Quad Precision Floating Point on the IBM Z13™

Total Page:16

File Type:pdf, Size:1020Kb

Quad Precision Floating Point on the IBM Z13™ 2016 IEEE 23nd Symposium on Computer Arithmetic Quad Precision Floating Point on the IBM z13™ Cedric Lichtenau1) Steven Carlough2) Silvia Melitta Mueller1) [email protected] [email protected] [email protected] 1) IBM Deutschland Research and Development GmbH, Schoenaicher Strasse 220, 71032 Boeblingen, Germany 2) IBM Systems and Technology Group, 2455 South Road Poughkeepsie, New York 12601, USA . Engine (DQE), a divide and square root engine, a short Abstract—When operating on a rapidly increasing amount latency decimal fixed-point engine, and a vector fixed- of data, business analytics applications become sensitive to point and string engine which support IBM’s new Single rounding errors, and profit from the higher stability and faster convergence of quad precision floating-point (FP-QP) Instruction Multiple Data (SIMD) architecture for IBM z arithmetic. The IBM z13™ supports this emerging trend Systems™ [7][13]. There are also two load/store pipelines around Big Data with an outstanding FP-QP performance. to read/write the Vector Register File (VRF) and two FXU The paper details the vector and floating-point unit of IBM read and write ports to access the VRF for the General z13™, with special focus on binary FP-QP. Except for divide Purpose Register File of the scalar fixed-point units. and square root, these instructions are executed in the Each VFU pipeline is a total of 10 cycles deep, two decimal engine. To operate such an 8-cycle decimal and cycles of which are for operand bypass and result quad precision pipeline at 5GHz required innovation around forwarding that do not impact the latency of when results exponent handling, normalization, and rounding. are available to dependent operations. The depth of the pipeline was determined by the longest pipeline depth, Keywords—Floating Point Unit, Quad Precision, Analytics, which is the Decimal and Quad-Precision Engine (DQE). Big Data, Decimal, Binary, IBM z13™ When operations complete in shorter pipelines, the results are sent to a forwarding network where they can be I. INTRODUCTION sourced by dependent operations . The IBM z Systems has been the only commercial Section 2 gives an overview of the Decimal and Quad platform to support quad precision floating point in Precision Engine followed by some details in Section 3 on hardware for the past few decades. Quad precision the Arithmetic Engine of the DQE which performs the floating-point has traditionally been used in physics [1][2] adding, rounding and some post corrections. Section 4 or in computational arithmetic applications [3][4][5]. describes the exponent path of the decimal and quad However, the demand for quad precision floating-point precision engine. Section 5 describes the binary divide and operations is expected to grow dramatically as big data and square root engine. Section 6 provides the latency and business analytic workloads become more prevalent. For throughput numbers for the binary quad precision floating- large installations it has recently been observed that on point operations, and gives a comparison to prior design commercial products like ILOG and SPSS, replacing implementations. double precision operations with quad-precision operations in critical routines yield 18% faster convergence due to II. PIPELINED DECIMAL AND QUAD PRECISION ENGINE reduced rounding error. Convergence of analytics and big In prior zSystems designs, quad precision binary and data algorithms can be improved with increased accuracy hexadecimal floating-point operations were executed in a of the intermediate computations [6]. This is driving binary floating-point unit [8]. The dataflow of these binary investment in the development of faster quad precision floating-point units (BFU) is optimized to execute double binary floating-point hardware. precision operations, so quad precision operations had to The Vector and Floating Point Unit (VFU) is the main loop several times through these binary floating-point units execution engine of the IBM z13™ processor shipped in to complete their calculations. This resulted in longer March 2015. Manufactured in IBM’s 22 nm technology, latencies and lower throughput for quad precision the VFU supports a core frequency of 5 GHz and supports operations compared to their double precision counterparts 2-way simultaneous multi-threading. The design point of on these systems. Furthermore, the additional hardware the VFU was chosen to maximize the performance on necessary for binary floating-point units to support quad workloads for Business Analytics and big data, which precision operations increased the area and pipeline depth includes an ever increasing amount of quad precision of the unit, making it costly if they are replicated to floating point operations. support vector floating-point operations. The novel part of The execution engines in the VFU comprise two the z13™ processor is that quad precision binary floating- symmetrical pipes, where each pipe contains a binary point (BFP) and hexadecimal floating-point (HFP) floating point unit (BFU), a Decimal and Quad Precision operations were implemented on a modified decimal 1063-6889/16 $31.00 © 2016 IEEE 87 DOI 10.1109/ARITH.2016.26 floating-point engine. Since the decimal floating-point The densely packed decimal mantissa of the decimal engines are typically designed to execute quad precision floating-point operands are unpacked into binary coded decimal floating-point operations [9] it has a 140-bit wide decimal format and the mantissa of binary and mantissa dataflow, which is wide enough to support the hexadecimal floating-point operands are aligned to the execution of quad precision BFP and HFP operations decimal data path in this hardware. without the need to loop back through the hardware. The The exponent and shift amount calculations start in Decimal and Quad precision Engine (DQE) on the z13™ parallel with the unpacking of the mantissa and the is a pipelined decimal floating point engine that has been detection and handling of special cases such as NaNs or augmented and enhanced to support quad precision BFP infinity. Depending on the exponent difference the input and HFP operations. These changes not only resulted in operands are swapped. This puts the larger operand on the quad precision BFP and HFP operations executing faster left side of the data path and the smaller one on the right on z13™ then on predecessor machines, but had the added side. The shift amount logic computes a left and right shift advantage that area and power could be reduced in the amount for the two swapped operands. The shift amounts BFU making it more efficient to support vector BFP are then used in the next pipeline stages. Note that the shift hardware. amount calculation for decimal floating-point is much A block diagram of the DQE pipeline is shown in more complicated than for binary floating-point. Besides Figure 1. The hardware is designed to run at a system the exponent difference, the decimal shift amount frequency of 5GHz, so some of the dataflow hardware calculation also includes the leading zero count of the blocks illustrated span over two cycles to close timing. input operands, as described in [9]. For binary addition and The DQE is an 8-stage fully pipelined unit capable of subtraction, only the mantissa with the smaller exponent is starting a new operation every cycle for all arithmetical shifted; it is shifted to the right by the exponent difference. operations but multiply, divide and conversions between the binary and decimal radixes. B. Shifter The shift operation is executed in two stages, producing 141b wide data. The first stage shifts by digits as required for decimal and hexadecimal numbers; it shifts the operands up to 36 digits to the left or right. The second stage performs the final right bit shift (0 to 3 bits) for binary numbers. This leaves enough timing headroom to include the multiplexing of the multiply, divide and convert results as well as to invert the second operand for effective subtract operations, and add padding to single and double precision numbers. The padding ensures that for all precisions and radices, the overflow of the mantissa after adding and rounding can be detected at the same position. Without this padding, we would have to collect the mantissa overflow information from six bit positions. The padding therefore saves additional delay along the critical path thru the adder. C. Arithmetical Engine Figure 1. Dataflow of the DQE Unit The Arithmetical Engine (AREN) is the heart of the DQE. It computes sum and absolute difference of the inputs and can be configured to include injection rounding, Multi-cycle operations, like quad precision multiply, to perform a post rounding correction. Furthermore, it reuse the unit dataflow and loop in specific stages of the evaluates result information used for the setting of the pipeline to reduce the size of multiplication hardware IEEE exceptions. The rounding injection happens at two necessary to satisfy area and power budgets [12]. positions in parallel to account for a potential mantissa overflow. The post rounding correction performs a one A. Unpack and Swap digit (decimal numbers) or one bit (binary numbers) The DQE supports seven floating-point data types with correction shift. Details are provided in section III. different mantissa width: • Decimal: QP 134b (34 digits) D. Normalize and Round DP 64b (16 digits) This step consists of two parallel circuits. One circuit SP 28b (7 digits) normalizes the result of the arithmetical engine, while the • Hexadecimal QP 112b (28 digits) other circuit selects the appropriate rounded result which is DP 56b (14 digits) the post rounding correction mentioned above. Decimal SP 28b (7 digits) numbers always use the rounding path as they have been • Binary QP 113b aligned to their target quantum in the shifter step. For 88 binary numbers, subtraction can lead to the loss of one or G. Binary Multiplier more most significant bits and requires in this case The binary quad precision multiplier is depicted in normalization of the result instead of rounding.
Recommended publications
  • Fujitsu SPARC64™ X+/X Software on Chip Overview for Developers]
    White paper [Fujitsu SPARC64™ X+/X Software on Chip Overview for Developers] White paper Fujitsu SPARC64™ X+/X Software on Chip Overview for Developers Page 1 of 13 www.fujitsu.com/sparc White paper [Fujitsu SPARC64™ X+/X Software on Chip Overview for Developers] Table of Contents Table of Contents 1 Software on Chip Innovative Technology 3 2 SPARC64™ X+/X SIMD Vector Processing 4 2.1 How Oracle Databases take advantage of SPARC64™ X+/X SIMD vector processing 4 2.2 How to use of SPARC64™ X+/X SIMD instructions in user applications 5 2.3 How to check if the system and operating system is capable of SIMD execution? 6 2.4 How to check if SPARC64™ X+/X SIMD instructions indeed have been generated upon compilation of a user source code? 6 2.5 Is SPARC64™ X+/X SIMD implementation compatible with Oracle’s SPARC SIMD? 6 3 SPARC64™ X+/X Decimal Floating Point Processing 8 3.1 How Oracle Databases take advantage of SPARC64™ X+/X Decimal Floating-Point 8 3.2 Decimal Floating-Point processing in user applications 8 4 SPARC64™ X+/X Extended Floating-Point Registers 9 4.1 How Oracle Databases take advantage of SPARC64™ X+/X Decimal Floating-Point 9 5 SPARC64™ X+/X On-Chip Cryptographic Processing Capabilities 10 5.1 How to use the On-Chip Cryptographic Processing Capabilities 10 5.2 How to use the On-Chip Cryptographic Processing Capabilities in user applications 10 6 Conclusions 12 Page 2 of 13 www.fujitsu.com/sparc White paper [Fujitsu SPARC64™ X+/X Software on Chip Overview for Developers] Software on Chip Innovative Technology 1 Software on Chip Innovative Technology Fujitsu brings together innovations in supercomputing, business computing, and mainframe computing in the Fujitsu M10 enterprise server family to help organizations meet their business challenges.
    [Show full text]
  • Chapter 2 DIRECT METHODS—PART II
    Chapter 2 DIRECT METHODS—PART II If we use finite precision arithmetic, the results obtained by the use of direct methods are contaminated with roundoff error, which is not always negligible. 2.1 Finite Precision Computation 2.2 Residual vs. Error 2.3 Pivoting 2.4 Scaling 2.5 Iterative Improvement 2.1 Finite Precision Computation 2.1.1 Floating-point numbers decimal floating-point numbers The essence of floating-point numbers is best illustrated by an example, such as that of a 3-digit floating-point calculator which accepts numbers like the following: 123. 50.4 −0.62 −0.02 7.00 Any such number can be expressed as e ±d1.d2d3 × 10 where e ∈{0, 1, 2}. (2.1) Here 40 t := precision = 3, [L : U] := exponent range = [0 : 2]. The exponent range is rather limited. If the calculator display accommodates scientific notation, e g., 3.46 3 −1.56 −3 then we might use [L : U]=[−9 : 9]. Some numbers have multiple representations in form (2.1), e.g., 2.00 × 101 =0.20 × 102. Hence, there is a normalization: • choose smallest possible exponent, • choose + sign for zero, e.g., 0.52 × 102 → 5.20 × 101, 0.08 × 10−8 → 0.80 × 10−9, −0.00 × 100 → 0.00 × 10−9. −9 Nonzero numbers of form ±0.d2d3 × 10 are denormalized. But for large-scale scientific computation base 2 is preferred. binary floating-point numbers This is an important matter because numbers like 0.2 do not have finite representations in base 2: 0.2=(0.001100110011 ···)2.
    [Show full text]
  • Decimal Floating Point for Future Processors Hossam A
    1 Decimal Floating Point for future processors Hossam A. H. Fahmy Electronics and Communications Department, Cairo University, Egypt Email: [email protected] Tarek ElDeeb, Mahmoud Yousef Hassan, Yasmin Farouk, Ramy Raafat Eissa SilMinds, LLC Email: [email protected] F Abstract—Many new designs for Decimal Floating Point (DFP) hard- Simple decimal fractions such as 1=10 which might ware units have been proposed in the last few years. To date, only represent a tax amount or a sales discount yield an the IBM POWER6 and POWER7 processors include internal units for infinitely recurring number if converted to a binary decimal floating point processing. We have designed and tested several representation. Hence, a binary number system with a DFP units including an adder, multiplier, divider, square root, and fused- multiply-add compliant with the IEEE 754-2008 standard. This paper finite number of bits cannot accurately represent such presents the results of using our units as part of a vector co-processor fractions. When an approximated representation is used and the anticipated gains once the units are moved on chip with the in a series of computations, the final result may devi- main processor. ate from the correct result expected by a human and required by the law [3], [4]. One study [5] shows that in a large billing application such an error may be up to 1 WHY DECIMAL HARDWARE? $5 million per year. Ten is the natural number base or radix for humans Banking, billing, and other financial applications use resulting in a decimal number system while a binary decimal extensively.
    [Show full text]
  • A Decimal Floating-Point Speciftcation
    A Decimal Floating-point Specification Michael F. Cowlishaw, Eric M. Schwarz, Ronald M. Smith, Charles F. Webb IBM UK IBM Server Division P.O. Box 31, Birmingham Rd. 2455 South Rd., MS:P310 Warwick CV34 5JL. UK Poughkeepsie, NY 12601 USA [email protected] [email protected] Abstract ing is required. In the fixed point formats, rounding must be explicitly applied in software rather than be- Even though decimal arithmetic is pervasive in fi- ing provided by the hardware. To address these and nancial and commercial transactions, computers are other limitations, we propose implementing a decimal stdl implementing almost all arithmetic calculations floating-point format. But what should this format be? using binary arithmetic. As chip real estate becomes This paper discusses the issues of defining a decimal cheaper it is becoming likely that more computer man- floating-point format. ufacturers will provide processors with decimal arith- First, we consider the goals of the specification. It metic engines. Programming languages and databases must be compliant with standards already in place. are expanding the decimal data types available whale One standard we consider is the ANSI X3.274-1996 there has been little change in the base hardware. As (Programming Language REXX) [l]. This standard a result, each language and application is defining a contains a definition of an integrated floating-point and different arithmetic and few have considered the efi- integer decimal arithmetic which avoids the need for ciency of hardware implementations when setting re- two distinct data types and representations. The other quirements. relevant standard is the ANSI/IEEE 854-1987 (Radix- In this paper, we propose a decimal format which Independent Floating-point Arithmetic) [a].
    [Show full text]
  • Floating Point Numbers
    Floating Point Numbers Yes, this is the moon; our own moon. Not the final frontier but the first out post there to be exploited by our greed of consumable minerals. Soon we the human race will be there blasting the mines and depriving the orb with its riches. Do we know how much is there to steal? Pop Quiz : What is the surface area of moon? 2 Answer : The surface area of a sphere is: 4 * π * R Radius of moon is about 1738.2 KM; plugging the values: 4 * 3.14159265 * 1738.2 * 1738.2 = 37967268 .598162344 KM 2. That would be 37.9 million square kilometers. Two of our biggest states Texas and California are 1.7 and 0.7 million square kilometers respectively. Surface if the Moon would be about 2/3 of the area of North America or about the size of Russia, that is close to the 38 million Sq Km Now you, all mainframe assembly language tool developers i.e. old time MF programmers try doing this calculation in S/390 Assembly. Give yourself few minutes. Address Object Code S/390 Assembly Reg./ Memory after execution 000036 B375 0010 LZDR R1 FPR1 00000000_00000000 00003A ED10 C08C 0024 LDE R1,FOUR FPR1 41400000_00000000 000040 7C10 C090 MDE R1,PIE FPR1 41C90FDC_00000000 000044 7C10 C094 MDE R1,RADIUS FPR1 445552DD_F73CD400 000048 7C10 C094 MDE R1,RADIUS FPR1 47243559_FE390700 00004C B3C9 0011 CGDR R1,0,R1 GR1 0243559F 000050 5010 C098 ST R1,FIXED 000054 4E10 C09C CVD R1,DECIMAL 00000003 7967263C 000088 45B27570 FLOAT DC X'45B27570' 00008C 41400000 FOUR DC E'4' 000090 413243F7 PIE DC E'3.14159265E+0' 000094 436CA333 RADIUS DC E'1.7382E+3' 000098 00000000 FIXED DC F'0' 00009C 0000000000000000 DECIMAL DC 2F'0' This is one way of solving the problem mentioned on previous slide and, of course, we all know that there are several different ways to solve any programming problem and your way is always better than mine.
    [Show full text]
  • High Performance Hardware Design of IEEE Floating Point Adder in FPGA with VHDL
    International Journal of Mechatronics, Electrical and Computer Technology Vol. 3(8), Jul, 2013, pp 81 - 101, ISSN: 2305-0543 Available online at: http://www.aeuso.org © Austrian E-Journals of Universal Scientific Organization - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - High Performance Hardware Design Of IEEE Floating Point Adder In FPGA With VHDL Ali Farmani Department of Electrical and Computer Engineering,University of Tabriz,Tabriz,Iran *Corresponding Author's E-mail: [email protected] Abstract In this paper, we present the design and implementation of a floating-point adder that is compliant with the current draft revision of this standard. We provide synthesis results indicating the estimated area and delay for our design when it is pipelined to various depths.Our work is an important design resource for development of floating-point adder hardware on FPGAs. All sub components within the floating-point adder and known algorithms are researched and implemented to provide versatility and flexibility to designers as an alternative to intellectual property where they have no control over the design. The VHDL code is open source and can be used by designers with proper reference. Each of the sub-operation is researched for different implementations and then synthesized onto a Spartan FPGA device to be chosen for best performance. Our implementation of the standard algorithm occupied 370 slices and had an overall delay of 31 ns. The standard algorithm was pipelined into five stages to run at 100 MHz which took an area of 324 slices and power is 30mw. Keywords: Floating Point Adder, FPGA, VHDL, Pipeline. 1. Introduction High performance floating point adders are essential building blocks of microprocessors and floating point DSP data paths.
    [Show full text]
  • Names for Standardized Floating-Point Formats
    Names WORK IN PROGRESS April 19, 2002 11:05 am Names for Standardized Floating-Point Formats Abstract I lack the courage to impose names upon floating-point formats of diverse widths, precisions, ranges and radices, fearing the damage that can be done to one’s progeny by saddling them with ill-chosen names. Still, we need at least a list of the things we must name; otherwise how can we discuss them without talking at cross-purposes? These things include ... Wordsize, Width, Precision, Range, Radix, … all of which must be both declarable by a computer programmer, and ascertainable by a program through Environmental Inquiries. And precision must be subject to truncation by Coercions. Conventional Floating-Point Formats Among the names I have seen in use for floating-point formats are … float, double, long double, real, REAL*…, SINGLE PRECISION, DOUBLE PRECISION, double extended, doubled double, TEMPREAL, quad, … . Of these floating-point formats the conventional ones include finite numbers x all of the form x = (–1)s·m·ßn+1–P in which s, m, ß, n and P are integers with the following significance: s is the Sign bit, 0 or 1 according as x ≥ 0 or x ≤ 0 . ß is the Radix or Base, two for Binary and ten for Decimal. (I exclude all others). P is the Precision measured in Significant Digits of the given radix. m is the Significand or Coefficient or (wrongly) Mantissa of | x | running in the range 0 ≤ m ≤ ßP–1 . ≤ ≤ n is the Exponent, perhaps Biased, confined to some interval Nmin n Nmax . Other terms are in use.
    [Show full text]
  • SPARC64™ X / X+ Specification
    SPARC64™ X / X+ Specification Distribution: Public Privilege Levels: Nonprivileged Ver 29.0 2015/01/27 Fujitsu Limited Fujitsu Limited 4-1-1 Kamikodanaka Nakahara-ku, Kawasaki, 211-8588 Japan Copyright© 2007 - 2015 Fujitsu Limited, 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan. All rights reserved. This product and related documentation are protected by copyright and distributed under licenses restricting their use, copying, distribution, and decompilation. No part of this product or related documentation may be reproduced in any form by any means without prior written authorization of Fujitsu Limited and its licensors, if any. The product(s) described in this book may be protected by one or more U.S. patents, foreign patents, or pending applications. TRADEMARKS SPARC® is a registered trademark of SPARC International, Inc. Products bearing SPARC trademarks are based on an architecture developed by Oracle and / or its affiliates. SPARC64™ is a registered trademark of SPARC International, Inc., licensed exclusively to Fujitsu Limited. UNIX is a registered trademark of The Open Group in the United States and other countries. Fujitsu and the Fujitsu logo are trademarks of Fujitsu Limited. This publication is provided “as is” without warranty of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability, fitness for a particular purpose, or noninfringement. This publication could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein; these changes will be incorporated in new editions of the publication. Fujitsu Limited may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.
    [Show full text]
  • Numerical Computation Guide
    Numerical Computation Guide A Sun Microsystems, Inc. Business 2550 Garcia Avenue Mountain View, CA 94043 U.S.A. Part No.: 801-7639-10 Revision A, August 1994 1994 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved. This product and related documentation are protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and the University of California, respectively. Third-party font software in this product is protected by copyright and licensed from Sun’s font suppliers. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. TRADEMARKS Sun, the Sun logo, Sun Microsystems, Sun Microsystems Computer Corporation, Solaris, are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and certain other countries. UNIX is a registered trademark of Novell, Inc., in the United States and other countries; X/Open Company, Ltd., is the exclusive licensor of such trademark. OPEN LOOK® is a registered trademark of Novell, Inc.
    [Show full text]
  • In Using the GNU Compiler Collection (GCC)
    Using the GNU Compiler Collection For gcc version 6.1.0 (GCC) Richard M. Stallman and the GCC Developer Community Published by: GNU Press Website: http://www.gnupress.org a division of the General: [email protected] Free Software Foundation Orders: [email protected] 51 Franklin Street, Fifth Floor Tel 617-542-5942 Boston, MA 02110-1301 USA Fax 617-542-2652 Last printed October 2003 for GCC 3.3.1. Printed copies are available for $45 each. Copyright c 1988-2016 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with the Invariant Sections being \Funding Free Software", the Front-Cover Texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the section entitled \GNU Free Documentation License". (a) The FSF's Front-Cover Text is: A GNU Manual (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development. i Short Contents Introduction ::::::::::::::::::::::::::::::::::::::::::::: 1 1 Programming Languages Supported by GCC ::::::::::::::: 3 2 Language Standards Supported by GCC :::::::::::::::::: 5 3 GCC Command Options ::::::::::::::::::::::::::::::: 9 4 C Implementation-Defined Behavior :::::::::::::::::::: 373 5 C++ Implementation-Defined Behavior ::::::::::::::::: 381 6 Extensions to
    [Show full text]
  • Cycle-Accurate Evaluation of Software-Hardware Co-Design of Decimal
    TABLE I: Development environment Input X,Y Description Compiler GNU GCC for RISC-V as a cross compiler [14] Yes Special? ISA simulator SPIKE [15] Programming language High-level: Scale, C++, and C Hardware description language: Chisel [16] No Assembly: RISC-V assembly Sign X ,Y Exp X ,Y Coeff X ,Y ISA RISC-V [12] s s e e c c Processor core Rocket [17] Temp Exp Convert to BCD Decimal Software Library decNumber C library [2] Testing Arithmetic operations verification database [18] = Xe + Ye Sign Result = X pp[0] = 0 pp[1] = Xc Set i = 1 • The sign and initial exponent are calculated by doing XOR and addition operation between the signs and Yes exponents of multiplier and multiplicand. s pp[i+1] = i<10 ⊕ Y pp[i]+ pp[1] ? • Coefficient multiplication is performed to produce the s No i = i+1 coefficient of the result. j = # of digit in Yc • If the result exceeds the precision then rounding opera- Result = 0 tion is applied with various rounding algorithm [4]. • Finally, the exponents are adjusted accordingly. Yes Result = Special Value Check rounding j = 0 The process of such multiplication can be designed using a ? No combination of software and hardware. Some solutions have th been proposed in [9]. In this paper, we propose an evaluation Exp Result = Temp k = j digit Yc exp + Rounding Digit framework and evaluate Method-1 of [9] as an example. pp[k] decimal Combine sign, left shift Figure 1 shows an overall flow of Method-1 that is one exponent, and of the solutions in [9].
    [Show full text]
  • Floating Point Arithmetic Chapter 14
    Floating Point Arithmetic Chapter 14 Although integers provide an exact representation for numeric values, they suffer from two major drawbacks: the inability to represent fractional values and a limited dynamic range. Floating point arithmetic solves these two problems at the expense of accuracy and, on some processors, speed. Most programmers are aware of the speed loss associated with floating point arithmetic; however, they are blithely unware of the prob- lems with accuracy. For many applications, the benefits of floating point outweigh the disadvantages. However, to properly use floating point arithmetic in any program, you must learn how floating point arithmetic operates. Intel, understanding the importance of floating point arithmetic in modern programs, provided support for floating point arithmetic in the ear- liest designs of the 8086 – the 80x87 FPU (floating point unit or math coprocessor). How- ever, on processors eariler than the 80486 (or on the 80486sx), the floating point processor is an optional device; it this device is not present you must simulate it in software. This chapter contains four main sections. The first section discusses floating point arithmetic from a mathematical point of view. The second section discusses the binary floating point formats commonly used on Intel processors. The third discusses software floating point and the math routines from the UCR Standard Library. The fourth section discusses the 80x87 FPU chips. 14.0 Chapter Overview This chapter contains four major sections: a description of floating point formats and operations (two sections), a discussion of the floating point support in the UCR Standard Library, and a discussion of the 80x87 FPU (floating point unit).
    [Show full text]