Morphological Assessments and Phylogenetic Relationships of the Seychellean Frogs of the Family Sooglossidae (Amphibia: Anura) Ronald A

Total Page:16

File Type:pdf, Size:1020Kb

Morphological Assessments and Phylogenetic Relationships of the Seychellean Frogs of the Family Sooglossidae (Amphibia: Anura) Ronald A Zoological Studies 46(3): 322-335 (2007) Morphological Assessments and Phylogenetic Relationships of the Seychellean Frogs of the Family Sooglossidae (Amphibia: Anura) Ronald A. Nussbaum1 and Sheng-Hai Wu2,* 1Division of Amphibians and Reptiles, Museum of Zoology, University of Michigan, Ann Arbor, MI 48109-1079, USA 2Department of Life Sciences, National Chung-Hsing University, 250 Kuo-Kwang Road, Taichung 402, Taiwan (Accepted December 21, 2006) Ronald A. Nussbaum and Sheng-Hai Wu (2007) Morphological assessments and phylogenetic relationships of the Seychellean frogs of the family Sooglossidae (Amphibia: Anura). Zoological Studies 46(3): 322-335. The frog family Sooglossidae is endemic to the Seychelles Is. in the Indian Ocean, and consists of 2 genera and 4 species, the monotypic Nesomantis and Sooglossus (3 species). Many previous studies have suggested that Sooglossus sechellensis is more similar to Nesomantis thomasseti than to its congener, S. gardineri. Based on an extensive dataset of 188 morphological characters, we concluded that Nesomantis and S. sechel- lensis form a monophyletic group with the exclusion of S. gardineri (and S. pipilodryas). We therefore have established a new genus, Sechellophryne, to accommodate the latter 2 species. http://zoolstud.sinica.edu.tw/Journals/46.3/322.pdf Key words: Nesomantis thomasseti, Sooglossus gardineri, Sooglossus pipilodryas, Sooglossus sechellensis, Sechellophyrne gen. nov. The granitic Seychelles Is. lie in the western rious until the late 20th century when continental Indian Ocean between 4 and 5 S latitude and drift gained respectability, and the formation of the 55 and 56 E longitude, °about 1600° km east of western Indian Ocean through the breakup of Africa° (Mombasa),° 926 km northeast of Gondwanaland began to be understood. Madagascar (Antsiranana), and 2900 km south- The amphibian fauna of the Seychelles con- west of India (Mumbai). These islands have fasci- sists of 13 species (6 caecilians and 7 frogs), 12 of nated biogeographers and geologists since the which are endemic. The single non-endemic late 19th century when Darwin (1859) and Wallace species, the ranid frog, Ptychadena mascarenien- (1880) pointed out that they are continental in sis, is widespread in sub-Saharan Africa, character in spite of their great distance from large Madagascar, and the Mascarene Is. It may have continental blocks. been introduced to the Seychelles by humans Among the unusual features of the (Mertens 1934, Vences et al. 2004, but see Seychelles is the presence of endemic amphib- Nussbaum 1984). ians. Wallace (1880) recognized amphibians as a The 6 species of caecilians (in 3 endemic group with very limited means of transoceanic dis- genera) in the Seychelles are monophyletic persal, and their presence in the Seychelles was (Nussbaum and Ducey 1988, Haas et al. 1993, an important factor that prompted him to classify Hedges and Maxson 1993, Nussbaum unpubl. the Seychelles as“continental”as opposed to data), and molecular data (Haas et al. 1993) sug- “oceanic”islands. However, the means by which gest that the lineage has been present in the amphibians and other sedentary groups may have Seychelles for at least 30 million yrs. Wilkinson et populated the granitic Seychelles remained myste- al. (2002 2003) suggested that the nearest relative *To whom correspondence and reprint requests should be addressed. Tel: 886-4-22840319 ext. 711. Fax: 886-4-22874740. E-mail:[email protected] 322 Nussbaum and Wu -- Morphological Phylogeny of Sooglossidae 323 of Seychellean caecilians is the Indian genus The purposes of this paper were to (1) use a Gegeneophis. cladistic methodology applied to a broad morpho- Of the 6 endemic species of frogs, logical database to confirm or refute the mono- Tachycnemis seychellensis belongs to a monotyp- phyletic status of the sooglossids; and (2) deter- ic (Nussbaum and Wu 1995) hyperoliid genus. It mine the cladistic relationships within the family. is placed either in a monotypic subfamily (Tachycneminae) (Channing 1989), sister to the Taxonomic history remaining hyperoliids or to the Malagasy Heterixalus (Frost et al. 2006). Boettger (1896) described the first sooglossid The remaining 4 Seychellean frogs constitute as Arthroleptis sechellensis, thereby assigning the the 2 genera of Nesomantis (thomasseti) and species to a group of African ranids. Boulenger Sooglossus (gardineri, pipilodryas, and sechellen- (1906) transferred Arthroleptis sechellensis to a sis) of the endemic family, the Sooglossidae. At new genus, Sooglossus, on the basis of tongue the time of their discovery at the end of the 19th morphology (entire and elliptical), but retained the century, the sooglossids were assigned to the fam- species among the ranids. Boulenger (1909) ilies Ranidae and Bufonidae. Noble (1926) placed described Nesomantis thomasseti as a new frog them together as a distinctive group of the genus and species from Mahé I., Seychelles. He Pelobatidae, which he later (Noble 1931) formally wrote that Nesomantis is allied to Sooglossus, but named the Sooglossinae; but this was viewed with unlike the latter genus, Nesomantis has vomerine skepticism based on biogeographic considerations teeth and lacks a claw-like, dermal tip to the digits. (e.g., Darlington, 1957). Boulenger viewed S. sechellensis as a dwarf Griffiths (1963) defined the family Nesomantis. He did not comment on its relation- Sooglossidae and placed it among the ranoids, ships to other frogs, although he apparently and this was accepted by most subsequent assumed it was a ranid close to Arthroleptis and authors (e.g., Savage 1973, Duellman 1975). other African ranoids. Shortly afterwards, However, other phylogenetic hypotheses also Boulenger (1911) described a 3rd Seychellean frog abound, mainly as the result of using different as Nectophryne gardineri, believing it to belong to characters and species (as a myobatrachid: Lynch an African bufonid genus, because of webbing at 1973, Nussbaum 1979 1980, Duellman and Trueb the base of the toes. 1986, Ford and Canatella 1993; as a lepto- Noble (1926) noted pelobatid characteristics dactylid: Laurent 1975, Tyson 1987; as a group in all three of these Seychellean frogs, and conse- including dendrobatids and microhyloids: quently, he (1931) established a new pelobatid Blommers-Schlösser 1993; as basal to the subfamily, the Sooglossinae, to accommodate all 3 Hyloidea: Hoegg et al. 2004; as basal in the species. Hyloides: Frost et al. 2006; as basal to the Noble (1926) stated that the differences ranoids: Tyler 1985; or as a sister to the recently between S. sechellensis and Nesomantis“are very described Indian Nasikabatrachidae: Biju and trivial”, but that it is“well to utilize these generic Bossuyt 2003). names until the anatomy of N. thomasseti and S. Although the phylogenetic position of the sechellensis is better known.” He indicated that a , sooglossids is unresolved, Noble s (1926) con- separate genus might be justified for Nec. gar- tention that they are monophyletic has not been dineri, but instead he opted for expanding the defi- refuted (Griffiths 1959 1963, Nussbaum 1979 1980 nition of Sooglossus and placing it in the latter 1982, Tyler 1985, Green et al. 1988). genus as Soo. gardineri. It appears that the classification of the 3 The recently described Nasikabatrachidae species (prior to the description of S. pipilodryas) from the Western Ghats of India is considered to did not accurately reflect their phylogenetic rela- be the sister group of Sooglossidae based on mol- tionships. Comparisons of chromosomes ecular evidence (Biju and Bossuyt 2003). (Nussbaum 1979), advertisement calls (Nussbaum However, based on the limited morphological evi- et al. 1982), and isozymes (Green et al. 1988) all dence from their description, it is more like the suggested that Sooglossus gardineri is the most African Hemisotidae in the unique pectoral girdle divergent species and that it, and not Nesomantis architecture, external morphology, and life history thomasseti, should be placed in a separate genus. (Scott 2005). However, Frost et al. (2006) found This conclusion, based on phenetics, needs to be further support for a sooglossid-nasikabatrachid confirmed using cladistic methods. relationship and considered Nasikabatrachidae to 324 Zoological Studies 46(3): 322-335 (2007) be a junior synonym of the Sooglossidae. 1119 equally parsimonious cladograms had a con- Gerlach and Willi (2002) described Soo. pipi- sistency index of 0.243. Sooglossidae monophyly lodryas from the island of Silhouette as a new was supported by parsimony and bootstrapping cryptic species closely related to S. gardineri. If (Fig. 1). Soo. pipilodryas proves to be a valid species (dis- Twenty-four synapotypies diagnose the family, tinct from S. gardineri), then it is clearly the sister and bootstrap support for the clade was strong. species of S. gardineri, and its existence will not Nesomantis thomasseti and Soo. sechellensis affect the phylogenetic analysis that follows. share 7 synapotypies, and bootstrap support for the grouping was moderately strong, thus support- ing the monophyly of the 2 species with the exclu- MATERIALS AND METHODS sion of Soo. gardineri. The family Sooglossidae is grouped with the We recorded morphological characters from Dendrobatidae and Leptodactylidae, but the boot- 36 frog species representing 12 families (Appendix strapping support was low. Firmsternal families 1). The data set include 188 characters and is part (Arthroleptidae, Microhylidae, and Petropedetidae) of
Recommended publications
  • Amphibians in Zootaxa: 20 Years Documenting the Global Diversity of Frogs, Salamanders, and Caecilians
    Zootaxa 4979 (1): 057–069 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Review ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4979.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:972DCE44-4345-42E8-A3BC-9B8FD7F61E88 Amphibians in Zootaxa: 20 years documenting the global diversity of frogs, salamanders, and caecilians MAURICIO RIVERA-CORREA1*+, DIEGO BALDO2*+, FLORENCIA VERA CANDIOTI3, VICTOR GOYANNES DILL ORRICO4, DAVID C. BLACKBURN5, SANTIAGO CASTROVIEJO-FISHER6, KIN ONN CHAN7, PRISCILLA GAMBALE8, DAVID J. GOWER9, EVAN S.H. QUAH10, JODI J. L. ROWLEY11, EVAN TWOMEY12 & MIGUEL VENCES13 1Grupo Herpetológico de Antioquia - GHA and Semillero de Investigación en Biodiversidad - BIO, Universidad de Antioquia, Antioquia, Colombia [email protected]; https://orcid.org/0000-0001-5033-5480 2Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina [email protected]; https://orcid.org/0000-0003-2382-0872 3Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación Miguel Lillo, 4000 San Miguel de Tucumán, Argentina [email protected]; http://orcid.org/0000-0002-6133-9951 4Laboratório de Herpetologia Tropical, Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Rodovia Jorge Amado Km 16 45662-900 Ilhéus, Bahia, Brasil [email protected]; https://orcid.org/0000-0002-4560-4006 5Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, Florida, 32611, USA [email protected]; https://orcid.org/0000-0002-1810-9886 6Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av.
    [Show full text]
  • Full Text in Pdf Format
    Vol. 78: 87–95, 2007 DISEASES OF AQUATIC ORGANISMS Published December 13 doi: 10.3354/dao01861 Dis Aquat Org Survey for the amphibian chytrid Batrachochytrium dendrobatidis in Hong Kong in native amphibians and in the international amphibian trade Jodi J. L. Rowley1, 5,*, Simon Kin Fung Chan2, Wing Sze Tang2, Richard Speare3, Lee F. Skerratt 4, Ross A. Alford1, Ka Shing Cheung 2, Ching Yee Ho2, Ruth Campbell4 1School of Marine and Tropical Biology and Amphibian Disease Ecology Group, James Cook University, Townsville, Queensland, Australia 4811 2Herpetofauna Working Group, Agriculture, Fisheries and Conservation Department, The Government of the Hong Kong Special Administrative Region, 7/F, Cheung Sha Wan Government Offices, 303 Cheung Sha Wan Road, Kowloon, Hong Kong, China 3School of Public Health, Tropical Medicine and Rehabilitation and Amphibian Disease Ecology Group, James Cook University, Townsville, Queensland, Australia 4811 4School of Veterinary and Biomedical Sciences and Amphibian Disease Ecology Group, James Cook University, Townsville, Queensland, Australia 4811 5Present address: Conservation International Indo-Burma, PO Box 1356, Phnom Penh, Cambodia ABSTRACT: Chytridiomycosis, caused by the pathogen Batrachochytrium dendrobatidis, is respon- sible for many amphibian declines and has been identified in wild amphibian populations on all con- tinents where they exist, except for Asia. In order to assess whether B. dendrobatidis is present on the native amphibians of Hong Kong, we sampled wild populations of Amolops hongkongensis, Paa exil- ispinosa, P. spinosa and Rana chloronota during 2005–2006. Amphibians infected with B. dendro- batidis have been found in the international trade, so we also examined the extent and nature of the amphibian trade in Hong Kong during 2005–2006, and assessed whether B.
    [Show full text]
  • A New Species of the Genus Nasikabatrachus (Anura, Nasikabatrachidae) from the Eastern Slopes of the Western Ghats, India
    Alytes, 2017, 34 (1¢4): 1¢19. A new species of the genus Nasikabatrachus (Anura, Nasikabatrachidae) from the eastern slopes of the Western Ghats, India S. Jegath Janani1,2, Karthikeyan Vasudevan1, Elizabeth Prendini3, Sushil Kumar Dutta4, Ramesh K. Aggarwal1* 1Centre for Cellular and Molecular Biology (CSIR-CCMB), Uppal Road, Tarnaka, Hyderabad, 500007, India. <[email protected]>, <[email protected]>. 2Current Address: 222A, 5th street, Annamalayar Colony, Sivakasi, 626123, India.<[email protected]>. 3Division of Vertebrate Zoology, Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York NY 10024-5192, USA. <[email protected]>. 4Nature Environment and Wildlife Society (NEWS), Nature House, Gaudasahi, Angul, Odisha. <[email protected]>. * Corresponding Author. We describe a new species of the endemic frog genus Nasikabatrachus,from the eastern slopes of the Western Ghats, in India. The new species is morphologically, acoustically and genetically distinct from N. sahyadrensis. Computed tomography scans of both species revealed diagnostic osteological differences, particularly in the vertebral column. Male advertisement call analysis also showed the two species to be distinct. A phenological difference in breeding season exists between the new species (which breeds during the northeast monsoon season; October to December), and its sister species (which breeds during the southwest monsoon; May to August). The new species shows 6 % genetic divergence (K2P) at mitochondrial 16S rRNA (1330 bp) partial gene from its congener, indicating clear differentiation within Nasikabatra- chus. Speciation within this fossorial lineage is hypothesized to have been caused by phenological shift in breeding during different monsoon seasons—the northeast monsoon in the new species versus southwest monsoon in N.
    [Show full text]
  • A New Species of Rain Frog from Namaqualand, South Africa (Anura: Brevicipitidae: Breviceps)
    Zootaxa 3381: 62–68 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) A new species of Rain Frog from Namaqualand, South Africa (Anura: Brevicipitidae: Breviceps) ALAN CHANNING Biodiversity and Conservation Biology Department, University of the Western Cape, Private Bag X17, Bellville, 7525, South Africa. E-mail: [email protected] Abstract Breviceps branchi sp. nov. is described from coastal Namaqualand, South Africa. It is most similar to Breviceps na- maquensis in colour pattern and overall form, from which it differs by hand and foot morphology and 16S rRNA sequence. Key words: Breviceps, new species, Namaqualand, 16S rRNA, South Africa Introduction The genus Breviceps is known from South Africa northwards to Kenya, and as far west as Angola, with the closely related Balebreviceps found in Ethiopia (IUCN 2011). There are presently 15 species recognised (Frost 2011). The early taxonomy of the genus Breviceps was reviewed by Power (1926), by which time seven species were already known, including the Namaqualand endemics, B. macrops and B. namaquensis. Power (1926) discussed a number of characters that might be useful in separating species of rain frogs. On the basis of differences in 16S rRNA and morphology, I describe a new species of Breviceps from Namaqualand. Material and methods Sampling. A single specimen was collected in Namaqualand, South Africa. A small tissue sample was removed from thigh muscle, and the specimen was fixed in formalin for 24 h, then transferred to 70% ethanol for deposition in the herpetological collection of the Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University, Berlin (ZMB).
    [Show full text]
  • Male Bufo Bufo (Anura: Bufonidae) Passionately Embracing a Bulge of Mud
    Correspondence ISSN 2336-9744 The journal is available on line at www.ecol-mne.com Strange affection: male Bufo bufo (Anura: Bufonidae) passionately embracing a bulge of mud SONJA ĐOR ĐEVI Ć1,2,* and ALEKSANDAR SIMOVI Ć2 1University of Belgrade, Faculty of Biology, Institute of Zoology. Studentski trg 16, 11000 Belgrade, Serbia 2Serbian Herpetological Society “Milutin Radovanovi ć”. Bulevar despota Stefana 142, 11000 Belgrade, Serbia. E- mail: [email protected] *Corresponding author. E-mail: [email protected] Received 13 March 2014 │ Accepted 20 March 2014 │ Published online 21 March 2014. On March 11 th 2014, app. between 10 AM and noon, we visited a pond on the Avala Mt. (44°40.879 ′ N, 20°33.098 ′ E, 230 m a.s.l.). Its north–northeastern portion, overgrown with reeds, was crowded with common toads, Bufo bufo (Linnaeus, 1758). Males were vocalizing, chasing females (and males), struggling to clasp them in firm grip; we observed several “mating balls” – three to ten males were vigorously fighting over a single female. On the margin of that mating frenzy, at the edge of the pond, we observed a silent, lonely male holding on to a bulge of mud (Fig. 1). He was literally motionless in that position for at least half an hour (recorded time). Figure 1. Male common toad firmly grasping a muddy protuberance (Photo: S. Đor đevi ć) Anurans are notorious for making mistakes during mating. Their erroneous amplexuses include conspecific males, dead conspecifics of both sexes, other anuran species, caudates, fish, small tortoises, etc., and even inanimate floating objects (Banta, 1914; Davies & Halliday, 1979; Pearl et al., 2005; Simovi ć et al., 2014; Storm, 1952).
    [Show full text]
  • Ecology and Evolution of Phytotelm- Jreeding Anurans
    * ECOLOGY AND EVOLUTION OF PHYTOTELM- JREEDING ANURANS Richard M. Lehtinen Editor MISCELLANEOUS PUBLICATIONS I--- - MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN, NO. 193 Ann Ahr, November, 2004 PUBLICATIONS OF THE MUSEUM OF ZQOLOGY, UNIVERSITY OF MICHIGAN NO. 192 J. B. BURCII,Editot* Ku1.1: SI.EFANOAND JANICEPAPPAS, Assistant Editoras The publications of the Museum of Zoology, The University of Michigan, consist primarily of two series-the Miscellaneous P~rhlicationsand the Occasional Papers. Both serics were founded by Dr. Bryant Walker, Mr. Bradshaw H. Swales, and Dr. W. W. Newcomb. Occasionally the Museum publishes contributions outside of thesc series; beginning in 1990 these are titled Special Publications and are numbered. All s~tbmitledmanuscripts to any of the Museum's publications receive external review. The Occasiontrl Papers, begun in 1913, sellie as a mcdium for original studies based prii~cipallyupon the collections in the Museum. They are issued separately. When a sufficient number of pages has been printed to make a volume, a title page, table of contents, and an index are supplied to libraries and individuals on the mailing list for the series. The Mi.scelluneous Puhlicutions, initiated in 1916, include monographic studies, papers on field and museum techniques, and other contributions not within the scope of the Occasional Papers, and are publislled separately. It is not intended that they bc grouped into volumes. Each number has a title page and, when necessary, a table of contents. A complete list of publications on Mammals, Birds, Reptiles and Amphibians, Fishes, Insects, Mollusks, and other topics is avail- able. Address inquiries to Publications, Museum of Zoology, The University of Michigan, Ann Arbor, Michigan 48 109-1079.
    [Show full text]
  • ARAZPA YOTF Infopack.Pdf
    ARAZPA 2008 Year of the Frog Campaign Information pack ARAZPA 2008 Year of the Frog Campaign Printing: The ARAZPA 2008 Year of the Frog Campaign pack was generously supported by Madman Printing Phone: +61 3 9244 0100 Email: [email protected] Front cover design: Patrick Crawley, www.creepycrawleycartoons.com Mobile: 0401 316 827 Email: [email protected] Front cover photo: Pseudophryne pengilleyi, Northern Corroboree Frog. Photo courtesy of Lydia Fucsko. Printed on 100% recycled stock 2 ARAZPA 2008 Year of the Frog Campaign Contents Foreword.........................................................................................................................................5 Foreword part II ………………………………………………………………………………………… ...6 Introduction.....................................................................................................................................9 Section 1: Why A Campaign?....................................................................................................11 The Connection Between Man and Nature........................................................................11 Man’s Effect on Nature ......................................................................................................11 Frogs Matter ......................................................................................................................11 The Problem ......................................................................................................................12 The Reason
    [Show full text]
  • The First Endemic West African Vertebrate Family – a New Anuran Family Highlighting the Uniqueness of the Upper Guinean Biodiversity Hotspot Barej Et Al
    The first endemic West African vertebrate family – a new anuran family highlighting the uniqueness of the Upper Guinean biodiversity hotspot Barej et al. Barej et al. Frontiers in Zoology 2014, 11:8 http://www.frontiersinzoology.com/content/11/1/8 Barej et al. Frontiers in Zoology 2014, 11:8 http://www.frontiersinzoology.com/content/11/1/8 RESEARCH Open Access The first endemic West African vertebrate family – a new anuran family highlighting the uniqueness of the Upper Guinean biodiversity hotspot Michael F Barej1*, Andreas Schmitz2, Rainer Günther1, Simon P Loader3, Kristin Mahlow1 and Mark-Oliver Rödel1 Abstract Background: Higher-level systematics in amphibians is relatively stable. However, recent phylogenetic studies of African torrent-frogs have uncovered high divergence in these phenotypically and ecologically similar frogs, in particular between West African torrent-frogs versus Central (Petropedetes) and East African (Arthroleptides and Ericabatrachus) lineages. Because of the considerable molecular divergence, and external morphology of the single West African torrent-frog species a new genus was erected (Odontobatrachus). In this study we aim to clarify the systematic position of West African torrent-frogs (Odontobatrachus). We determine the relationships of torrent-frogs using a multi-locus, nuclear and mitochondrial, dataset and include genera of all African and Asian ranoid families. Using micro-tomographic scanning we examine osteology and external morphological features of West African torrent-frogs to compare them with other ranoids. Results: Our analyses reveal Petropedetidae (Arthroleptides, Ericabatrachus, Petropedetes) as the sister taxon of the Pyxicephalidae. The phylogenetic position of Odontobatrachus is clearly outside Petropedetidae, and not closely related to any other ranoid family.
    [Show full text]
  • 3Systematics and Diversity of Extant Amphibians
    Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water.
    [Show full text]
  • “HARROWFOOT FROGS” (ANURA: NEOBATRACHIA) INFERRED from Breviceps Mossambicus RE-DESCRIPTION (FORMERLY in BREVICIPITIDAE) from TANZANIA
    Journal of Biology and Nature 4(4): 200-205, 2015 ISSN: 2395-5376 (P), ISSN: 2395-5384 (O) International Knowledge Press www.ikpress.org RASTAPODIDAE FAM. NOV. OF “HARROWFOOT FROGS” (ANURA: NEOBATRACHIA) INFERRED FROM Breviceps mossambicus RE-DESCRIPTION (FORMERLY IN BREVICIPITIDAE) FROM TANZANIA NICODEMUS D. MATOJO 1* 1Department of Life Science, Mkwawa University College of Education, University of Dar es Salaam, P.O.Box 2513 Iringa, Tanzania. AUTHOR’S CONTRIBUTION The sole author designed, analyzed and interpreted and prepared the manuscript. Received: 26 th August 2015 Accepted: 31 st October 2015 Published: 24 th November 2015 Original Research Article __________________________________________________________________________________ ABSTRACT A new family comprising “Harrowfoot Frogs” (Anura: Neobatrachia) has been inferred from the Mozambique rain frog, Breviceps mossambicus , also known as flat-faced frog, re-described from Tanzania. Members have football-shaped eyes, horizontal pupils and smooth skin with no paratoid glands, typically like Hemisotidae – the shovelnose frogs also known as snout burrowers. Most importantly, the new family has a distinct heavy framework of keratinous harrow-like digging device on hind foot, correlating to one or two lesser foot tubercles known in the spadefoot toads (Pelobatidae and Scaphiopodidae) and true toads (Bufonidae), respectively. The identified harrow is made up of three forklets trifurcated on metatarsal 2 to 4 of each foot. All frogs with this homology fall under their own group, Rastapodidae
    [Show full text]
  • Yosemite Toad Conservation Assessment
    United States Department of Agriculture YOSEMITE TOAD CONSERVATION ASSESSMENT A Collaborative Inter-Agency Project Forest Pacific Southwest R5-TP-040 January Service Region 2015 YOSEMITE TOAD CONSERVATION ASSESSMENT A Collaborative Inter-Agency Project by: USDA Forest Service California Department of Fish and Wildlife National Park Service U.S. Fish and Wildlife Service Technical Coordinators: Cathy Brown USDA Forest Service Amphibian Monitoring Team Leader Stanislaus National Forest Sonora, CA [email protected] Marc P. Hayes Washington Department of Fish and Wildlife Research Scientist Science Division, Habitat Program Olympia, WA Gregory A. Green Principal Ecologist Owl Ridge National Resource Consultants, Inc. Bothel, WA Diane C. Macfarlane USDA Forest Service Pacific Southwest Region Threatened Endangered and Sensitive Species Program Leader Vallejo, CA Amy J. Lind USDA Forest Service Tahoe and Plumas National Forests Hydroelectric Coordinator Nevada City, CA Yosemite Toad Conservation Assessment Brown et al. R5-TP-040 January 2015 YOSEMITE TOAD WORKING GROUP MEMBERS The following may be the contact information at the time of team member involvement in the assessment. Becker, Dawne Davidson, Carlos Harvey, Jim Associate Biologist Director, Associate Professor Forest Fisheries Biologist California Department of Fish and Wildlife Environmental Studies Program Humboldt-Toiyabe National Forest 407 West Line St., Room 8 College of Behavioral and Social Sciences USDA Forest Service Bishop, CA 93514 San Francisco State University 1200 Franklin Way (760) 872-1110 1600 Holloway Avenue Sparks, NV 89431 [email protected] San Francisco, CA 94132 (775) 355-5343 (415) 405-2127 [email protected] Boiano, Daniel [email protected] Aquatic Ecologist Holdeman, Steven J. Sequoia/Kings Canyon National Parks Easton, Maureen A.
    [Show full text]
  • BOA5.1-2 Frog Biology, Taxonomy and Biodiversity
    The Biology of Amphibians Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) Phyllomedusidae: Agalychnis annae 5.1-2: Frog Biology, Taxonomy & Biodiversity Part 2, Neobatrachia Hylidae: Dendropsophus ebraccatus CLassification of Order: Anura † Triadobatrachus Ascaphidae Leiopelmatidae Bombinatoridae Alytidae (Discoglossidae) Pipidae Rhynophrynidae Scaphiopopidae Pelodytidae Megophryidae Pelobatidae Heleophrynidae Nasikabatrachidae Sooglossidae Calyptocephalellidae Myobatrachidae Alsodidae Batrachylidae Bufonidae Ceratophryidae Cycloramphidae Hemiphractidae Hylodidae Leptodactylidae Odontophrynidae Rhinodermatidae Telmatobiidae Allophrynidae Centrolenidae Hylidae Dendrobatidae Brachycephalidae Ceuthomantidae Craugastoridae Eleutherodactylidae Strabomantidae Arthroleptidae Hyperoliidae Breviceptidae Hemisotidae Microhylidae Ceratobatrachidae Conrauidae Micrixalidae Nyctibatrachidae Petropedetidae Phrynobatrachidae Ptychadenidae Ranidae Ranixalidae Dicroglossidae Pyxicephalidae Rhacophoridae Mantellidae A B † 3 † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus 2 Anura Sub Orders Super Families (including Apoda Urodela Prosalirus †) 1 Archaeobatrachia A Hyloidea 2 Mesobatrachia B Ranoidea 1 Anura Salientia 3 Neobatrachia Batrachia Lissamphibia *Gerobatrachus may be the sister taxon Salientia Temnospondyls
    [Show full text]