Messages from the Academic Literature on Risk Measurement for the Trading Book

Total Page:16

File Type:pdf, Size:1020Kb

Messages from the Academic Literature on Risk Measurement for the Trading Book Basel Committee on Banking Supervision Working Paper No. 19 Messages from the academic literature on risk measurement for the trading book 31 January 2011 The Working Papers of the Basel Committee on Banking Supervision contain analysis carried out by experts of the Basel Committee or its working groups. They may also reflect work carried out by one or more member institutions or by its Secretariat. The subjects of the Working Papers are of topical interest to supervisors and are technical in character. The views expressed in the Working Papers are those of their authors and do not represent the official views of the Basel Committee, its member institutions or the BIS. Copies of publications are available from: Bank for International Settlements Communications CH-4002 Basel, Switzerland E-mail: [email protected] Fax: +41 61 280 9100 and +41 61 280 8100 © Bank for International Settlements 2011. All rights reserved. Limited extracts may be reproduced or translated provided the source is stated. ISSN: 1561-8854 Contents Executive summary ..................................................................................................................1 1. Selected lessons on VaR implementation..............................................................1 2. Incorporating liquidity .............................................................................................1 3. Risk measures .......................................................................................................2 4. Stress testing practices for market risk ..................................................................2 5. Unified versus compartmentalised risk measurement ...........................................3 6. Risk management and value-at-risk in a systemic context ....................................3 0. Introduction......................................................................................................................5 1. Selected lessons on VaR implementation.......................................................................5 1.1 Overview ................................................................................................................5 1.2 Time horizon for regulatory VaR ............................................................................6 1.3 Time-varying volatility in VaR.................................................................................8 1.4 Backtesting VaR models ......................................................................................10 1.5 Conclusions..........................................................................................................11 2. Incorporating liquidity ....................................................................................................12 2.1 Overview ..............................................................................................................12 2.2 Exogenous liquidity ..............................................................................................14 2.3 Endogenous liquidity: motivation..........................................................................14 2.4 Endogenous liquidity and market risk for trading portfolios..................................15 2.5 Adjusting the VaR time horizon to account for liquidity risk .................................16 2.6 Conclusions..........................................................................................................17 3. Risk measures...............................................................................................................17 3.1 Overview ..............................................................................................................17 3.2 VaR ......................................................................................................................17 3.3 Expected shortfall.................................................................................................20 3.4 Spectral risk measures.........................................................................................23 3.5 Other risk measures.............................................................................................24 3.6 Conclusions..........................................................................................................25 4. Stress testing practices for market risk .........................................................................26 4.1 Overview ..............................................................................................................26 4.2 Incorporating stress testing into market-risk modelling ........................................26 4.3 Stressed VaR .......................................................................................................27 4.4 Conclusions..........................................................................................................28 5. Unified versus compartmentalised risk measurement .................................................. 29 5.1 Overview ............................................................................................................. 29 5.2 Aggregation of risk: diversification versus compounding effects......................... 30 5.3 Papers using the “bottom-up” approach.............................................................. 31 5.4 Papers using the “top-down” approach ............................................................... 35 5.5 Conclusions......................................................................................................... 37 6. Risk management and value-at-risk in a systemic context........................................... 38 6.1 Overview ............................................................................................................. 38 6.2 Intermediation, leverage and value-at-risk: empirical evidence........................... 39 6.3 What has all this to do with VaR-based regulation?............................................ 40 6.4 Conclusions......................................................................................................... 41 References............................................................................................................................. 43 Annex..................................................................................................................................... 50 Messages from the academic literature on risk measurement for the trading book Joint Working Group of the Research Task Force and the Trading Book Group of the Basel Committee on Banking Supervision Chair: Mr Klaus Duellmann, Deutsche Bundesbank, Frankfurt Mr Sirio Aramonte Board of Governors of the Federal Reserve System, Washington, DC Mr Philippe Durand Banque de France, Paris Mr Shun Kobayashi Bank of Japan, Tokyo Mr Myron Kwast Federal Deposit Insurance Corporation, Washington, DC Mr Jose A. Lopez Federal Reserve Bank of San Francisco Mr Giancarlo Mazzoni Bank of Italy, Rome Mr Peter Raupach Deutsche Bundesbank, Frankfurt Mr Martin Summer Austrian National Bank, Vienna Mr Jason Wu Board of Governors of the Federal Reserve System, Washington, DC Messages from the academic literature on risk measurement for the trading book Executive summary This report summarises the findings of an ad hoc working group that reviewed the academic literature relevant to the regulatory framework for the trading book. This project was carried out in the first half of 2010 acting upon a request from the Trading Book Group to the Research Task Force of the Basel Committee on Banking Supervision. This report reflects the views of the individual contributing authors and should not be construed as representing specific recommendations or guidance by the Basel Committee for national supervisors or financial institutions. The report builds on and extends previous work by the Research Task Force on the interaction of market and credit risk (see Basel Committee on Banking Supervision (2009a)). The literature review was complemented by feedback from academic experts at a workshop hosted by the Deutsche Bundesbank in April 2010, and reflects the state of the literature at this point in time. Please note that the term “value-at-risk” (VaR) should be interpreted henceforth in a broad sense as encompassing other common risk metrics, with the exception of Section 3 in which risk metrics are compared directly. The main findings of the group are summarised below in the order of the Sections of the report. 1. Selected lessons on VaR implementation There is no unique solution to the problem of the appropriate time horizon for risk measurement. The horizon depends on characteristics of the asset portfolio (such as, market liquidity) and the economic purpose of measuring its risk; for example, setting capital or setting loss limits for individual trading desks. Scaling of short-horizon VaR to a longer time horizon with the commonly used square-root- of-time scaling rule has been found to be an inaccurate approximation in many studies. This rule ignores future changes in portfolio composition. At present, there is no widely accepted approach for aggregating VaR measures based on different horizons. Time-varying volatility is a feature of many financial time series and can have important ramifications for VaR measurement. Time-varying volatility can give rise to issues regarding the potential pro-cyclical effects of VaR-based capital measures. The effects of time-varying volatility on the accuracy of simple VaR measures diminish
Recommended publications
  • Var and Other Risk Measures
    What is Risk? Risk Measures Methods of estimating risk measures Bibliography VaR and other Risk Measures Francisco Ramírez Calixto International Actuarial Association November 27th, 2018 Francisco Ramírez Calixto VaR and other Risk Measures What is Risk? Risk Measures Methods of estimating risk measures Bibliography Outline 1 What is Risk? 2 Risk Measures 3 Methods of estimating risk measures Francisco Ramírez Calixto VaR and other Risk Measures What is Risk? Risk Measures Methods of estimating risk measures Bibliography What is Risk? Risk 6= size of loss or size of a cost Risk lies in the unexpected losses. Francisco Ramírez Calixto VaR and other Risk Measures What is Risk? Risk Measures Methods of estimating risk measures Bibliography Types of Financial Risk In Basel III, there are three major broad risk categories: Credit Risk: Francisco Ramírez Calixto VaR and other Risk Measures What is Risk? Risk Measures Methods of estimating risk measures Bibliography Types of Financial Risk Operational Risk: Francisco Ramírez Calixto VaR and other Risk Measures What is Risk? Risk Measures Methods of estimating risk measures Bibliography Types of Financial Risk Market risk: Each one of these risks must be measured in order to allocate economic capital as a buer so that if a catastrophic event happens, the bank won't go bankrupt. Francisco Ramírez Calixto VaR and other Risk Measures What is Risk? Risk Measures Methods of estimating risk measures Bibliography Risk Measures Def. A risk measure is used to determine the amount of an asset or assets (traditionally currency) to be kept in reserve in order to cover for unexpected losses.
    [Show full text]
  • Comparative Analyses of Expected Shortfall and Value-At-Risk Under Market Stress1
    Comparative analyses of expected shortfall and value-at-risk under market stress1 Yasuhiro Yamai and Toshinao Yoshiba, Bank of Japan Abstract In this paper, we compare value-at-risk (VaR) and expected shortfall under market stress. Assuming that the multivariate extreme value distribution represents asset returns under market stress, we simulate asset returns with this distribution. With these simulated asset returns, we examine whether market stress affects the properties of VaR and expected shortfall. Our findings are as follows. First, VaR and expected shortfall may underestimate the risk of securities with fat-tailed properties and a high potential for large losses. Second, VaR and expected shortfall may both disregard the tail dependence of asset returns. Third, expected shortfall has less of a problem in disregarding the fat tails and the tail dependence than VaR does. 1. Introduction It is a well known fact that value-at-risk2 (VaR) models do not work under market stress. VaR models are usually based on normal asset returns and do not work under extreme price fluctuations. The case in point is the financial market crisis of autumn 1998. Concerning this crisis, CGFS (1999) notes that “a large majority of interviewees admitted that last autumn’s events were in the “tails” of distributions and that VaR models were useless for measuring and monitoring market risk”. Our question is this: Is this a problem of the estimation methods, or of VaR as a risk measure? The estimation methods used for standard VaR models have problems for measuring extreme price movements. They assume that the asset returns follow a normal distribution.
    [Show full text]
  • Minimizing Spectral Risk Measures Applied to Markov Decision Processes 3
    MINIMIZING SPECTRAL RISK MEASURES APPLIED TO MARKOV DECISION PROCESSES NICOLE BAUERLE¨ AND ALEXANDER GLAUNER Abstract. We study the minimization of a spectral risk measure of the total discounted cost generated by a Markov Decision Process (MDP) over a finite or infinite planning horizon. The MDP is assumed to have Borel state and action spaces and the cost function may be unbounded above. The optimization problem is split into two minimization problems using an infimum representation for spectral risk measures. We show that the inner minimization problem can be solved as an ordinary MDP on an extended state space and give sufficient conditions under which an optimal policy exists. Regarding the infinite dimensional outer minimization problem, we prove the existence of a solution and derive an algorithm for its numerical approximation. Our results include the findings in B¨auerle and Ott (2011) in the special case that the risk measure is Expected Shortfall. As an application, we present a dynamic extension of the classical static optimal reinsurance problem, where an insurance company minimizes its cost of capital. Key words: Risk-Sensitive Markov Decision Process; Spectral Risk Measure; Dy- namic Reinsurance AMS subject classifications: 90C40, 91G70, 91G05 1. Introduction In the last decade, there have been various proposals to replace the expectation in the opti- mization of Markov Decision Processes (MDPs) by risk measures. The idea behind it is to take the risk-sensitivity of the decision maker into account. Using simply the expectation models a risk-neutral decision maker whose optimal policy sometimes can be very risky, for an example see e.g.
    [Show full text]
  • Robust Spectral Risk Optimization When Information on Risk Spectrum Is Incomplete
    Robust Spectral Risk Optimization When Information on Risk Spectrum Is Incomplete Wei Wangy Huifu Xuz June 25, 2020 Abstract Spectral risk measure (SRM) is a weighted average of value at risk (VaR) where the weighting function (also known as risk spectrum or distortion function) characterizes decision maker's risk attitude. In this paper, we consider the case where the decision maker's risk spectrum is ambiguous and introduce a robust SRM model based on the worst risk spectrum from a ball of risk spectra centred at a nominal risk spectrum. When the ball consists of step-like risk spectra, we show that the robust SRM can be computed by solving a linear programming problem. For general case, we propose a step-like approximation scheme and derive an error bound for the approximation. As an application, we apply the proposed robust SRM to one-stage stochastic optimization with objective of minimizing the robust SRM and propose an alternating iterative algorithm for solving the resulting minimax optimization problem. Moreover, to examine stability of the robust spectral risk optimization model with respect to perturbation of observed data from the underlying exogenous uncertainty in data- driven environments, we investigate statistical robustness of the model and derive sufficient conditions for the required stability. Keywords: robust spectral risk measure, robust spectral risk optimization, step-like ap- proximation, alternating iterative algorithm, statistical robustness 1 Introduction Spectral risk measure (SRM) is a weighted average of value at risk (VaR) where the weighting function captures an investor's risk preference. The weighting function is formally called risk spectrum as it determines the nature of SRM.
    [Show full text]
  • Divergence-Based Risk Measures: a Discussion on Sensitivities and Extensions
    entropy Article Divergence-Based Risk Measures: A Discussion on Sensitivities and Extensions Meng Xu 1 and José M. Angulo 2,* 1 School of Economics, Sichuan University, Chengdu 610065, China 2 Department of Statistics and Operations Research, University of Granada, 18071 Granada, Spain * Correspondence: [email protected]; Tel.: +34-958-240492 Received: 13 June 2019; Accepted: 24 June 2019; Published: 27 June 2019 Abstract: This paper introduces a new family of the convex divergence-based risk measure by specifying (h, f)-divergence, corresponding with the dual representation. First, the sensitivity characteristics of the modified divergence risk measure with respect to profit and loss (P&L) and the reference probability in the penalty term are discussed, in view of the certainty equivalent and robust statistics. Secondly, a similar sensitivity property of (h, f)-divergence risk measure with respect to P&L is shown, and boundedness by the analytic risk measure is proved. Numerical studies designed for Rényi- and Tsallis-divergence risk measure are provided. This new family integrates a wide spectrum of divergence risk measures and relates to divergence preferences. Keywords: convex risk measure; preference; sensitivity analysis; ambiguity; f-divergence 1. Introduction In the last two decades, there has been a substantial development of a well-founded risk measure theory, particularly propelled since the axiomatic approach introduced by [1] in relation to the concept of coherency. While, to a large extent, the theory has been fundamentally inspired and motivated with financial risk assessment objectives in perspective, many other areas of application are currently or potentially benefited by the formal mathematical construction of the discipline.
    [Show full text]
  • G-Expectations with Application to Risk Measures
    g-Expectations with application to risk measures Sonja C. Offwood Programme in Advanced Mathematics of Finance, University of the Witwatersrand, Johannesburg. 5 August 2012 Abstract Peng introduced a typical filtration consistent nonlinear expectation, called a g-expectation in [40]. It satisfies all properties of the classical mathematical ex- pectation besides the linearity. Peng's conditional g-expectation is a solution to a backward stochastic differential equation (BSDE) within the classical framework of It^o'scalculus, with terminal condition given at some fixed time T . In addition, this g-expectation is uniquely specified by a real function g satisfying certain properties. Many properties of the g-expectation, which will be presented, follow from the spec- ification of this function. Martingales, super- and submartingales have been defined in the nonlinear setting of g-expectations. Consequently, a nonlinear Doob-Meyer decomposition theorem was proved. Applications of g-expectations in the mathematical financial world have also been of great interest. g-Expectations have been applied to the pricing of contin- gent claims in the financial market, as well as to risk measures. Risk measures were introduced to quantify the riskiness of any financial position. They also give an indi- cation as to which positions carry an acceptable amount of risk and which positions do not. Coherent risk measures and convex risk measures will be examined. These risk measures were extended into a nonlinear setting using the g-expectation. In many cases due to intermediate cashflows, we want to work with a multi-period, dy- namic risk measure. Conditional g-expectations were then used to extend dynamic risk measures into the nonlinear setting.
    [Show full text]
  • Towards a Topological Representation of Risks and Their Measures
    risks Article Towards a Topological Representation of Risks and Their Measures Tomer Shushi ID Department of Business Administration, Guilford Glazer Faculty of Business and Management, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel; [email protected] Received: 8 October 2018; Accepted: 15 November 2018; Published: 19 November 2018 Abstract: In risk theory, risks are often modeled by risk measures which allow quantifying the risks and estimating their possible outcomes. Risk measures rely on measure theory, where the risks are assumed to be random variables with some distribution function. In this work, we derive a novel topological-based representation of risks. Using this representation, we show the differences between diversifiable and non-diversifiable. We show that topological risks should be modeled using two quantities, the risk measure that quantifies the predicted amount of risk, and a distance metric which quantifies the uncertainty of the risk. Keywords: diversification; portfolio theory; risk measurement; risk measures; set-valued measures; topology; topological spaces 1. Introduction The mathematical formulation of risks is based purely on probability. Let Y be a random variable on the probability space (W, F, P), where W represents the space of all possible outcomes, F is the s-algebra, and P is the probability measure. For a single outcome w 2 W, Y(w) is the realization of Y. The theory of risk measures aims to quantify the amount of loss for each investigated risk where such a loss occurs with some level of uncertainty. Thus, risk measures are a powerful tool for any risk management analysis.
    [Show full text]
  • A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations
    risks Article A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations Matthias Fischer 1,*, Thorsten Moser 2 and Marius Pfeuffer 1 1 Lehrstuhl für Statistik und Ökonometrie, Universität Erlangen-Nürnberg, Lange Gasse 20, 90403 Nürnberg, Germany; [email protected] 2 Risikocontrolling Kapitalanlagen, R+V Lebensverischerung AG, Raiffeisenplatz 1, 65189 Wiesbaden, Germany; [email protected] * Correspondence: matthias.fi[email protected] Received: 11 October 2018; Accepted: 30 November 2018; Published: 7 December 2018 Abstract: In both financial theory and practice, Value-at-risk (VaR) has become the predominant risk measure in the last two decades. Nevertheless, there is a lively and controverse on-going discussion about possible alternatives. Against this background, our first objective is to provide a current overview of related competitors with the focus on credit risk management which includes definition, references, striking properties and classification. The second part is dedicated to the measurement of risk concentrations of credit portfolios. Typically, credit portfolio models are used to calculate the overall risk (measure) of a portfolio. Subsequently, Euler’s allocation scheme is applied to break the portfolio risk down to single counterparties (or different subportfolios) in order to identify risk concentrations. We first carry together the Euler formulae for the risk measures under consideration. In two cases (Median Shortfall and Range-VaR), explicit formulae are presented for the first time. Afterwards, we present a comprehensive study for a benchmark portfolio according to Duellmann and Masschelein (2007) and nine different risk measures in conjunction with the Euler allocation. It is empirically shown that—in principle—all risk measures are capable of identifying both sectoral and single-name concentration.
    [Show full text]
  • Determination of Risk Pricing Measures from Market Prices of Risk
    Determination of risk pricing measures from market prices of risk Henryk Gzyl and Silvia Mayoral ∗ IESA, Caracas, Venezuela and UNAV, Pamplona, Espa˜na. Abstract A new insurance provider or a regulatory agency may be interested in determining a risk measure consistent with observed market prices of a collection of risks. Using a relationship between distorted coherent risk measures and spectral risk measures, we provide a method for reconstruct- ing distortion functions from the observed prices of risk. The technique is based on an appropriate application of the method of maximum entropy in the mean, which builds upon the classical method of maximum entropy. Key words. Distortion function, Spectral measures, Risk Aversion Func- tion, Maximum entropy in the mean, Inverse problems. ∗The research of this author was partially funded by Welzia Management, SGIIC SA, RD Sistemas SA , Comunidad Autnoma de Madrid Grant s-0505/tic/000230, and MEyC Grant BEC2000-1388-C04-03. 1 1 Introduction The problem of pricing actuarial risk has received a great deal of attention in recent years, generating a large amount of theoretical and practical work. A good account of the traditional and modern pricing methods appears in the book by Kaas, Goovaerts, Dhaene and Denuit (Kaas et al. (2005)). Among pricing measures the class of distorted risk measures is popular and appealing. For fur- ther details and the general philosophy of distorted risk measures the interested reader may consult Wang (1996), Wang, Young and Panjer (1997), and Wang and Young (1998), where, building on Quiggin (1982), Yaari (1987), and Schmeidler (1989), an axiomatic characterization and many applications to insurance can be found.
    [Show full text]
  • Estimation of Distortion Risk Measures
    Int. Statistical Inst.: Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS046) p.5035 Estimation of Distortion Risk Measures Hideatsu Tsukahara Department of Economics, Seijo University, Tokyo e-mail address: [email protected] The concept of coherent risk measure was introduced in Artzner et al. (1999). They listed some properties, called axioms of `coherence', that any good risk measure should possess, and studied the (non-)coherence of widely-used risk measure such as Value-at- Risk (VaR) and expected shortfall (also known as tail conditional expectation or tail VaR). Kusuoka (2001) introduced two additional axioms called law invariance and comonotonic additivity, and proved that the class of coherent risk measures satisfying these two axioms coincides with the class of distortion risk measures with convex distortions. To be more speci¯c, let X be a random variable representing a loss of some ¯nancial position, and let F (x) := P(X · x) be the distribution function (df) of X. We denote ¡1 its quantile function by F (u) := inffx 2 R: FX (x) ¸ ug; 0 < u < 1. A distortion risk measure is then of the following form Z Z ¡1 ½D(X) := F (u) dD(u) = x dD ± F (x); (1) [0;1] R where D is a distortion function, which is simply a df D on [0; 1]; i.e., a right-continuous, increasing function on [0; 1] satisfying D(0) = 0 and D(1) = 1. For ½D(X) to be coherent, D must be convex, which we assume throughout this paper. The celebrated VaR can be written of the form (1), but with non-convex D; this implies that the VaR is not coherent.
    [Show full text]
  • Simulation-Based Portfolio Optimization with Coherent Distortion Risk Measures
    DEGREE PROJECT IN MATHEMATICS, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2020 Simulation-Based Portfolio Optimization with Coherent Distortion Risk Measures ANDREAS PRASTORFER KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ENGINEERING SCIENCES Simulation Based Portfolio Optimization with Coherent Distortion Risk Measures ANDREAS PRASTORFER Degree Projects in Financial Mathematics (30 ECTS credits) Degree Programme in Applied and Computational Mathematics KTH Royal Institute of Technology year 2020 Supervisors at SAS Institute: Jimmy Skoglund Supervisor at KTH: Camilla Johansson Landén Examiner at KTH: Camilla Johansson Landén TRITA-SCI-GRU 2020:005 MAT-E 2020:05 Royal Institute of Technology School of Engineering Sciences KTH SCI SE-100 44 Stockholm, Sweden URL: www.kth.se/sci Abstract This master's thesis studies portfolio optimization using linear programming algorithms. The contribu- tion of this thesis is an extension of the convex framework for portfolio optimization with Conditional Value-at-Risk, introduced by Rockafeller and Uryasev [28]. The extended framework considers risk mea- sures in this thesis belonging to the intersecting classes of coherent risk measures and distortion risk measures, which are known as coherent distortion risk measures. The considered risk measures belong- ing to this class are the Conditional Value-at-Risk, the Wang Transform, the Block Maxima and the Dual Block Maxima measures. The extended portfolio optimization framework is applied to a reference portfolio consisting of stocks, options and a bond index. All assets are from the Swedish market. The re- turns of the assets in the reference portfolio are modelled with elliptical distribution and normal copulas with asymmetric marginal return distributions. The portfolio optimization framework is a simulation-based framework that measures the risk using the simulated scenarios from the assumed portfolio distribution model.
    [Show full text]
  • Subadditivity Re–Examined: the Case for Value–At–Risk∗
    Subadditivity Re–Examined: the Case for Value–at–Risk∗ J´on Dan´ıelsson Bjørn N. Jorgensen London School of Economics Columbia Business School Gennady Samorodnitsky Cornell University Mandira Sarma EURANDOM, Eindhoven University of Technology Casper G. de Vries Erasmus University Rotterdam, Tinbergen Institute, EURANDOM October, 2005 Abstract This paper explores the potential for violations of VaR subaddi- tivity both theoretically and by simulations, and finds that for most practical applications VaR is subadditive. Hence, there is no reason to choose a more complicated risk measure than VaR, solely for reasons of subadditivity. KEY WORDS: Value–at–Risk, subadditivity, regular variation, tail index, heavy tailed distribution. JEL Classification: G00, G18 ∗Corresponding author J´on Dan´ıelsson, [email protected]. Our papers can be downloaded from www.RiskResearch.org. Danielsson acknowledges the financial support of the EPSRC grant no. GR/S83975/01. Samorodnitsky’s research was partially sup- ported by NSF grant DMS-0303493 and NSA grant MSPF-02G-183 at Cornell University. 1 1 Introduction Value–at–risk (VaR) has become a central plank in banking regulations and internal risk management in banks. While superior to volatility as a measure of risk, VaR is often criticized for lack of subadditivity. VaR is much easier to implement operationally than most other measures of risk, and is likely to retain its preeminent practical status. Our objective is to explore VaR subadditivity, to analyze which asset classes are likely to suffer from violations of subadditivity, and examine the asymptotic and finite sample properties of the VaR risk measure with respect to subadditivity.
    [Show full text]