Series Representations of Functions (Taylor and Fourier Series)

Total Page:16

File Type:pdf, Size:1020Kb

Series Representations of Functions (Taylor and Fourier Series) Math Methods for Polymer Physics Lecture 1: Series Representations of Functions Series analysis is an essential tool in polymer physics and physical sci- ences, in general. Though other broadly speaking, a series expansion allows one to analyze an arbitrarily complicated function into the sum of a simpler set of functions. Though other series expansions exist, two are especially useful: the Taylor series and Fourier series. In a crude way, we may think of both series as 2 different ways of approximating, or “fitting”, a given function to a simpler form. For further reading on Taylor series and Fourier series see chapters 5 and 14, respectively, of Arken and Weber's text, Mathematical Methods for Physicists. 1 Taylor Series Let's start with Taylor series expansions. The Taylor expansion is a repre- sentation of a function, say f(x), as an infinite power series in the polynomi- n als, (x−x0) , where x0 is some reference point for the independent variable, x. Why are Taylor series useful? Well, let's say you have a complicated function: x3 f(x) = ln cos x2 + 2 + : (1) 3 This function is plotted in Fig. 1. Often it's sufficient and useful to have a simpler description of the func- tion in the neighborhood of some point, say x = x0. For many func- tions, you may replace f(x) with a power series expansion in polynomials of ∆x = x − x0 distance from the reference point. 1 X n f(x) = an (∆x) n=0 2 3 = a0 + a1∆x + a2 (∆x) + a3 (∆x) + ::: (2) What are these coefficients an? The first one can be deduced from x = x0 and ∆x = 0, so that 2 3 f(x0) = a0 + a1∆x + a2 (∆x) + a3 (∆x) + ::: = a0 (3) | {z } 0 1 Figure 1: Plot of f(x) in eq. (1), dark solid line. For many applications, it is often necessary to know behavior of the functionf(x) near some point, say x0 = 2. The Taylor series expansions for f(x) around x = x0 including 1, 2, 3, and 4 terms only are shown as labelled. To find the higher-order (larger n) coefficients, take derivatives of both sides. Note that after this operation the right side is still a Taylor series. 0 2 f (x0) = a1 + 2a2∆x + 3a3 (∆x) + ::: = a1 (4) | {z } 0 In general, we may show 1 dnf a = : (5) n n! dxn x=x0 In order to find the Taylor series expansion we need only to take derivatives of f(x) evaluated only at the point of reference, x = x0. Eqs. (2) and (5) define the Taylor series expansion of a functions of a single variable. Functions which can be represented by a Taylor series are known as analytic functions. Notice from eq. (2) that as x ! x0 and ∆x ! 0 the higher order (large n) terms in the power series expansion go to zero very quickly. Hence, if one is interested in f(x) sufficiently close to x0, a Taylor series expansion truncated to include only a few leading terms may often be sufficient to approximate the function. Geometrically, we can think of this in terms of a \local" description of a function near x = x0. 2 3 0 (∆x) 00 (∆x) 000 f(x) = f(x0) + ∆xf (x0) + f (x0) + f (x0) + ::: (6) | {z } | {z } 2! 3! constant linear | {z } | {z } parabolic cubic 2 This shows that sufficiently close a point of interest that analytic functions are well approximated by constant plus a sloped, linear correction plus a parabolic correction plus :::. Further away from a given reference point at x = x0, the less and less a function looks like a straight line. In order to get a better a approximation, you need functions with more wiggles (e.g. higher order polynomials). Let's try some examples. Example 1: Expand ln(x) in a Taylor series around x0 = 1. a0 = ln 1 = 0 d 1 a = ln(x) = = 1 1 dx x x=1 x=1 d2 d 1 1 a = ln(x) = = − = −1 2 dx2 dx x x2 x=1 x=1 x=1 d3 2 a = ln(x) = = 2 3 dx3 x3 x=1 x=1 n In general, an = (−1) (n − 1)! for n > 1. (x − 1)2 (x − 1)3 (x − 1)4 ln(x) = (x − 1) − + − + ::: 2 3 4 1 X (−1)n(x − 1)n = (7) n n=1 1 Example 2: Expand in a Taylor around x = 0. 1 − x a0 = 0 d 1 1 a = = = 1! 1 dx 1 − x (1 − x)2 x=0 x=0 d2 1 2 a = = = 2! 2 dx2 1 − x (1 − x)3 x=0 x=0 d3 1 1 × 2 × 3 a = = = 3! 3 dx3 1 − x (1 − x)4 x=0 x=0 In general, an = n!. So 1 1 X = xn (8) 1 − x n=0 3 which is the well-known geometric series. These particular series, eqs. (7) and (8), do not converge for all values of x. When the series does not converge, for some large enough ∆x, the n successive terms terms an(∆x) become larger than that the sum of the previous terms, meaning that adding more terms in the series expansion does not provide a better approximation, and the Taylor series fails to rep- 1 resent the function. For ln(x) around x0 = 1 and 1 − x around x0 = 0, these only converge for j∆xj < 1. In general we may define Rc as the radius of convergence of the Taylor P1 n series of f(x) around x = x0. If j∆xj < Rc, then n=0 an(∆x) = f(x). Otherwise series does not provide a good approximation of f(x) (adding more terms makes things worse). There are some functions for which Rc ! 1 and the Taylor series always converges. Important examples include ex, sin x, cos x. These functions arise in many contexts, so it is useful to commit these series to memory. Example 3: Expand ex around x = 0. Well, first notice n d x x e = e = 1 dxn x=0 x=0 From eq. (5) this gives right away the Taylor series coefficient of ex 1 x2 x3 x4 X xn ex = 1 + x + + + + ::: = : (9) 2! 3! 4! n! n=0 The Taylor series representation of ex is a particularly useful way to see that d x x P1 xn dx (e ) = e . Indeed, it is reasonable to view n=0 n! as the definition of ex. You should also commit expressions of sin x and cos x to memory. These converge for all x: x3 x5 x7 sin x = x − + − + ::: (10) 3! 5! 7! x2 x4 x6 cos x = 1 − + − + ::: (11) 2! 4! 6! Notice that these expansions allow you to derive the following important identity, eix = cos x + i sin x; (12) which is used heavily in Fourier analysis. It is reasonably straightforward to generalize the Taylor series expansion for a function of a single variable to a mutli-variable function, say f(x; y), 4 expanded around the point x = x0 and y = y0: @f @f f(x; y) = f(x ; y ) + ∆x + ∆y 0 0 @x @y 1 h @2f @2f @2f i + (∆x)2 + 2∆x∆y + (∆y)2 2! @x2 @x@y @y2 1 h @3f @3f + (∆x)3 + 3(∆x)2∆y 3! @x3 @x2@y @3f @3f i +3∆x(∆y)2 + (∆y)3 + ::: (13) @x@y2 @y3 where ∆x = x − x0, ∆y = y − y0 and all partial derivatives are evaluated at (x0; y0). This expansion can be confirmed by taking first, second, third (etc.) derivatives of both sides of the equation above. Why is the Taylor expansion a useful description? In many physical systems, the full expression for a function may be impossible to write down (i.e. PE of strongly interacting mixtures of charged particles). But often, equilibrium and dynamic behavior depends only on local properties of func- tion. By \local", we mean, sufficiently close to some set of values for the independent variable. As a concrete example, consider a colloidal bead in a laser trap (Fig. 2) , an experimental tool which has been exploited to measure the forces generated by single macromolecules. If the bead has a polarizability, α, then when it is subject to an electric field, E, it obtains a dipole moment, p = αE. The potential energy of a polarized object in an electric field 1 is simply, U = − 2 p · E, while the energy required to polarize the bead is 2 Upolarization = jpj =(2α). Therefore, if the polarizable bead is subject to an electric field E(x) that varies in space (as near the focal point of a laser beam, the net electrostatic interaction between the bead and the field is described by the potential energy, α U(x) = − jE(x)j2: (14) 2 Hence, the potential energy is lowest in regions where the electric-field in- tensity, jE(x)j2, is highest. This explains why a small polarizable object, like colloidal beads, are drawn into the focal point of a high-intensity laser (shown schematically in Fig. 2). In general, the pattern of electric field intensity, jE(x)j2, may be rather complicated. But, if we are interested only in the behavior very close to the center of the trap, the behavior always has the same simple form, U2 2 U(∆x) = −U0 + U1∆x + (∆x) + :::: (15) |{z} | {z } 2 constant =0 | {z } quadratic 5 Figure 2: Top: a schematic depiction of a polarizable bead near to the high- intensity focal point of a laser beam. Bottom: A sketch of U, the potential energy of a optically-trapped colloidal particle in terms of ∆x, the deviation from the center of the trap.
Recommended publications
  • The Convolution Theorem
    Module 2 : Signals in Frequency Domain Lecture 18 : The Convolution Theorem Objectives In this lecture you will learn the following We shall prove the most important theorem regarding the Fourier Transform- the Convolution Theorem We are going to learn about filters. Proof of 'the Convolution theorem for the Fourier Transform'. The Dual version of the Convolution Theorem Parseval's theorem The Convolution Theorem We shall in this lecture prove the most important theorem regarding the Fourier Transform- the Convolution Theorem. It is this theorem that links the Fourier Transform to LSI systems, and opens up a wide range of applications for the Fourier Transform. We shall inspire its importance with an application example. Modulation Modulation refers to the process of embedding an information-bearing signal into a second carrier signal. Extracting the information- bearing signal is called demodulation. Modulation allows us to transmit information signals efficiently. It also makes possible the simultaneous transmission of more than one signal with overlapping spectra over the same channel. That is why we can have so many channels being broadcast on radio at the same time which would have been impossible without modulation There are several ways in which modulation is done. One technique is amplitude modulation or AM in which the information signal is used to modulate the amplitude of the carrier signal. Another important technique is frequency modulation or FM, in which the information signal is used to vary the frequency of the carrier signal. Let us consider a very simple example of AM. Consider the signal x(t) which has the spectrum X(f) as shown : Why such a spectrum ? Because it's the simplest possible multi-valued function.
    [Show full text]
  • Lecture 7: Fourier Series and Complex Power Series 1 Fourier
    Math 1d Instructor: Padraic Bartlett Lecture 7: Fourier Series and Complex Power Series Week 7 Caltech 2013 1 Fourier Series 1.1 Definitions and Motivation Definition 1.1. A Fourier series is a series of functions of the form 1 C X + (a sin(nx) + b cos(nx)) ; 2 n n n=1 where C; an; bn are some collection of real numbers. The first, immediate use of Fourier series is the following theorem, which tells us that they (in a sense) can approximate far more functions than power series can: Theorem 1.2. Suppose that f(x) is a real-valued function such that • f(x) is continuous with continuous derivative, except for at most finitely many points in [−π; π]. • f(x) is periodic with period 2π: i.e. f(x) = f(x ± 2π), for any x 2 R. C P1 Then there is a Fourier series 2 + n=1 (an sin(nx) + bn cos(nx)) such that 1 C X f(x) = + (a sin(nx) + b cos(nx)) : 2 n n n=1 In other words, where power series can only converge to functions that are continu- ous and infinitely differentiable everywhere the power series is defined, Fourier series can converge to far more functions! This makes them, in practice, a quite useful concept, as in science we'll often want to study functions that aren't always continuous, or infinitely differentiable. A very specific application of Fourier series is to sound and music! Specifically, re- call/observe that a musical note with frequency f is caused by the propogation of the lon- gitudinal wave sin(2πft) through some medium.
    [Show full text]
  • Fourier Series
    Academic Press Encyclopedia of Physical Science and Technology Fourier Series James S. Walker Department of Mathematics University of Wisconsin–Eau Claire Eau Claire, WI 54702–4004 Phone: 715–836–3301 Fax: 715–836–2924 e-mail: [email protected] 1 2 Encyclopedia of Physical Science and Technology I. Introduction II. Historical background III. Definition of Fourier series IV. Convergence of Fourier series V. Convergence in norm VI. Summability of Fourier series VII. Generalized Fourier series VIII. Discrete Fourier series IX. Conclusion GLOSSARY ¢¤£¦¥¨§ Bounded variation: A function has bounded variation on a closed interval ¡ ¢ if there exists a positive constant © such that, for all finite sets of points "! "! $#&% (' #*) © ¥ , the inequality is satisfied. Jordan proved that a function has bounded variation if and only if it can be expressed as the difference of two non-decreasing functions. Countably infinite set: A set is countably infinite if it can be put into one-to-one £0/"£ correspondence with the set of natural numbers ( +,£¦-.£ ). Examples: The integers and the rational numbers are countably infinite sets. "! "!;: # # 123547698 Continuous function: If , then the function is continuous at the point : . Such a point is called a continuity point for . A function which is continuous at all points is simply referred to as continuous. Lebesgue measure zero: A set < of real numbers is said to have Lebesgue measure ! $#¨CED B ¢ £¦¥ zero if, for each =?>A@ , there exists a collection of open intervals such ! ! D D J# K% $#L) ¢ £¦¥ ¥ ¢ = that <GFIH and . Examples: All finite sets, and all countably infinite sets, have Lebesgue measure zero. "! "! % # % # Odd and even functions: A function is odd if for all in its "! "! % # # domain.
    [Show full text]
  • The Summation of Power Series and Fourier Series
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Computational and Applied Mathematics 12&13 (1985) 447-457 447 North-Holland The summation of power series and Fourier . series I.M. LONGMAN Department of Geophysics and Planetary Sciences, Tel Aviv University, Ramat Aviv, Israel Received 27 July 1984 Abstract: The well-known correspondence of a power series with a certain Stieltjes integral is exploited for summation of the series by numerical integration. The emphasis in this paper is thus on actual summation of series. rather than mere acceleration of convergence. It is assumed that the coefficients of the series are given analytically, and then the numerator of the integrand is determined by the aid of the inverse of the two-sided Laplace transform, while the denominator is standard (and known) for all power series. Since Fourier series can be expressed in terms of power series, the method is applicable also to them. The treatment is extended to divergent series, and a fair number of numerical examples are given, in order to illustrate various techniques for the numerical evaluation of the resulting integrals. Keywork Summation of series. 1. Introduction We start by considering a power series, which it is convenient to write in the form s(x)=/.Q-~2x+&x2..., (1) for reasons which will become apparent presently. Here there is no intention to limit ourselves to alternating series since, even if the pLkare all of one sign, x may take negative and even complex values. It will be assumed in this paper that the pLk are real.
    [Show full text]
  • Harmonic Analysis from Fourier to Wavelets
    STUDENT MATHEMATICAL LIBRARY ⍀ IAS/PARK CITY MATHEMATICAL SUBSERIES Volume 63 Harmonic Analysis From Fourier to Wavelets María Cristina Pereyra Lesley A. Ward American Mathematical Society Institute for Advanced Study Harmonic Analysis From Fourier to Wavelets STUDENT MATHEMATICAL LIBRARY IAS/PARK CITY MATHEMATICAL SUBSERIES Volume 63 Harmonic Analysis From Fourier to Wavelets María Cristina Pereyra Lesley A. Ward American Mathematical Society, Providence, Rhode Island Institute for Advanced Study, Princeton, New Jersey Editorial Board of the Student Mathematical Library Gerald B. Folland Brad G. Osgood (Chair) Robin Forman John Stillwell Series Editor for the Park City Mathematics Institute John Polking 2010 Mathematics Subject Classification. Primary 42–01; Secondary 42–02, 42Axx, 42B25, 42C40. The anteater on the dedication page is by Miguel. The dragon at the back of the book is by Alexander. For additional information and updates on this book, visit www.ams.org/bookpages/stml-63 Library of Congress Cataloging-in-Publication Data Pereyra, Mar´ıa Cristina. Harmonic analysis : from Fourier to wavelets / Mar´ıa Cristina Pereyra, Lesley A. Ward. p. cm. — (Student mathematical library ; 63. IAS/Park City mathematical subseries) Includes bibliographical references and indexes. ISBN 978-0-8218-7566-7 (alk. paper) 1. Harmonic analysis—Textbooks. I. Ward, Lesley A., 1963– II. Title. QA403.P44 2012 515.2433—dc23 2012001283 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given.
    [Show full text]
  • Appendix a Short Course in Taylor Series
    Appendix A Short Course in Taylor Series The Taylor series is mainly used for approximating functions when one can identify a small parameter. Expansion techniques are useful for many applications in physics, sometimes in unexpected ways. A.1 Taylor Series Expansions and Approximations In mathematics, the Taylor series is a representation of a function as an infinite sum of terms calculated from the values of its derivatives at a single point. It is named after the English mathematician Brook Taylor. If the series is centered at zero, the series is also called a Maclaurin series, named after the Scottish mathematician Colin Maclaurin. It is common practice to use a finite number of terms of the series to approximate a function. The Taylor series may be regarded as the limit of the Taylor polynomials. A.2 Definition A Taylor series is a series expansion of a function about a point. A one-dimensional Taylor series is an expansion of a real function f(x) about a point x ¼ a is given by; f 00ðÞa f 3ðÞa fxðÞ¼faðÞþf 0ðÞa ðÞþx À a ðÞx À a 2 þ ðÞx À a 3 þÁÁÁ 2! 3! f ðÞn ðÞa þ ðÞx À a n þÁÁÁ ðA:1Þ n! © Springer International Publishing Switzerland 2016 415 B. Zohuri, Directed Energy Weapons, DOI 10.1007/978-3-319-31289-7 416 Appendix A: Short Course in Taylor Series If a ¼ 0, the expansion is known as a Maclaurin Series. Equation A.1 can be written in the more compact sigma notation as follows: X1 f ðÞn ðÞa ðÞx À a n ðA:2Þ n! n¼0 where n ! is mathematical notation for factorial n and f(n)(a) denotes the n th derivation of function f evaluated at the point a.
    [Show full text]
  • Student Understanding of Taylor Series Expansions in Statistical Mechanics
    PHYSICAL REVIEW SPECIAL TOPICS - PHYSICS EDUCATION RESEARCH 9, 020110 (2013) Student understanding of Taylor series expansions in statistical mechanics Trevor I. Smith,1 John R. Thompson,2,3 and Donald B. Mountcastle2 1Department of Physics and Astronomy, Dickinson College, Carlisle, Pennsylvania 17013, USA 2Department of Physics and Astronomy, University of Maine, Orono, Maine 04469, USA 3Maine Center for Research in STEM Education, University of Maine, Orono, Maine 04469, USA (Received 2 March 2012; revised manuscript received 23 May 2013; published 8 August 2013) One goal of physics instruction is to have students learn to make physical meaning of specific mathematical expressions, concepts, and procedures in different physical settings. As part of research investigating student learning in statistical physics, we are developing curriculum materials that guide students through a derivation of the Boltzmann factor using a Taylor series expansion of entropy. Using results from written surveys, classroom observations, and both individual think-aloud and teaching interviews, we present evidence that many students can recognize and interpret series expansions, but they often lack fluency in creating and using a Taylor series appropriately, despite previous exposures in both calculus and physics courses. DOI: 10.1103/PhysRevSTPER.9.020110 PACS numbers: 01.40.Fk, 05.20.Ày, 02.30.Lt, 02.30.Mv students’ use of Taylor series expansion to derive and I. INTRODUCTION understand the Boltzmann factor as a component of proba- Over the past several decades, much work has been done bility in the canonical ensemble. While this is a narrow investigating ways in which students understand and learn topic, we feel that it serves as an excellent example of physics (see Refs.
    [Show full text]
  • Convolution.Pdf
    Convolution March 22, 2020 0.0.1 Setting up [23]: from bokeh.plotting import figure from bokeh.io import output_notebook, show,curdoc from bokeh.themes import Theme import numpy as np output_notebook() theme=Theme(json={}) curdoc().theme=theme 0.1 Convolution Convolution is a fundamental operation that appears in many different contexts in both pure and applied settings in mathematics. Polynomials: a simple case Let’s look at a simple case first. Consider the space of real valued polynomial functions P. If f 2 P, we have X1 i f(z) = aiz i=0 where ai = 0 for i sufficiently large. There is an obvious linear map a : P! c00(R) where c00(R) is the space of sequences that are eventually zero. i For each integer i, we have a projection map ai : c00(R) ! R so that ai(f) is the coefficient of z for f 2 P. Since P is a ring under addition and multiplication of functions, these operations must be reflected on the other side of the map a. 1 Clearly we can add sequences in c00(R) componentwise, and since addition of polynomials is also componentwise we have: a(f + g) = a(f) + a(g) What about multiplication? We know that X Xn X1 an(fg) = ar(f)as(g) = ar(f)an−r(g) = ar(f)an−r(g) r+s=n r=0 r=0 where we adopt the convention that ai(f) = 0 if i < 0. Given (a0; a1;:::) and (b0; b1;:::) in c00(R), define a ∗ b = (c0; c1;:::) where X1 cn = ajbn−j j=0 with the same convention that ai = bi = 0 if i < 0.
    [Show full text]
  • Nonlinear Optics
    Nonlinear Optics: A very brief introduction to the phenomena Paul Tandy ADVANCED OPTICS (PHYS 545), Spring 2010 Dr. Mendes INTRO So far we have considered only the case where the polarization density is proportionate to the electric field. The electric field itself is generally supplied by a laser source. PE= ε0 χ Where P is the polarization density, E is the electric field, χ is the susceptibility, and ε 0 is the permittivity of free space. We can imagine that the electric field somehow induces a polarization in the material. As the field increases the polarization also in turn increases. But we can also imagine that this process does not continue indefinitely. As the field grows to be very large the field itself starts to become on the order of the electric fields between the atoms in the material (medium). As this occurs the material itself becomes slightly altered and the behavior is no longer linear in nature but instead starts to become weakly nonlinear. We can represent this as a Taylor series expansion model in the electric field. ∞ n 23 PAEAEAEAE==++∑ n 12 3+... n=1 This model has become so popular that the coefficient scaling has become standardized using the letters d and χ (3) as parameters corresponding the quadratic and cubic terms. Higher order terms would play a role too if the fields were extremely high. 2(3)3 PEdEE=++()εχ0 (2) ( 4χ ) + ... To get an idea of how large a typical field would have to be before we see a nonlinear effect, let us scale the above equation by the first order term.
    [Show full text]
  • Fourier Series of Functions of A-Bounded Variation
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 74, Number 1, April 1979 FOURIER SERIES OF FUNCTIONS OF A-BOUNDED VARIATION DANIEL WATERMAN1 Abstract. It is shown that the Fourier coefficients of functions of A- bounded variation, A = {A„}, are 0(Kn/n). This was known for \, = n&+l, — 1 < ß < 0. The classes L and HBV are shown to be complementary, but L and ABV are not complementary if ABV is not contained in HBV. The partial sums of the Fourier series of a function of harmonic bounded variation are shown to be uniformly bounded and a theorem analogous to that of Dirichlet is shown for this class of functions without recourse to the Lebesgue test. We have shown elsewhere that functions of harmonic bounded variation (HBV) satisfy the Lebesgue test for convergence of their Fourier series, but if a class of functions of A-bounded variation (ABV) is not properly contained in HBV, it contains functions whose Fourier series diverge [1]. We have also shown that Fourier series of functions of class {nB+x} — BV, -1 < ß < 0, are (C, ß) bounded, implying that the Fourier coefficients are 0(nB) [2]. Here we shall estimate the Fourier coefficients of functions in ABV. Without recourse to the Lebesgue test, we shall prove a theorem for functions of HBV analogous to that of Dirichlet and also show that the partial sums of the Fourier series of an HBV function are uniformly bounded. From this one can conclude that L and HBV are complementary classes, i.e., Parseval's formula holds (with ordinary convergence) for/ G L and g G HBV.
    [Show full text]
  • Fundamentals of Duct Acoustics
    Fundamentals of Duct Acoustics Sjoerd W. Rienstra Technische Universiteit Eindhoven 16 November 2015 Contents 1 Introduction 3 2 General Formulation 4 3 The Equations 8 3.1 AHierarchyofEquations ........................... 8 3.2 BoundaryConditions. Impedance.. 13 3.3 Non-dimensionalisation . 15 4 Uniform Medium, No Mean Flow 16 4.1 Hard-walled Cylindrical Ducts . 16 4.2 RectangularDucts ............................... 21 4.3 SoftWallModes ................................ 21 4.4 AttenuationofSound.............................. 24 5 Uniform Medium with Mean Flow 26 5.1 Hard-walled Cylindrical Ducts . 26 5.2 SoftWallandUniformMeanFlow . 29 6 Source Expansion 32 6.1 ModalAmplitudes ............................... 32 6.2 RotatingFan .................................. 32 6.3 Tyler and Sofrin Rule for Rotor-Stator Interaction . ..... 33 6.4 PointSourceinaLinedFlowDuct . 35 6.5 PointSourceinaDuctWall .......................... 38 7 Reflection and Transmission 40 7.1 A Discontinuity in Diameter . 40 7.2 OpenEndReflection .............................. 43 VKI - 1 - CONTENTS CONTENTS A Appendix 49 A.1 BesselFunctions ................................ 49 A.2 AnImportantComplexSquareRoot . 51 A.3 Myers’EnergyCorollary ............................ 52 VKI - 2 - 1. INTRODUCTION CONTENTS 1 Introduction In a duct of constant cross section, with a medium and boundary conditions independent of the axial position, the wave equation for time-harmonic perturbations may be solved by means of a series expansion in a particular family of self-similar solutions, called modes. They are related to the eigensolutions of a two-dimensional operator, that results from the wave equation, on a cross section of the duct. For the common situation of a uniform medium without flow, this operator is the well-known Laplace operator 2. For a non- uniform medium, and in particular with mean flow, the details become mo∇re complicated, but the concept of duct modes remains by and large the same1.
    [Show full text]
  • Convergence of Fourier Series
    CONVERGENCE OF FOURIER SERIES KEVIN STEPHEN STOTTER CUDDY Abstract. This paper sets out to explore and explain some of the basic con- cepts of Fourier analysis and its applications. Convolution and questions of convergence will be central. An application to the isoperimetric inequality will conclude the paper. Contents 1. Introduction to Fourier Series 1 2. Convolution and Kernels 2 3. Criteria for Convergence 8 4. Isoperimetric Inequality 18 Acknowledgments 19 References 19 1. Introduction to Fourier Series It will be important for the reader to recall Euler's Formula: ix (1.1) e = cos(x) + i sin(x); 8x 2 R Throughout this paper, an \integrable" function should be interpreted as integrable in the Riemann sense as well as bounded. Definition 1.2. For an integrable, bounded function f :[a; b] ! C we can define, for any integer n, the nth Fourier coefficient 1 Z b f^(n) = f(x)e−2πinx=(b−a)dx: b − a a When there is no question about the function we are referring to we may write ^ P1 ^ 2πinx f(n) = an. From these coefficients we get the Fourier series S(x) = n=−∞ f(n)e (note that this sum may or may not converge). To denote that a Fourier series is associated to a function f we write 1 X f ∼ f^(n)e2πinx n=−∞ Definition 1.3. The N th partial sum of the Fourier series for f, where N is a PN ^ 2πinx=L positive integer, is given by SN (f)(x) = n=−N f(n)e . Date: DEADLINE AUGUST 26, 2012.
    [Show full text]