Campfire from Becoming a Wildfire!
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A History of the Prepare, Stay and Defend Or Leave Early Policy in Victoria
A History of the Prepare, Stay and Defend or Leave Early Policy in Victoria A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Benjamin Thomas Reynolds Master of Arts (History) Bachelor of Arts (History) School of Management College of Business RMIT University February 2017 1 Declaration I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program; any editorial work, paid or unpaid, carried out by a third party is acknowledged; and, ethics procedures and guidelines have been followed. Benjamin Thomas Reynolds February 2017 i Acknowledgements This PhD was made possible due to the support of my family, friends and supervisors and the guidance and encouragement I received from each. I would like to thank my parents in particular for again supporting me in my studies, and my supervisors Professor Peter Fairbrother, Dr Bernard Mees, and Dr Meagan Tyler and other colleagues in the School of Management for their reassurances, time, and advice. I would also like to thank the Bushfire and Natural Hazards Cooperative Research Centre for their generous financial support for the project, and in particular Annette Allen and Lyndsey Wright for their encouragement along the way. I would also like to acknowledge the support of John Schauble of Emergency Management Victoria, without whose support the thesis would not have been possible. -
Smokey Bear Campfire Safety Checklist
Smokey Bear’s Guide Keep your campfire from becoming a wildfire! BEFORE … • Choose a spot that’s protected from wind gusts and at least 15 feet from your tent, gear, and anything flammable. • Clear a 10-foot diameter area around your campfire spot by removing leaves, grass, and anything burnable down to the dirt. • Don’t build your campfire near plants or under tree limbs or other flammable material hanging overhead. • If allowed, dig a pit for your campfire, about 1-foot deep, in the center of the cleared area. • Build a fire ring around the pit with rocks to create a barrier. • Don’t use any type of flammable liquid to start your fire. • Gather three types of wood to build your campfire and add them in this order: 1 2 3 Tinder – small twigs, dry Kindling – dry sticks Firewood – larger, dry pieces of leaves or grass, dry needles. smaller than 1” around. wood up to about 10” around. DURING … • Keep your fire small. • Always keep water and a shovel nearby and know how to use them to put out your campfire. • Be sure an adult is always watching the fire. • Keep an eye on the weather! Sudden wind gusts can blow sparks into vegetation outside your cleared area, causing unexpected fires. AFTER … REMEMBER: • If possible, allow your campfire to burn out completely – to ashes. If it’s too hot to • Drown the campfire ashes with lots of water. touch, it’s too • Use a shovel to stir the ashes and water into a “mud pie.” Be sure to scrape around the edges of the fire to get all the ashes mixed in. -
In the Autumn 2011 Edition of the Quiver I Wrote an Article Touching on the Topic of Survival As It Applies to the Bowhunter
In the Autumn 2011 edition of The Quiver I wrote an article touching on the topic of survival as it applies to the bowhunter. In this article I want to talk about fire specifically and the different types of firestarters and techniques available. Fire is an important element in a survival situation as it provides heat for warmth, drying clothes or cooking as well as a psychological boost and if you’re hunting in a spot where you are one of the prey species it can keep predators away as well. There are many ways to start a fire; some ways relatively easy and some that would only be used as a last resort. There are pros and cons to most of these techniques. The most obvious tool for starting a fire is a match. While this is a great way to start a fire in your fireplace or fire pit I personally don’t like to carry matches in my pack or on my person. They are hard to keep dry and you are limited to one fire per match IF you can light a one match fire every time. It would be easy to run out of matches in a hurry as you are limited in how many you could reasonably carry. A Bic lighter or one of the more expensive windproof lighters is a slightly better choice for the bowhunter to carry. They are easy to use, easy to carry, fairly compact, and last for a reasonable amount of “lights”. They don’t work well when wet but can be dried out fairly easily. -
Fire As a Physical Process
1.3 Energy transfer and the stages of combustion Understanding the principles of combustion, can we begin to see how fires initiate and spread? To complete the fire triangle, energy must move through space from a source to a “fuel” initiation oxygen energy THE COMBUSTION TRIANGLE How does this happen? combustible material Heat is a form of energy • Heat (or thermal energy) is proportional to molecular movement of matter, i.e., kinetic energy (KE) • The Kelvin scale measures the energy content of matter, starting at absolute 0 (- 273° C) • Heated objects emit radiation in the electromagnetic spectrum (EMS): • In the range we will deal with, mostly in the infrared • Even higher velocities emit in higher-frequency bands of the EMS See the “Ask a Scientist” excerpt posted for this lecture international light association, http://www.international-light-association.org Three basic modes of energy transfer: Conduction Radiation Convection A general principle of heat transfer: • Heat transfers between bodies according to the second law of thermodynamics (which in this case says that heat flows from high to low energy states, i.e., hot to cold bodies – In other words, heat flows down energy gradients – This goes a long way to explaining much of how fires behave 1. Conduction Movement of energy through a solid, or between solids in contact by molecular motion • Depends on thermal conductivity and energy gradient of material (conductors, insulators) • Also depends on amount of area of contact • Examples? • touching a hot metal object, e.g. a saucepan handle • heating water by an immersion coil • melting lead solder with a soldering iron • putting an ice cube on your skin Conductivity (ability of a material to conduct energy) The transfer of heat between molecules in contact with one another. -
How to Build a Campfire
How to Build a Campfire GATHER BUILD tinder, kindling and fuel together in the sizes and the fire by adding kindling wood to the burning tinder quantities shown before any matches are struck. Sizes and then adding fuel to the fire as it grows. No need and quantities are just a ‘rule of thumb’ - get close to for a fancy fire lay, build it as you go. the descriptions and you’ll do fine. Don’t make any of it too short or too big around. Tinder from dead twigs found on Kindling should be dry, don’t gather Fuel should be dry, split larger wood the lower branches of trees and wet wood from the forest floor. Look if possible and have a good sized shrubs that snaps off easily when for branches that are dead and stack on hand before you light the bent. No green wood! down, not on the tree. fire. TINDER KINDLING FUEL Around the size of a No thicker than your About as thick as pencil lead thumb your wrist No shorter than your About as long as your About as long as your outstretched hand elbow to your arm fingertips Enough to fill a circle made with your Enough for a A stack about as high hands generous armload as your knee Bend the tinder in half and light 1 the center. Add kindling, keep piling it on loosely, give the fire plenty of 2 kindling to keep growing. As the kindling begins to burn 3 begin adding fuel. www.girlscoutshs.org • 800.624.4185. -
A Tungsten Filament Is Drawn to a Very Uniform Diameter When It Is Manufactured
http://invsee.eas.asu.edu/nmodules/lightbulbmod/burnout.html A tungsten filament is drawn to a very uniform diameter when it is manufactured. As a result, when a light bulb is first turned on the filament emits light relatively evenly along the length of the filament. Explore the failure of a filament using the following movie which shows an accelerated view of a filament failing. Notice how the light emitted from the filament changes intensity and location with time. Why does the filament get bright at one point before it fails ? Standard electrical outlets in the United States provide 110 volt (V) electricity. For an incandescent light bulb, the electric current (i) used to heat the filament is determined by the electrical resistance (R) of the filament according to Ohm’s Law: V = i R Electric power (P) is the rate of conversion of electrical energy to another form, such as heat. For a resistor, such as a tungsten light bulb filament, the power may be expressed as: P = i2 R = V2/R. The voltage drop across the filament is essentially constant. As a result, when R varies, so does i. In particular, R can vary locally with the cross-sectional area of the filament: R = ρ (l/s), where ρ is the specific resistance of tungsten (ohms), l is the length of a filament region (cm) and s is the cross-sectional area of the filament region locally (cm2). If the cross-sectional area of the filament changes with time to vary along its length, the current passing through each part of the filament will remain constant. -
Bowdrill Block of the Drill Can Spin In
The Bearing The Bearing Block is made of a hard material that has a depression in it that the top end Bowdrill Block of the drill can spin in. It must be very comfortable in the hand Rubbing two sticks together to because we will be pushing down on it quite make fire is one of the mostMaking Our hard. quintessential bushcraft skills. Bowdrill Set The Bow In a Spruce/ The Coal Pine forest Catcher the best bearing block is a The Bearing piece of a dead sapling where the Block The Drill knots grow in a ring around the trunk. The Base Board The knots are very hard and we carve our depression into These are the parts of the bowdrill, we will look at them in detail but one of the knots. as an introduction: The Drill will be spun against The Base Board using The Bow. We lubricate the depression with Spruce/Pine resin. The friction between The Drill and The Base Board will grind them into A stone or wood dust and also heat the dust up to the point where it smoulders. shells work The smouldering dust is called a ‘coal’. as bearing blocks too. We will push The Drill into The Base Board using The Bearing Block. Finally The Coal Catcher holds the ground up wood so that doesn’t fall We look for on the cold earth. a stone with The Bow a depression Our Bow should be ridge in it and use (not springy) and be slightly the point curved. of another Shorter bows are much stone to easier to use but an arms grind the depression smooth. -
Fire Before Matches
Fire before matches by David Mead 2020 Sulang Language Data and Working Papers: Topics in Lexicography, no. 34 Sulawesi Language Alliance http://sulang.org/ SulangLexTopics034-v2 LANGUAGES Language of materials : English ABSTRACT In this paper I describe seven methods for making fire employed in Indonesia prior to the introduction of friction matches and lighters. Additional sections address materials used for tinder, the hearth and its construction, some types of torches and lamps that predate the introduction of electricity, and myths about fire making. TABLE OF CONTENTS 1 Introduction; 2 Traditional fire-making methods; 2.1 Flint and steel strike- a-light; 2.2 Bamboo strike-a-light; 2.3 Fire drill; 2.4 Fire saw; 2.5 Fire thong; 2.6 Fire plow; 2.7 Fire piston; 2.8 Transporting fire; 3 Tinder; 4 The hearth; 5 Torches and lamps; 5.1 Palm frond torch; 5.2 Resin torch; 5.3 Candlenut torch; 5.4 Bamboo torch; 5.5 Open-saucer oil lamp; 5.6 Footed bronze oil lamp; 5.7 Multi-spout bronze oil lamp; 5.8 Hurricane lantern; 5.9 Pressurized kerosene lamp; 5.10 Simple kerosene lamp; 5.11 Candle; 5.12 Miscellaneous devices; 6 Legends about fire making; 7 Additional areas for investigation; Appendix: Fire making in Central Sulawesi; References. VERSION HISTORY Version 2 [13 June 2020] Minor edits; ‘candle’ elevated to separate subsection. Version 1 [12 May 2019] © 2019–2020 by David Mead All Rights Reserved Fire before matches by David Mead Down to the time of our grandfathers, and in some country homes of our fathers, lights were started with these crude elements—flint, steel, tinder—and transferred by the sulphur splint; for fifty years ago matches were neither cheap nor common. -
Smoldering Combustion
A111D2 MASfiLti « TECH R I ' .1.'^'c IM lllilll. II ll'>llllll lllll mil llllHtiil am Smoldering Combustion REFERENCE PUBLICATIONS T. J. Ohiemiller U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Gaithersburg, MD 20899 February 1986 U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS “QC 100 .056 85-3294 1986 m KESEAscn iNFo::^MA'non CENTER NBSIR 85-3294 SMOLDERING COMBUSTION T. J. Ohiemiller U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Gaithersburg, MD 20899 February 1986 U.S. DEPARTMENT OF COMMERCE, Malcolm Baldrige, Secretary NATIONAL BUREAU OF STANDARDS. Ernest Ambler, Director ' 8^0S^ASlB5j5i!»^/ meee ni8SM i®Hlm#itO .U,T «Dft3MM00 5J0 TM3MT»A«r3i3 0yi »b»»hn«fj *0 ur »>^ viorti7a4liU Qf>n*or{arr3 *ti3 lot mtMl rt.l. ul;3 yvfti .»ie^;Aa ntfotHttM .lOf^iTMMOO TVlilMTRA^aa .8.U «m<r> /gi .nMmS .fiO«l/.a)AAT8 K> U41RU8 JAWOfTAM M Table of Contents Page List of F Igures v LlstofTables vl 1. INTRODUCTION 1 2. SELF-SUSTAINED SMOLDER PROPAGATION 3 2.1 One-Dimensional Smolder Spread 4 2.1.1 Reverse Propagation ... 4 2.1.2 Forward Propagation 9 2.2 Mu 1 1 i -Dimens i onal Smolder Sprea'^ 10 2.2.1 Horizontal Fuel Layer 10 2.2.2 Other Fuel Configurations 15 3. TRANSITION TO FLAMING 17 4. CONCLUDING REMARKS 20 5. REFERENCES 21 lil '•iiT '' • ••aid*T 1©^ t ' • " :i...is.. f m- '’ ' /om^ ‘ J , ^. 'T' „ • * ' * * >• • o *J *—(^,,* • . k>0|tDUq<H^TIIT ’•“ 't ^ , . -
Unit 1: What Is Energy?
UNIT 1: WHAT IS ENERGY? TEACHER OVERVIEW The three essential resources for any nation are food, water and energy. As a matter of fact, it is energy that helps produce more food and cleaner water for our ever growing global population. Securing and producing enough energy often becomes critical to economic and social stability throughout the world, so we need to know and understand as much as we can about our energy resources. Understanding where energy comes from and how we use it is more important now that at any time in our past as we want to provide a better and longer life for our global community. The energy concept is fundamentally scientific in nature, but it has tremendous personal and social significance. Energy is one of the most fundamental parts of our universe. We cannot see, hear or touch energy, yet we use energy every day. Although energy isn’t visible, we can detect evidence of energy. Movement, sound, heat, and light provide evidence that energy is present and being used. Energy from the sun lights the earth during the day and is used by plants to produce food. Energy lights up our homes and towns; provides the power for our modes of transportation (planes, trains, vehicles, rockets, etc.); warms and cools our homes; cooks our meals; plays our music; powers our phones, computers, tablets and televisions; powers the machinery used by factories, farmers, and construction workers; and too many others to mention. The Sun provides the energy for producers in a food chain to produce food for nearly all other organisms for their survival. -
July 2019 Cresset
July/August 2019 Bottisham Community Sports and Social Club Now that summer is upon us why not take a stroll to the club and enjoy some of the early evening sunshine with friends and family and sample some of our fine range of guest beers, lagers and wines not to mention our very popular gins, all the family are welcome including the dog. As a committee we would like to thank all our members old and new for their support and custom throughout the first half of this year, we have enjoyed some fantastic events and evenings and we look forward to many more in the coming months, with your continued support. After the success of last year’s Craft Fair we will be holding another one this year, we do have limited spaces so if anyone is interested please leave a name and email address, or phone number with a member of staff at the club and we will contact you with the details. WHATS ON July 20th Live Music from Kim Lane , tickets available at the bar. October 26th Children’s Halloween Disco, Fancy dress . November 16th Five Ska are back sure to be a sell out, book early. November 24th Craft Fair . New Years Eve Back by popular request All Glammed Up. FRIDAY NIGHTS Our members draw £100 takes place between 9.00 and 10.30, you must be in the club at the time to win it. Members play your cards right as of June 10th over £3000 and the weekly meat draw are also available. -
Lamps = Sources: Points, Blobs, and Lines
Lamps = Sources: Points, Blobs, and Lines All life on earth evolved under both sunlight and darkness. This light and dark cycle not only allowed for various activities, but Light Sources Secondary Light Sources Eyes Brain evolved to regulate all species circadian rhythm – internal biological clock. Generators – Modifiers and Re-transmitters Receivers – Decoder – Transmitters Encoders Interpreter Sun, Discharge lamps, Atmosphere, Air, Water, Planets, Lenses, Cornea, Iris, Lens, Analysis, fluorescent lamps. Windows, Tress – All natural or manufactured Rods & Cones, Identification Incandescent lamps, objects which modify light waves before they Optic Nerves Association Open flames, etc. reach the eye. Perception Invented in 1880 - Only 125 years in our environment! IN THE BEGINNING IN THE BEGINNING Let There Be Light! - (c 4.5 Billion BC) FIRE, FLAME and TORCH - (c 400,000 BC) In the beginning it was dark and cold. There was no sun, no light, no Homo erectus probably discovered fire by accident. Fire was most earth, no solar system. There was nothing, just the empty void of likely given to man as a 'gift from the heavens' when a bolt of space. Then slowly, about 4.5 billion years ago, a swirling nebula, - a lightning struck a tree or a bush, suddenly starting it on fire. huge cloud of gas and dust was formed. Eventually this cloud The flaming touch and the campfire probably constituted early contracted and grew into a central molten mass that became our sun. man's first use of 'artificial' lighting. For the first time man gained At first the sun was a molten glow. As the core pressure increased, some small degree of freedom from the blindness of night, and and the temperature rose to millions of degrees - a star was born.