Quantitative Proteomics Identify DAB2 As a Cardiac Developmental Regulator That Inhibits WNT/Β-Catenin Signaling

Total Page:16

File Type:pdf, Size:1020Kb

Quantitative Proteomics Identify DAB2 As a Cardiac Developmental Regulator That Inhibits WNT/Β-Catenin Signaling Quantitative proteomics identify DAB2 as a cardiac developmental regulator that inhibits WNT/β-catenin signaling Peter Hofsteena,b,c,1, Aaron M. Robitaillec,d,1, Daniel Patrick Chapmana,b, Randall T. Moonc,d,e,2, and Charles E. Murrya,b,c,f,g,2 aDepartment of Pathology, University of Washington, Seattle, WA 98109; bCenter for Cardiovascular Biology, University of Washington, Seattle, WA 98109; cInstitute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109; dDepartment of Pharmacology, University of Washington, Seattle, WA 98109; eHoward Hughes Medical Institute, Chevy Chase, MD 20815; fDepartment of Bioengineering, University of Washington, Seattle, WA 98109; and gDivision of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98109 Contributed by Randall T. Moon, December 11, 2015 (sent for review September 19, 2015; reviewed by Loren J. Field and Sean P. Palecek) To reveal the molecular mechanisms involved in cardiac lineage endocardial-like endothelial cells to differentiate toward the cardiac determination and differentiation, we quantified the proteome of lineage (3). Thus, understanding which proteins are involved in pro- human embryonic stem cells (hESCs), cardiac progenitor cells (CPCs), moting or repressing the WNT/β-catenin signaling pathway is crucial and cardiomyocytes during a time course of directed differentiation for resolving the ambiguities associated with cardiac development. by label-free quantitative proteomics. This approach correctly iden- Here, using label-free quantitation (LFQ) proteomics, we tified known stage-specific markers of cardiomyocyte differentiation, measured protein expression patterns during a time course of including SRY-box2 (SOX2), GATA binding protein 4 (GATA4), and hESC-derived cardiomyocyte differentiation. LFQ proteomics is myosin heavy chain 6 (MYH6). This led us to determine whether a robust technology for quantifying differences in protein ex- our proteomic screen could reveal previously unidentified mediators pression, which have been shown to correlate with differentiated of heart development. We identified Disabled 2 (DAB2) as one of the cell types (9, 10). Furthermore, quantifying unmodified protein most dynamically expressed proteins in hESCs, CPCs, and cardiomyo- expression has the advantage of eliminating the unknown effects cytes. We used clustered regularly interspaced short palindromic of posttranscriptional regulation. Using this approach, we identified repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mutagenesis in regulators of cardiac development, including Disabled 2 (DAB2). zebrafishtoassesswhetherDAB2plays a functional role during car- β diomyocyte differentiation. We found that deletion of Dab2 in zebra- We found that DAB2 negatively regulates WNT/ -catenin sig- fish embryos led to a significant reduction in cardiomyocyte number naling and promotes cardiomyocyte differentiation from mesoderm- and increased endogenous WNT/β-catenin signaling. Furthermore, derived progenitors. the Dab2-deficient defects in cardiomyocyte number could be sup- Results pressed by overexpression of dickkopf 1 (DKK1), an inhibitor of WNT/β-catenin signaling. Thus, inhibition of WNT/β-catenin sig- Quantification of the Proteome During hESC-Directed Differentiation naling by DAB2 is essential for establishing the correct number of Toward Cardiomyocytes. To reveal molecular mediators and markers cardiomyocytes in the developing heart. Our work demonstrates of cardiac development, we quantified the proteome of hESCs as that quantifying the proteome of human stem cells can identify previously unknown developmental regulators. Significance quantitative proteomics | cardiomyocyte | zebrafish | embryonic stem cell | The directed differentiation of human embryonic stem cells into WNT/β-catenin cardiomyocytes provides a tool for understanding human heart development and disease. During the process of cardiomyocyte irected differentiation of human embryonic stem cells (hESCs) differentiation, tight regulation of the WNT/β-catenin signaling Dtoward definitive cardiomyocytes provides a platform for un- pathway is required. Thus, understanding which proteins are derstanding human heart development and disease (1). To this end, involved in promoting or repressing the WNT/β-catenin signal- genome-wide screens focusing on transcriptional regulation and ing pathway is crucial for identifying positive and negative RNA expression during time course staging of cardiac develop- regulators of cardiac development. Here we measured protein ment have identified regulators of cardiac development (2, 3). expression during a time course of cardiomyocyte differentia- Although these studies have increased our understanding of the tion. We identified a regulator of cardiac development, Disabled transcriptional mechanisms active during heart development, 2, and found that in zebrafish embryos, it negatively regulates there remains little information regarding regulation of the pro- WNT/β-catenin signaling to promote cardiomyocyte differentia- teome in this same context. This led us to quantify the proteome of tion. Thus, our work reveals a highly conserved, previously un- hESCs during a stage-specific differentiation to definitive car- identified process relevant for human heart development. diomyocytes, a primary functional cell of the heart muscle. It is well known that tight regulation of the WNT/β-catenin Author contributions: P.H., A.M.R., D.P.C., R.T.M., and C.E.M. designed research; P.H., A.M.R., and D.P.C. performed research; P.H., A.M.R., and D.P.C. analyzed data; and P.H., A.M.R., D.P.C., signaling pathway during the process of cardiomyocyte differen- R.T.M., and C.E.M. wrote the paper. tiation is imperative (4, 5). Temporal overactivation or inhibition Reviewers: L.J.F., The Riley Heart Research Center; and S.P.P., University of Wisconsin– of the WNT/β-catenin signaling pathway has been shown to result Madison. in cardiac null phenotypes in vivo (4, 6, 7), because WNT/β-catenin The authors declare no conflict of interest. is required to form mesoderm, and it subsequently must be re- Data deposition: Proteins identified by mass spectrometry in the datasets have been de- pressed to form cardiomyocytes. Furthermore, overactivation of posited in the UniProt database (www.uniprot.org). WNT/β-catenin signaling during hESC-derived cardiomyocyte dif- 1P.H. and A.M.R. contributed equally to this work. ferentiation results in a shift in mesoderm patterning to specify 2To whom correspondence may be addressed. Email: [email protected] or [email protected]. endothelium and early blood cells, but not cardiomyocytes (8). This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. Conversely, inhibition of WNT/β-catenin has been shown to direct 1073/pnas.1523930113/-/DCSupplemental. 1002–1007 | PNAS | January 26, 2016 | vol. 113 | no. 4 www.pnas.org/cgi/doi/10.1073/pnas.1523930113 Downloaded by guest on September 30, 2021 they differentiated toward cardiac progenitor cells (CPCs) and efficiency, and verified that >80% of the cardiomyocyte population definitive beating cardiomyocytes. hESCs were induced to differ- was cTnT-positive (Fig. 1B). entiate with activin A and bone morphogenetic protein 4 (BMP4), As a readout of normal cardiac differentiation, we assessed in combination with sequential small molecule activation and in- markers of pluripotency, [SRY-box2 (SOX2)], mesoderm formation hibition of WNT/β-catenin signaling. Cells were then harvested as [Brachyury T (BryT)], CPCs (GATA4), and cardiomyocytes (MYH6) by quantitative reverse-transcriptase PCR (qRT-PCR) pluripotent hESCs (day 0), CPCs (day 5), or cardiomyocytes (day C A over the time course of differentiation (Fig. 1 ). SOX2 is highly 14)(3,5,8)(Fig.1 ). We have previously shown that as cells expressed in hESCs, whereas expression decreases to baseline differentiate toward CPCs, they express cardiac transcription fac- levels as cells differentiate toward precardiac mesoderm. As cells tors, such as GATA binding protein 4 (GATA4), T-box 5 (TBX5), exit pluripotency, the pan-mesodermal marker BryT is expressed and NK2 homeobox 5 (NKX2.5) (3, 8) (Fig. 1A). CPCs then in on day 2, whereas during specification of CPCs, BryT expression turn differentiate predominately toward cardiomyocytes and ex- returns to baseline levels. The increased expression of the car- press the cardiac structural genes [cardiac troponin T (cTnT)] and diac transcription factor GATA4 is observed at day 5, followed [myosin heavy chain 6 (MYH6)], with a minority of cells showing by cardiac structural proteins MHY6 and cTnT at day 14 (Fig. B characteristics of the fibroblast/smooth muscle (2, 3). Thus, we 1 ). These data indicate successful differentiation of hESCs assessed our cultures by fluorescence-activated cell sorting (FACS) toward cardiomyocytes with normal transitioning among hESCs, mesoderm, CPCs, and definitive cardiomyocytes. analysis to determine cardiomyocyte purity and differentiation Using LFQ proteomics, we measured changes in protein ex- pression during a time course of hESC cardiomyocyte differen- tiation by quantifying protein extracted from hESCs (day 0), D ABCPCs (day 5), and cardiomyocytes (day 14) (Fig. 1 ). Normalized CCM Isotype control quantities of protein were tryptically digested and fractionated RPMI + B27 minus insulin cTnT-PE using reverse-phase chromatography before measurement by mass RPMI + B27 plus insulin spectrometry. Protein quantification was reproducible, with an >80% cTnT+
Recommended publications
  • Defining Functional Interactions During Biogenesis of Epithelial Junctions
    ARTICLE Received 11 Dec 2015 | Accepted 13 Oct 2016 | Published 6 Dec 2016 | Updated 5 Jan 2017 DOI: 10.1038/ncomms13542 OPEN Defining functional interactions during biogenesis of epithelial junctions J.C. Erasmus1,*, S. Bruche1,*,w, L. Pizarro1,2,*, N. Maimari1,3,*, T. Poggioli1,w, C. Tomlinson4,J.Lees5, I. Zalivina1,w, A. Wheeler1,w, A. Alberts6, A. Russo2 & V.M.M. Braga1 In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. 1 National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK. 2 Computing Department, Imperial College London, London SW7 2AZ, UK. 3 Bioengineering Department, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK. 4 Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
    [Show full text]
  • Rabbit Anti-DAB2IP Rabbit Anti-DAB2IP
    Qty: 100 μg/400 μL Rabbit anti-DAB2IP Catalog No. 487300 Lot No. Rabbit anti-DAB2IP FORM This polyclonal antibody is supplied as a 400 µL aliquot at a concentration of 0.25 mg/mL in phosphate buffered saline (pH 7.4) containing 0.1% sodium azide. This antibody is epitope-affinity purified from rabbit antiserum. PAD: ZMD.689 IMMUNOGEN Synthetic peptide derived from the C-terminal region of the human DAB2IP protein (Accession# NP_619723), which is identical to mouse and rat sequence. SPECIFICITY This antibody is specific for the DAB2IP (DAB2 interacting protein, AIP1, DIP1/2) protein. On Western blots, it identifies the target band at ~110 kDa. REACTIVITY Reactivity has been confirmed with human DU145, SK-N-MC and rat B49 cell lysates. Based on amino acid sequence homology, reactivity with mouse is expected. Sample Western Immuno- Immuno- Blotting precipitation cytochemistry Human +++ 0 ND Mouse ND ND ND Rat +++ 0 ND (Excellent +++, Good++, Poor +, No reactivity 0, Not applicable N/A, Not Determined ND) USAGE Working concentrations for specific applications should be determined by the investigator. Appropriate concentrations will be affected by several factors, including secondary antibody affinity, antigen concentration, sensitivity of detection method, temperature and length of incubations, etc. The suitability of this antibody for applications other than those listed below has not been determined. The following concentration ranges are recommended starting points for this product. Western Blotting: 1-3 μg/mL STORAGE Store at 2-8°C for up to one month. Store at –20°C for long-term storage. Avoid repeated freezing and thawing. (cont’d) www.invitrogen.com Invitrogen Corporation • 542 Flynn Rd • Camarillo • CA 93012 • Tel: 800.955.6288 • E-mail: [email protected] PI487300 (Rev 10/08) DCC-08-1089 Important Licensing Information - These products may be covered by one or more Limited Use Label Licenses (see the Invitrogen Catalog or our website, www.invitrogen.com).
    [Show full text]
  • Transcriptomic Uniqueness and Commonality of the Ion Channels and Transporters in the Four Heart Chambers Sanda Iacobas1, Bogdan Amuzescu2 & Dumitru A
    www.nature.com/scientificreports OPEN Transcriptomic uniqueness and commonality of the ion channels and transporters in the four heart chambers Sanda Iacobas1, Bogdan Amuzescu2 & Dumitru A. Iacobas3,4* Myocardium transcriptomes of left and right atria and ventricles from four adult male C57Bl/6j mice were profled with Agilent microarrays to identify the diferences responsible for the distinct functional roles of the four heart chambers. Female mice were not investigated owing to their transcriptome dependence on the estrous cycle phase. Out of the quantifed 16,886 unigenes, 15.76% on the left side and 16.5% on the right side exhibited diferential expression between the atrium and the ventricle, while 5.8% of genes were diferently expressed between the two atria and only 1.2% between the two ventricles. The study revealed also chamber diferences in gene expression control and coordination. We analyzed ion channels and transporters, and genes within the cardiac muscle contraction, oxidative phosphorylation, glycolysis/gluconeogenesis, calcium and adrenergic signaling pathways. Interestingly, while expression of Ank2 oscillates in phase with all 27 quantifed binding partners in the left ventricle, the percentage of in-phase oscillating partners of Ank2 is 15% and 37% in the left and right atria and 74% in the right ventricle. The analysis indicated high interventricular synchrony of the ion channels expressions and the substantially lower synchrony between the two atria and between the atrium and the ventricle from the same side. Starting with crocodilians, the heart pumps the blood through the pulmonary circulation and the systemic cir- culation by the coordinated rhythmic contractions of its upper lef and right atria (LA, RA) and lower lef and right ventricles (LV, RV).
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Downregulation of Human DAB2IP Gene Expression in Renal Cell
    Published OnlineFirst April 18, 2019; DOI: 10.1158/1078-0432.CCR-18-3004 Translational Cancer Mechanisms and Therapy Clinical Cancer Research Downregulation of Human DAB2IP Gene Expression in Renal Cell Carcinoma Results in Resistance to Ionizing Radiation Eun-Jin Yun1,2, Chun-Jung Lin1, Andrew Dang1, Elizabeth Hernandez1, Jiaming Guo3, Wei-Min Chen3, Joyce Allison4, Nathan Kim3, Payal Kapur5, James Brugarolas4, Kaijie Wu6, Dalin He6, Chih-Ho Lai7, Ho Lin8, Debabrata Saha3, Seung Tae Baek2, Benjamin P.C. Chen3, and Jer-Tsong Hsieh1,9 Abstract Purpose: Renal cell carcinoma (RCC) is known to be highly In vivo ubiquitination assay was used to test PARP-1 degrada- radioresistant but the mechanisms associated with radioresis- tion. Furthermore, in vivo mice xenograft model and patient- tance have remained elusive. We found DOC-2/DAB2 inter- derived xenograft (PDX) model were used to determine the active protein (DAB2IP) frequently downregulated in RCC, is effect of combination therapy to sensitizing tumors to IR. associated with radioresistance. In this study, we investigated Results: We notice that DAB2IP-deficient RCC cells acquire the underlying mechanism regulating radioresistance by IR-resistance. Mechanistically, DAB2IP can form a complex DAB2IP and developed appropriate treatment. with PARP-1 and E3 ligases that is responsible for degrading Experimental Design: Several RCC lines with or without PARP-1. Indeed, elevated PARP-1 levels are associated with the DAB2IP expression were irradiated with ionizing radiation IR resistance in RCC cells. Furthermore, PARP-1 inhibitor can (IR) for determining their radiosensitivities based on colony enhance the IR response of either RCC xenograft model or PDX formation assay.
    [Show full text]
  • The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
    The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem.
    [Show full text]
  • Gene- and Tissue-Level Interactions in Normal Gastrointestinal Development and Hirschsprung Disease
    Gene- and tissue-level interactions in normal gastrointestinal development and Hirschsprung disease Sumantra Chatterjeea,b,1, Priyanka Nandakumara,1, Dallas R. Auera,b, Stacey B. Gabrielc, and Aravinda Chakravartia,b,2 aCenter for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205; bCenter for Human Genetics and Genomics, New York University School of Medicine, New York, NY 10016; and cGenomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142 Contributed by Aravinda Chakravarti, November 1, 2019 (sent for review May 21, 2019; reviewed by William J. Pavan and Tatjana Sauka-Spengler) The development of the gut from endodermal tissue to an organ between the longitudinal and circular muscles, and the sub- with multiple distinct structures and functions occurs over a mucosal (Meissner’s) plexus, between the circular muscle and prolonged time during embryonic days E10.5–E14.5 in the mouse. the submucosal layer. The myenteric and submucoal plexuses During this process, one major event is innervation of the gut by provide motor innervation to both muscular layers of the gut, enteric neural crest cells (ENCCs) to establish the enteric nervous and secretomotor innervation of the mucosa nearest the lumen system (ENS). To understand the molecular processes underpinning of the gut, respectively (6). gut and ENS development, we generated RNA-sequencing profiles The many stages of gut development require numerous initiat- from wild-type mouse guts at E10.5, E12.5, and E14.5 from both ing signaling events activating transcription factors (TFs) targeting sexes. We also generated these profiles from homozygous Ret null diverse genes and pathways varying across development (7, 8).
    [Show full text]
  • Inherited LRP2 Dysfunction in Human Disease and Animal Models
    Kozyraki R and Cases O. J Rare Dis Res Treat. (2017) 2(5): 22-31 Journal of www.rarediseasesjournal.com Rare Diseases Research & Treatment Mini Review Open Access Inherited LRP2 dysfunction in human disease and animal models Renata Kozyraki1 and Olivier Cases1 1INSERM UMRS_1138, Centre de Recherche des Cordeliers, Paris-Diderot University, France Article Info ABSTRACT Article Notes Gp330/Megalin/Low-Density Lipoprotein Receptor-Related Protein 2 Received: June 29, 2017 (LRP2) is an endocytic receptor that plays multiple roles in embryonic and Accepted: September 25, 2017 adult tissues. It allows the cellular uptake of various bioactive molecules, *Correspondence: morphogens, vitamins and hormones. Lack or dysfunction of the receptor affects Dr. Renata Kozyraki, Ph.D. renal protein reabsorption, lung function, brain and eye development in both INSERM UMRS_1138, 15 rue de l’école de médecine, 75006 man and experimental models. Mutations inLRP2 cause the polymalformative Paris, France,Tel: + 33 144278007; Fax: + 33 144275590, Donnai-Barrow syndrome, a rare autosomal recessive condition, combining Email: [email protected] developmental delay, facial dysmorphology, hearing defects, high myopia and © 2017 Kozyraki R and Cases O. This article is distributed low-molecular weight proteinuria. under the terms of the Creative Commons Attribution 4.0 We here summarize current knowledge on the receptor action. We International License. particularly focus on the LRP2-associated face and eye anomalies and discuss Keywords how the receptor and its interacting proteins, including the multiligand Donnai-Barrow syndrome receptor Cubilin (CUBN) may promote health or cause disease. Endocytosis High Myopia LRP2: Low-density lipoprotein Receptor-related Protein 2 Megalin Introduction gp330 Myopia Endocytosis is an essential mechanism that allows selective RPE cellular uptake of numerous macromolecules.
    [Show full text]
  • Rs4968309 in Myosin Light Chain 4 (MYL4)
    Advance Publication Circulation Journal ORIGINAL ARTICLE doi: 10.1253/circj.CJ-19-0415 Arrhythmia/Electrophysiology Rs4968309 in Myosin Light Chain 4 (MYL4) Associated With Atrial Fibrillation Onset and Predicts Clinical Outcomes After Catheter Ablation in Atrial Fibrillation Patients Without Structural Heart Disease Yuan Zhong, MD; Kai Tang, MD, PhD; Hailing Li, MD, PhD; Dongdong Zhao, MD, PhD; Wenxin Kou, MD; Shaojie Xu, MD; Jun Zhang, MD; Haotian Yang, MD; Shuang Li, MD, PhD; Rong Guo, MD, PhD; Wenhui Peng, MD, PhD; Yawei Xu, MD, PhD Background: Atrial fibrillation (AF) is the most common arrhythmia with serious complications and a high rate of recurrence after catheter ablation. Recently, mutation of MYL4 was reported as responsible for familial atrial cardiomyopathy and AF. This study aimed to determine the association between polymorphism in MYL4 with the onset and recurrence of AF. Methods and Results: A total of 7 single-nucleotide polymorphisms were selected by linkage disequilibrium and genotyped in 510 consecutive AF patients and 192 controls without structural heart disease. A total of 246 AF patients who underwent cryoballoon ablation had a 1-year scheduled follow-up study for AF recurrence. C allele and CC genotype of rs4968309 and A allele of rs1515751were associated with AF onset both before and after adjustment of covariation (age, sex, hypertension, and diabetes). AF type and left atrial size were different among the genotypes of rs4968309. Moreover, CC genotype of rs4968309 increased susceptibly of AF recurrence after cryoballoon ablation. The prevalence of hypertension was associated with rs1515752, and left atrial size was associated with the genotype of rs2071438.
    [Show full text]
  • Visualizing Spatiotemporal Dynamics of Apoptosis After G1 Arrest by Human T Cell Leukemia Virus Type 1 Tax and Insights Into
    Arainga et al. BMC Genomics 2012, 13:275 http://www.biomedcentral.com/1471-2164/13/275 RESEARCH ARTICLE Open Access Visualizing spatiotemporal dynamics of apoptosis after G1 arrest by human T cell leukemia virus type 1 Tax and insights into gene expression changes using microarray-based gene expression analysis Mariluz Arainga1,2, Hironobu Murakami1,3 and Yoko Aida1,2* Abstract Background: Human T cell leukemia virus type 1 (HTLV-1) Tax is a potent activator of viral and cellular gene expression that interacts with a number of cellular proteins. Many reports show that Tax is capable of regulating cell cycle progression and apoptosis both positively and negatively. However, it still remains to understand why the Tax oncoprotein induces cell cycle arrest and apoptosis, or whether Tax-induced apoptosis is dependent upon its ability to induce G1 arrest. The present study used time-lapse imaging to explore the spatiotemporal patterns of cell cycle dynamics in Tax-expressing HeLa cells containing the fluorescent ubiquitination-based cell cycle indicator, Fucci2. A large-scale host cell gene profiling approach was also used to identify the genes involved in Tax-mediated cell signaling events related to cellular proliferation and apoptosis. Results: Tax-expressing apoptotic cells showed a rounded morphology and detached from the culture dish after cell cycle arrest at the G1 phase. Thus, it appears that Tax induces apoptosis through pathways identical to those involved in G1 arrest. To elucidate the mechanism(s) by which Tax induces cell cycle arrest and apoptosis, regulation of host cellular genes by Tax was analyzed using a microarray containing approximately 18,400 human mRNA transcripts.
    [Show full text]
  • The Use of Genetic Analyses and Functional Assays for the Interpretation of Rare Variants in Pediatric Heart Disease
    The use of genetic analyses and functional assays for the interpretation of rare variants in pediatric heart disease A dissertation submitted to the Division of Graduate Studies and Research, University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Molecular Genetics by Jeffrey A. Schubert Bachelor of Science, Mount St. Joseph University, 2012 Committee Chair: Stephanie M. Ware, M.D., Ph.D. Edmund Choi, Ph.D. Benjamin Landis, M.D. Anil Menon, Ph.D. David Wieczorek, Ph.D. Molecular Genetics, Biochemistry, and Microbiology Graduate Program College of Medicine, University of Cincinnati Cincinnati, Ohio, USA, 2018 ABSTRACT The use of next generation technologies such as whole exome sequencing (WES) has paved the way for discovering novel causes of Mendelian diseases. This has been demonstrated in pediatric heart diseases, including cardiomyopathy (CM) and familial thoracic aortic aneurysm (TAA). Each of these conditions carries a high risk of a serious cardiac event, including sudden heart failure or aortic rupture, which are often fatal. Patients with either disease can be asymptomatic before presenting with these events, which necessitates early diagnosis. Though there are many known genetic causes of disease for both conditions, there is still room for discovery of novel pathogenic genes and variants, as many patients have an undefined genetic diagnosis. WES covers the protein-coding portion of the genome, which yields a massive amount of data, though it comprises only 1% of the genome. Sorting and filtering sequencing information to identify (sometimes) a single base pair change responsible for the patient phenotype is challenging. Further, interpreting identified candidate variants must be done according to strict standards, which makes it difficult to definitively say whether a coding change is pathogenic or benign.
    [Show full text]
  • Cardiovascular Diseases Genetic Testing Program Information
    Cardiovascular Diseases Genetic Testing Program Description: Congenital Heart Disease Panels We offer comprehensive gene panels designed to • Congenital Heart Disease Panel (187 genes) diagnose the most common genetic causes of hereditary • Heterotaxy Panel (114 genes) cardiovascular diseases. Testing is available for congenital • RASopathy/Noonan Spectrum Disorders Panel heart malformation, cardiomyopathy, arrythmia, thoracic (31 genes) aortic aneurysm, pulmonary arterial hypertension, Marfan Other Panels syndrome, and RASopathy/Noonan spectrum disorders. • Pulmonary Arterial Hypertension (PAH) Panel Hereditary cardiovascular disease is caused by variants in (20 genes) many different genes, and may be inherited in an autosomal dominant, autosomal recessive, or X-linked manner. Other Indications: than condition-specific panels, we also offer single gene Panels: sequencing for any gene on the panels, targeted variant • Confirmation of genetic diagnosis in a patient with analysis, and targeted deletion/duplication analysis. a clinical diagnosis of cardiovascular disease Tests Offered: • Carrier or pre-symptomatic diagnosis identification Arrythmia Panels in individuals with a family history of cardiovascular • Comprehensive Arrhythmia Panel (81 genes) disease of unknown genetic basis • Atrial Fibrillation (A Fib) Panel (28 genes) Gene Specific Sequencing: • Atrioventricular Block (AV Block) Panel (7 genes) • Confirmation of genetic diagnosis in a patient with • Brugada Syndrome Panel (21 genes) cardiovascular disease and in whom a specific
    [Show full text]