Remaining on Disks Offered for Sale on the Second Hand Market
Journal of Digital Forensics, Security and Law Volume 1 Number 3 Article 2 2006 The 2006 Analysis of Information Remaining on Disks Offered for Sale on the Second Hand Market Andy Jones Security Research Center, British Telecommunicationsand Edith Cowan University Craig Valli Edith Cowan University Iain Sutherland University of Glamorgan Paula Thomas University of Glamorgan Follow this and additional works at: https://commons.erau.edu/jdfsl Part of the Computer Engineering Commons, Computer Law Commons, Electrical and Computer Engineering Commons, Forensic Science and Technology Commons, and the Information Security Commons Recommended Citation Jones, Andy; Valli, Craig; Sutherland, Iain; and Thomas, Paula (2006) "The 2006 Analysis of Information Remaining on Disks Offered for Sale on the Second Hand Market," Journal of Digital Forensics, Security and Law: Vol. 1 : No. 3 , Article 2. DOI: https://doi.org/10.15394/jdfsl.2006.1008 Available at: https://commons.erau.edu/jdfsl/vol1/iss3/2 This Article is brought to you for free and open access by the Journals at Scholarly Commons. It has been accepted for inclusion in Journal of Digital Forensics, Security and Law by an authorized administrator of (c)ADFSL Scholarly Commons. For more information, please contact [email protected]. Journal of Digital Forensics, Security and Law, Vol. 1(3) The 2006 Analysis of Information Remaining on Disks Offered for Sale on the Second Hand Market Andy Jones Security Research Center, British Telecommunications and Edith Cowan University [email protected] Phone: +44 1473 646133 Fax: +44 1473 644385 Craig Valli Edith Cowan University Iain Sutherland University of Glamorgan Paula Thomas University of Glamorgan ABSTRACT All organisations, whether in the public or private sector, use computers for the storage and processing of information relating to their business or services, their employees and their customers. -
How Blancco Helps Mobile Resellers & Recyclers Achieve Compliance
How Blancco Helps Mobile Resellers & Recyclers Achieve Compliance with the R2 Standard Mobile resellers and recyclers must comply with several standards and certifications before reselling, remarketing or recycling their devices. Following these rules helps mobile organizations ensure that they are protected from potential data remanence that could expose sensitive information. One of the most prominent certifications is called R2. The latest version of the Standard is the R2:2013. Each provision of the R2 Standard is designed to help ensure the transparency, quality, social and environmental responsibility of R2 Certified electronics facilities such as mobile resellers and recyclers. R2:2013 was developed through a transparent multi-stakeholder process, consistent with ANSI essential requirements. R2 undergoes consistent review to advance the requirements in-line with the needs of the industry. Blancco Mobile Diagnostics & Erasure solutions supply mobile resellers around the globe a certified process so that they can meet (and even exceed) the R2 standard for device testing and data sanitization. Blancco solutions exceed the requirements presented in the Standard, with verification and certification of each data erasure. This ensures that data does not remain on mobile devices following processing and prior to moving into the secondary market via reverse/forward logistics. Section of the Standard How Blancco Helps 1. Tested and Full Functions, R2/Ready for Reuse Blancco Mobile Solutions enables mobile resellers and retailers to (A) “Use effective test methods to confirm that all functions quickly and accurately find the source of mobile device issues and for equipment and components are working properly resolve them. and ready for reuse, including properly configured with appropriate legally licensed software where required for operation of equipment and components, and device specific drivers within the product’s hardware…” 2. -
Data Remanence in Flash Memory Devices
Data Remanence in Flash Memory Devices Sergei Skorobogatov University of Cambridge, Computer Laboratory, 15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom [email protected] Abstract. Data remanence is the residual physical representation of data that has been erased or overwritten. In non-volatile programmable devices, such as UV EPROM, EEPROM or Flash, bits are stored as charge in the floating gate of a transistor. After each erase operation, some of this charge remains. Security protection in microcontrollers and smartcards with EEPROM/Flash memories is based on the assumption that information from the memory disappears completely after erasing. While microcontroller manufacturers successfully hardened already their designs against a range of attacks, they still have a common problem with data remanence in floating-gate transistors. Even after an erase operation, the transistor does not return fully to its initial state, thereby allowing the attacker to distinguish between previously programmed and not programmed transistors, and thus restore information from erased memory. The research in this direction is summarised here and it is shown how much information can be extracted from some microcontrollers after their memory has been ‘erased’. 1 Introduction Data remanence as a problem was first discovered in magnetic media [1,2]. Even if the information is overwritten several times on disks and tapes, it can still be possible to extract the initial data. This led to the development of special methods for reliably removing confidential information from magnetic media. Semiconductor memory in security modules was found to have similar prob- lems with reliable data deletion [3,4]. Data remanence affects not only SRAM, but also memory types like DRAM, UV EPROM, EEPROM and Flash [5]. -
Cold Boot Attacks on Encryption Keys
Lest We Remember: Cold Boot Attacks on Encryption Keys † ‡ J. Alex Halderman∗, Seth D. Schoen , Nadia Heninger∗, William Clarkson∗, William Paul , Joseph A. Calandrino∗, Ariel J. Feldman∗, Jacob Appelbaum, and Edward W. Felten∗ † ‡ ∗ Princeton University Electronic Frontier Foundation Wind River Systems jhalderm, nadiah, wclarkso, jcalandr, ajfeldma, felten @cs.princeton.edu { } [email protected], [email protected], [email protected] Abstract memory. They pose a particular threat to laptop users who rely on disk encryption products, since an adversary who Contrary to popular assumption, DRAMs used in most steals a laptop while an encrypted disk is mounted could modern computers retain their contents for several sec- employ our attacks to access the contents, even if the com- onds after power is lost, even at room temperature and puter is screen-locked or suspended. We demonstrate this even if removed from a motherboard. Although DRAMs risk by defeating several popular disk encryption systems, become less reliable when they are not refreshed, they including BitLocker, TrueCrypt, and FileVault, and we are not immediately erased, and their contents persist expect many similar products are also vulnerable. sufficiently for malicious (or forensic) acquisition of us- able full-system memory images. We show that this phe- While our principal focus is disk encryption, any sen- nomenon limits the ability of an operating system to pro- sitive data present in memory when an attacker gains tect cryptographic key material from an attacker with physical access to the system could be subject to attack. physical access. We use cold reboots to mount successful Many other security systems are probably vulnerable. -
On the Practicability of Cold Boot Attacks
On the Practicability of Cold Boot Attacks Michael Gruhn and Tilo Muller¨ Friedrich-Alexander-Universitat¨ Erlangen-Nurnberg,¨ Germany fmichael.gruhn,[email protected] Abstract—Even though a target machine uses full disk The memory controller refreshes each cell’s voltage encryption, cold boot attacks can retrieve unencrypted data before it decays to the point where the bit information gets from RAM. Cold boot attacks are based on the remanence lost. Normally, the refresh rate is so high that each cell gets effect of RAM which says that memory contents do not disappear immediately after power is cut, but that they fade refreshed several times per second. However, the decay gradually over time. This effect can be exploited by rebooting of capacitors is longer than the time between two refresh a running machine, or by transplanting its RAM chips into operations of the memory controller. This can be observed an analysis machine that reads out what is left in memory. as the remanence effect, which lasts long enough that data In theory, this kind of attack is known since the 1990s. in memory survives a system reboot. This observation However, only in 2008, Halderman et al. have shown that cold boot attacks can be well deployed in practical scenarios. prompted so-called cold boot attacks. In the work in hand, we investigate the practicability of Cold boot attacks can make use of the property that cold boot attacks. We verify the claims by Halderman et al. the remanence effect is prolonged by cooling down RAM independently in a systematic fashion. -
Mitigation of Cold Boot Attack Using an Encrypted Memory Controller IIIT
Mitigation of Cold Boot Attack Using an Encrypted Memory Controller Student Name: Preet Kaur Walia IIIT-D-MTech-ECE-VLSI-14-16 July 10, 2016 Indraprastha Institute of Information Technology New Delhi Advisor Mohammad S. Hashmi Submitted in partial fulfillment of the requirements for the Degree of M.Tech. in Electronics and Communication, with specialization in VLSI and Embedded Systems c 2016 Preet Kaur All rights reserved Certificate This is to certify that the thesis titled “Mitigation of Cold Boot Attack Using an En- crypted Memory Controller" submitted by Preet Kaur Walia for the partial fulfillment of the requirements for the degree of Master of Technology in VLSI & Embedded Systems is a record of the bonafide work carried out by him under my guidance and supervision in the Se- curity and Privacy group at Indraprastha Institute of Information Technology, Delhi.This work has not been submitted anywhere else for the reward of any other degree. Dr. Mohammad S. Hashmi Indraprastha Institute of Information Technology, New Delhi i Abstract RAMs which are widely used in PCs and laptops are likely to break the popular supposition that data in them is lost whenever power supply is cut down. It has been proved in 2008 by a group of researchers that RAMs are no longer volatile in nature. The data remanence behaviour of DRAMs have allowed to retrieve memory contents when the power has been switched off by an attack known as cold boot attack. In cold boot attack, memory can be frozen using a refrigerant and then removed from the computer. It is then quickly placed into a specially designed system that reads out its content, targeting encryption keys and other sensitive information. -
Physical Security Attacks on Windows Vista, © 2008 SEC Consult Unternehmensberatung Gmbh
Physical Security Attacks on Windows Vista, © 2008 SEC Consult Unternehmensberatung GmbH PHYSICAL SECURITY ATTACKS ON WINDOWS VISTA Peter Panholzer SEC Consult Vulnerability Lab, Vienna, 03/05/2008 There are several attacks known today which leverage physical access to fully patched systems to read or patch system memory. One of them is the Cold Boot Attack (1), which allows copying the system memory after the system has been powered off and extracting the keys of encrypted harddisks from it. Another technique known for years now is the copying and manipulation of memory using firewire which, among other things, also can be used to retrieve encryption keys. Several papers describe the technical background of the firewire attack (2) (3). In a nutshell, it is possible to access the system memory of other nodes on a firewire bus via DMA and firewire’s addressing scheme. This works for reading as well as for writing. The only requirement on the target is a firewire interface, which most laptops and a lot of workstations have built in. Laptops without a firewire interface can be provided by an attacker with a PC Card (PCMCIA Card) which is automatically installed – even if the screen is locked. This means that even laptop computers without a firewire interface are vulnerable. It has been proven that Linux, MAC OS X and Windows XP are vulnerable to this attack. In March 2008, Adam Boileau released a tool called winlockpwn (4), which implements several attacks against Windows XP SP2. A while ago, SEC Consult has implemented its own proof of concepts for most versions of Windows. -
Lest We Remember: Cold Boot Attacks on Encryption Keys
Lest We Remember: Cold Boot Attacks on Encryption Keys J. Alex Halderman∗, Seth D. Schoen†, Nadia Heninger∗, William Clarkson∗, William Paul‡, Joseph A. Calandrino∗, Ariel J. Feldman∗, Jacob Appelbaum, and Edward W. Felten∗ ∗ Princeton University † Electronic Frontier Foundation ‡ Wind River Systems 17th USENIX Security Symposium 2008 Jan Kleine Seminar: Computer Architecture Jan Kleine | 30.10.2019 | 1 Background & Problem Novelty Key Ideas & Findings Mechanisms & Implementation Results Proposed Solutions Conclusion Strengths & Weaknesses Follow-up Work Discussion Jan Kleine | 30.10.2019 | 2 A little refresh on DRAM § A DRAM cell stores data in a capacitor § Capacitor is charged to store data § Capacitor loses charge over time § Ground state might be Vcc or Ground § Refresh (typically every 64ms) Jan Kleine | 30.10.2019 | 3 Problem § DRAM retains data longer than refresh time § Even after power loss, data is not lost right away § Data survives several seconds § RAM is the place for sensitive data § Private secrets like encryption keys § Potential for attacks on encryption keys and other sensitive data Attacker can image memory and extract data after power loss Jan Kleine | 30.10.2019 | 4 Problem: Example of data retention Jan Kleine | 30.10.2019 | 5 Background & Problem Novelty Key Ideas & Findings Mechanisms & Implementation Results Proposed Solutions Conclusion Strengths & Weaknesses Follow-up Work Discussion Jan Kleine | 30.10.2019 | 6 Novelty § First paper to demonstrate this attack vector of data retention § Demonstration on off-the-shelf -
Practical Cyber Forensics an Incident-Based Approach to Forensic Investigations
Practical Cyber Forensics An Incident-Based Approach to Forensic Investigations Niranjan Reddy Practical Cyber Forensics Niranjan Reddy Pune, Maharashtra, India ISBN-13 (pbk): 978-1-4842-4459-3 ISBN-13 (electronic): 978-1-4842-4460-9 https://doi.org/10.1007/978-1-4842-4460-9 Copyright © 2019 by Niranjan Reddy This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.