A Simulation Method for Skewness Correction

Total Page:16

File Type:pdf, Size:1020Kb

A Simulation Method for Skewness Correction U.U.D.M. Project Report 2008:22 A simulation method for skewness correction Måns Eriksson Examensarbete i matematisk statistik, 30 hp Handledare och examinator: Silvelyn Zwanzig December 2008 Department of Mathematics Uppsala University Abstract Let X1,...,Xn be i.i.d. random variables with known variance and skewness. A one-sided confidence interval for the mean with approximate confidence level α can be constructed using normal approximation. For skew distributions the actual confidence level will then be α+o(1). We propose a method for obtaining confidence intervals with confidence level α+o(n−1/2) using skewness correcting pseudo-random variables. The method is compared with a known method; Edgeworth correction. h h Acknowledgements I would like to thank my advisor Silvelyn Zwanzig for introducing me to the subject, for mathematical and stylistic guidance and for always encouraging me. I would also like to thank my friends and teachers at and around the department of mathematics for having inspired me to study mathematics, and for continuing to inspire me. 3 h h Contents 1 Introduction 7 1.1 Skewness . 7 1.2 Setting and notation . 7 2 The Edgeworth expansion 8 2.1 Definition and formal conditions . 8 2.2 Derivations . 11 2.2.1 Edgeworth expansion for Sn ...................... 11 2.2.2 Edgeworth expansions for more general statistics . 14 2.2.3 Edgeworth expansion for Tn ...................... 15 2.2.4 Some remarks; skewness correction . 16 2.3 Cornish-Fisher expansions for quantiles . 16 3 Methods for skewness correction 17 3.1 Coverages of confidence intervals . 17 3.2 Edgeworth correction . 18 3.3 The bootstrap . 19 3.3.1 The bootstrap and Sn ......................... 19 3.3.2 Bootstrap confidence intervals . 20 3.4 A new simulation method . 21 3.4.1 Skewness correction through addition of a random variable . 21 3.4.2 Simulation procedure . 22 4 Comparison 23 4.1 Coverages of confidence intervals . 23 4.2 Criteria for the comparison . 24 4.3 Comparisons of the upper limits . 24 4.4 Simulation results . 26 4.5 Discussion . 26 A Appendix: Skewness and kurtosis 28 A.1 The skewness of a sum of random variables . 28 A.2 The kurtosis of a sum of random variables . 30 ˆ ˆ B Appendix: P (θnew ≤ θEcorr) 31 C Appendix: Simulation results 36 h h 1 Introduction 1.1 Skewness The notion of skewness has been a part of statistics for a long time. It dates back to the 19th century and most notably to an article by Karl Pearson from 1895 ([26]). Skew distributions are found in all areas of applications, ranging from finance to biology and physics. It has been seen both in theory and in practice that deviations from normality in the form of skewness might have effects too big to ignore on the validity and performance of many statistical methods and procedures. This thesis discusses skewness in the context of the central limit theorem and normal approximation, in particular applied to confidence intervals. Some methods for skewness correction are discussed and a new simulation method is proposed. We assume that the concept of skewness is known and refer to Appendix A for some basic facts about skewness. 1.2 Setting and notation Throughout the thesis we assume that we have an i.i.d. univariate sample X1,...,Xn, with EX = µ, Var(X) = σ2 and E|X|3 < ∞, such that X satisfies Cram´er’scondition lim supt→∞ |ϕ(t)| < 1, where ϕ is the characteristic function of X. At times we will 4 also assume that EX < ∞. We use X to denote a generic Xi, that is, X is a random variable with the same distribution as the Xi. Thus, for instance, EX is the mean of the distribution of the observations; EX = EXi for all i. The α-quantile vα of the distribution of some random variable X is defined to be such that P (X ≤ vα) = α. When X ∼ N(0, 1) we denote the quantile λα, that is, Φ(λα) = α. 1/2 We use An to denote a general statistic, Sn = n (X¯ − µ)/σ to denote the stan- 1/2 dardized sample mean and Tn = n (X¯ − µ)/σˆ to denote the studentized sample mean, 2 1 P ¯ 2 whereσ ˆ = n (Xi − X) . 3 3 The skewness E(X − µ) /σ of a random variable X is denoted Skew(X), γ or γX if we need to distinguish between different random variables. The kurtosis of X, E(X − 4 4 µ) /σ − 3, is denoted Kurt(X), κ or κX . Basic facts about skewness and kurtosis are stated in Appendix A. As for asymptotic notation, for real-valued sequences an and bn we say that an = o(bn) if an/bn → 0 as n → ∞ and an = O(bn) if an/bn is bounded as n → ∞. Finally, we say that a sequence Xn of random variables is bounded in probability if, limc→∞ lim supn→∞ P (|Xn| > c) = 0. We write this as Xn = OP (1) and if, for some sequence an, anXn = OP (1) we write Xn = OP (1/an). 7 2 The Edgeworth expansion In this section we introduce our main tool, the Edgeworth expansion. Later we will use it to determine the coverage of confidence intervals. 2.1 Definition and formal conditions Theorem 1. Assume that X1,...,Xn is an i.i.d. sample from a univariate distribution, 2 j+2 with mean µ, variance σ and E|X| < ∞, that satisfies lim supt→∞ |ϕ(t)| < 1. Let 1/2 Sn = n (X¯ − µ)/σ. Then −1/2 −j/2 −j/2 P (Sn ≤ x) = Φ(x) + n p1(x)φ(x) + ... + n pj(x)φ(x) + o(n ) (1) uniformly in x, where Φ(x) and φ(x) are the standard normal distribution function and density function and pk is a polynomial of degree 3k − 1. In particular 1 p (x) = − γ(x2 − 1) and 1 6 1 1 p (x) = −x κ(x2 − 3) + γ2(x4 − 10x2 + 15) . 2 24 72 Proof. A proof is given in Section 2.2.1. See also [7] and [8]. (1) is called an Edgeworth expansion for Sn. The condition lim supt→∞ |ϕ(t)| < 1 is known as Cram´er’s condition and was de- rived by Cram´erin [8]. Note that the condition holds whenever X is absolutely con- tinuous. This is an immediate consequence of the Riemann-Lebesgue lemma (Theo- rem 1.5 in Chapter 4 of [18]). Moreover, if we limit the expansion to P (Sn ≤ x) = −1/2 −1/2 −1/2 Φ(x) + n p1(x)φ(x) + o(n ), so that the remainder term is o(n ), then it suf- fices that X has a non-lattice distribution, which was shown by Esseen in [16]. The Edgeworth expansion was first developed for the statistic Sn but has later been extended to other statistics. Definition 1. Let An denote a statistic. Then if −1/2 −j/2 −j/2 P (An ≤ x) = Φ(x) + n a1(x)φ(x) + ... + n aj(x)φ(x) + o(n ), (2) where Φ(x) and φ(x) are the standard normal distribution function and density function and ak is a polynomial of degree 3k − 1, (2) is called the Edgeworth expansion for An. If ak = 0 for all k < i the normal approximation of the distribution is said to be i:th order correct. In general, the polynomials ak will depend on the moments of the statistic. We can therefore, in a sense, view the Edgeworth expansion as an extension of the central limit theorem, where information about the higher moments of the involved random variables is used to obtain a better approximation of the distribution function of An. The expan- sion gives an expression for the size of the remainder term depending on the sample size. 8 We might want to compare this to the Berry-Esseen theorem (see for instance [16] or Section 7.6 of [18]), which essentially, in our context, says that the error in the normal approximation is of order n−1/2. The Edgeworth expansion for simple statistics was first introduced in papers by Cheby- shev in 1890 ([4]) and Edgeworth in 1894, 1905 and 1907 ([12, 13, 14]). The idea was made mathematically rigorous by Cram´erin 1928 ([7]) and Esseen in 1945 ([16]). The expansions and their applications for more general statistics were then developed in several papers, including [2], by various authors in the mid-1900’s. A thorough treatment of the Edgeworth expansion is found in Chapter 2 of [22]. Chapter 13 of [10] gives a brief introduction to the Edgeworth expansion with some of the most important results and Section 17.7 of [8] is a standard reference for the case where the expansion for Sn is considered. Conditions for (2) to hold are given next. Although we will focus on expansions of quite simple statistics, the Edgeworth expansion can be used in very general circum- stances. We state a theorem by Bhattacharya and Ghosh ([2]) that provides conditions for the Edgeworth expansion (2) to hold in a general case and illustrate how the theorem relates to the expansion for Sn. d Let X, X1, X2,..., Xn be i.i.d. random column vectors in R with mean µ and let ¯ −1 Pn d X = n i=1 Xi. Let A : R → R be a function of the form AS = (g(x) − g(µ))/h(µ) ˆ or AT = (g(x) − g(µ))/h(x), where g and h are known, θ = g(X¯ ) is an estimator of the scalar θ = g(µ), h(µ)2 is the asymptotical variance of n1/2θˆ and h(X¯ ) is an estimator of h(µ).
Recommended publications
  • Use of Proc Iml to Calculate L-Moments for the Univariate Distributional Shape Parameters Skewness and Kurtosis
    Statistics 573 USE OF PROC IML TO CALCULATE L-MOMENTS FOR THE UNIVARIATE DISTRIBUTIONAL SHAPE PARAMETERS SKEWNESS AND KURTOSIS Michael A. Walega Berlex Laboratories, Wayne, New Jersey Introduction Exploratory data analysis statistics, such as those Gaussian. Bickel (1988) and Van Oer Laan and generated by the sp,ge procedure PROC Verdooren (1987) discuss the concept of robustness UNIVARIATE (1990), are useful tools to characterize and how it pertains to the assumption of normality. the underlying distribution of data prior to more rigorous statistical analyses. Assessment of the As discussed by Glass et al. (1972), incorrect distributional shape of data is usually accomplished conclusions may be reached when the normality by careful examination of the values of the third and assumption is not valid, especially when one-tail tests fourth central moments, skewness and kurtosis. are employed or the sample size or significance level However, when the sample size is small or the are very small. Hopkins and Weeks (1990) also underlying distribution is non-normal, the information discuss the effects of highly non-normal data on obtained from the sample skewness and kurtosis can hypothesis testing of variances. Thus, it is apparent be misleading. that examination of the skewness (departure from symmetry) and kurtosis (deviation from a normal One alternative to the central moment shape statistics curve) is an important component of exploratory data is the use of linear combinations of order statistics (L­ analyses. moments) to examine the distributional shape characteristics of data. L-moments have several Various methods to estimate skewness and kurtosis theoretical advantages over the central moment have been proposed (MacGillivray and Salanela, shape statistics: Characterization of a wider range of 1988).
    [Show full text]
  • A Skew Extension of the T-Distribution, with Applications
    J. R. Statist. Soc. B (2003) 65, Part 1, pp. 159–174 A skew extension of the t-distribution, with applications M. C. Jones The Open University, Milton Keynes, UK and M. J. Faddy University of Birmingham, UK [Received March 2000. Final revision July 2002] Summary. A tractable skew t-distribution on the real line is proposed.This includes as a special case the symmetric t-distribution, and otherwise provides skew extensions thereof.The distribu- tion is potentially useful both for modelling data and in robustness studies. Properties of the new distribution are presented. Likelihood inference for the parameters of this skew t-distribution is developed. Application is made to two data modelling examples. Keywords: Beta distribution; Likelihood inference; Robustness; Skewness; Student’s t-distribution 1. Introduction Student’s t-distribution occurs frequently in statistics. Its usual derivation and use is as the sam- pling distribution of certain test statistics under normality, but increasingly the t-distribution is being used in both frequentist and Bayesian statistics as a heavy-tailed alternative to the nor- mal distribution when robustness to possible outliers is a concern. See Lange et al. (1989) and Gelman et al. (1995) and references therein. It will often be useful to consider a further alternative to the normal or t-distribution which is both heavy tailed and skew. To this end, we propose a family of distributions which includes the symmetric t-distributions as special cases, and also includes extensions of the t-distribution, still taking values on the whole real line, with non-zero skewness. Let a>0 and b>0be parameters.
    [Show full text]
  • Maxskew and Multiskew: Two R Packages for Detecting, Measuring and Removing Multivariate Skewness
    S S symmetry Article MaxSkew and MultiSkew: Two R Packages for Detecting, Measuring and Removing Multivariate Skewness Cinzia Franceschini 1,† and Nicola Loperfido 2,*,† 1 Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy 2 Dipartimento di Economia, Società e Politica (DESP), Università degli Studi di Urbino “Carlo Bo”, Via Saffi 42, 61029 Urbino, Italy * Correspondence: nicola.loperfi[email protected] † These authors contributed equally to this work. Received: 6 July 2019; Accepted: 22 July 2019; Published: 1 August 2019 Abstract: The R packages MaxSkew and MultiSkew measure, test and remove skewness from multivariate data using their third-order standardized moments. Skewness is measured by scalar functions of the third standardized moment matrix. Skewness is tested with either the bootstrap or under normality. Skewness is removed by appropriate linear projections. The packages might be used to recover data features, as for example clusters and outliers. They are also helpful in improving the performances of statistical methods, as for example the Hotelling’s one-sample test. The Iris dataset illustrates the usages of MaxSkew and MultiSkew. Keywords: asymmetry; bootstrap; projection pursuit; symmetrization; third cumulant 1. Introduction The skewness of a random variable X satisfying E jXj3 < +¥ is often measured by its third standardized cumulant h i E (X − m)3 g (X) = , (1) 1 s3 where m and s are the mean and the standard deviation of X. The squared third standardized cumulant 2 b1 (X) = g1 (X), known as Pearson’s skewness, is also used. The numerator of g1 (X), that is h 3i k3 (X) = E (X − m) , (2) is the third cumulant (i.e., the third central moment) of X.
    [Show full text]
  • A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess
    S S symmetry Article A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess Guillermo Martínez-Flórez 1, Víctor Leiva 2,* , Emilio Gómez-Déniz 3 and Carolina Marchant 4 1 Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 14014, Colombia; [email protected] 2 Escuela de Ingeniería Industrial, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile 3 Facultad de Economía, Empresa y Turismo, Universidad de Las Palmas de Gran Canaria and TIDES Institute, 35001 Canarias, Spain; [email protected] 4 Facultad de Ciencias Básicas, Universidad Católica del Maule, 3466706 Talca, Chile; [email protected] * Correspondence: [email protected] or [email protected] Received: 30 June 2020; Accepted: 19 August 2020; Published: 1 September 2020 Abstract: In this paper, we consider skew-normal distributions for constructing new a distribution which allows us to model proportions and rates with zero/one inflation as an alternative to the inflated beta distributions. The new distribution is a mixture between a Bernoulli distribution for explaining the zero/one excess and a censored skew-normal distribution for the continuous variable. The maximum likelihood method is used for parameter estimation. Observed and expected Fisher information matrices are derived to conduct likelihood-based inference in this new type skew-normal distribution. Given the flexibility of the new distributions, we are able to show, in real data scenarios, the good performance of our proposal. Keywords: beta distribution; centered skew-normal distribution; maximum-likelihood methods; Monte Carlo simulations; proportions; R software; rates; zero/one inflated data 1.
    [Show full text]
  • Approximating the Distribution of the Product of Two Normally Distributed Random Variables
    S S symmetry Article Approximating the Distribution of the Product of Two Normally Distributed Random Variables Antonio Seijas-Macías 1,2 , Amílcar Oliveira 2,3 , Teresa A. Oliveira 2,3 and Víctor Leiva 4,* 1 Departamento de Economía, Universidade da Coruña, 15071 A Coruña, Spain; [email protected] 2 CEAUL, Faculdade de Ciências, Universidade de Lisboa, 1649-014 Lisboa, Portugal; [email protected] (A.O.); [email protected] (T.A.O.) 3 Departamento de Ciências e Tecnologia, Universidade Aberta, 1269-001 Lisboa, Portugal 4 Escuela de Ingeniería Industrial, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile * Correspondence: [email protected] or [email protected] Received: 21 June 2020; Accepted: 18 July 2020; Published: 22 July 2020 Abstract: The distribution of the product of two normally distributed random variables has been an open problem from the early years in the XXth century. First approaches tried to determinate the mathematical and statistical properties of the distribution of such a product using different types of functions. Recently, an improvement in computational techniques has performed new approaches for calculating related integrals by using numerical integration. Another approach is to adopt any other distribution to approximate the probability density function of this product. The skew-normal distribution is a generalization of the normal distribution which considers skewness making it flexible. In this work, we approximate the distribution of the product of two normally distributed random variables using a type of skew-normal distribution. The influence of the parameters of the two normal distributions on the approximation is explored. When one of the normally distributed variables has an inverse coefficient of variation greater than one, our approximation performs better than when both normally distributed variables have inverse coefficients of variation less than one.
    [Show full text]
  • Wooldridge, Introductory Econometrics, 4Th Ed. Appendix C
    Wooldridge, Introductory Econometrics, 4th ed. Appendix C: Fundamentals of mathemati- cal statistics A short review of the principles of mathemati- cal statistics. Econometrics is concerned with statistical inference: learning about the char- acteristics of a population from a sample of the population. The population is a well-defined group of subjects{and it is important to de- fine the population of interest. Are we trying to study the unemployment rate of all labor force participants, or only teenaged workers, or only AHANA workers? Given a population, we may define an economic model that contains parameters of interest{coefficients, or elastic- ities, which express the effects of changes in one variable upon another. Let Y be a random variable (r.v.) representing a population with probability density function (pdf) f(y; θ); with θ a scalar parameter. We assume that we know f;but do not know the value of θ: Let a random sample from the pop- ulation be (Y1; :::; YN ) ; with Yi being an inde- pendent random variable drawn from f(y; θ): We speak of Yi being iid { independently and identically distributed. We often assume that random samples are drawn from the Bernoulli distribution (for instance, that if I pick a stu- dent randomly from my class list, what is the probability that she is female? That probabil- ity is γ; where γ% of the students are female, so P (Yi = 1) = γ and P (Yi = 0) = (1 − γ): For many other applications, we will assume that samples are drawn from the Normal distribu- tion. In that case, the pdf is characterized by two parameters, µ and σ2; expressing the mean and spread of the distribution, respectively.
    [Show full text]
  • Convergence in Distribution Central Limit Theorem
    Convergence in Distribution Central Limit Theorem Statistics 110 Summer 2006 Copyright °c 2006 by Mark E. Irwin Convergence in Distribution Theorem. Let X » Bin(n; p) and let ¸ = np, Then µ ¶ n e¡¸¸x lim P [X = x] = lim px(1 ¡ p)n¡x = n!1 n!1 x x! So when n gets large, we can approximate binomial probabilities with Poisson probabilities. Proof. µ ¶ µ ¶ µ ¶ µ ¶ n n ¸ x ¸ n¡x lim px(1 ¡ p)n¡x = lim 1 ¡ n!1 x n!1 x n n µ ¶ µ ¶ µ ¶ n! 1 ¸ ¡x ¸ n = ¸x 1 ¡ 1 ¡ x!(n ¡ x)! nx n n Convergence in Distribution 1 µ ¶ µ ¶ µ ¶ n! 1 ¸ ¡x ¸ n = ¸x 1 ¡ 1 ¡ x!(n ¡ x)! nx n n µ ¶ ¸x n! 1 ¸ n = lim 1 ¡ x! n!1 (n ¡ x)!(n ¡ ¸)x n | {z } | {z } !1 !e¡¸ e¡¸¸x = x! 2 Note that approximation works better when n is large and p is small as can been seen in the following plot. If p is relatively large, a di®erent approximation should be used. This is coming later. (Note in the plot, bars correspond to the true binomial probabilities and the red circles correspond to the Poisson approximation.) Convergence in Distribution 2 lambda = 1 n = 10 p = 0.1 lambda = 1 n = 50 p = 0.02 lambda = 1 n = 200 p = 0.005 p(x) p(x) p(x) 0.0 0.1 0.2 0.3 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 x x x lambda = 5 n = 10 p = 0.5 lambda = 5 n = 50 p = 0.1 lambda = 5 n = 200 p = 0.025 p(x) p(x) p(x) 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15 0 1 2 3 4 5 6 7 8 9 0 2 4 6 8 10 12 0 2 4 6 8 10 12 x x x Convergence in Distribution 3 Example: Let Y1;Y2;::: be iid Exp(1).
    [Show full text]
  • An Honest Approach to Parallel Trends ∗
    An Honest Approach to Parallel Trends ∗ Ashesh Rambachany Jonathan Rothz (Job market paper) December 18, 2019 Please click here for the latest version. Abstract Standard approaches for causal inference in difference-in-differences and event-study designs are valid only under the assumption of parallel trends. Researchers are typically unsure whether the parallel trends assumption holds, and therefore gauge its plausibility by testing for pre-treatment differences in trends (“pre-trends”) between the treated and untreated groups. This paper proposes robust inference methods that do not require that the parallel trends assumption holds exactly. Instead, we impose restrictions on the set of possible violations of parallel trends that formalize the logic motivating pre-trends testing — namely, that the pre-trends are informative about what would have happened under the counterfactual. Under a wide class of restrictions on the possible differences in trends, the parameter of interest is set-identified and inference on the treatment effect of interest is equivalent to testing a set of moment inequalities with linear nuisance parameters. We derive computationally tractable confidence sets that are uniformly valid (“honest”) so long as the difference in trends satisfies the imposed restrictions. Our proposed confidence sets are consistent, and have optimal local asymptotic power for many parameter configurations. We also introduce fixed length confidence intervals, which can offer finite-sample improvements for a subset of the cases we consider. We recommend that researchers conduct sensitivity analyses to show what conclusions can be drawn under various restrictions on the set of possible differences in trends. We conduct a simulation study and illustrate our recommended approach with applications to two recently published papers.
    [Show full text]
  • Portfolio Allocation with Skewness Risk: a Practical Guide∗
    Portfolio Allocation with Skewness Risk: A Practical Guide∗ Edmond Lezmi Hassan Malongo Quantitative Research Quantitative Research Amundi Asset Management, Paris Amundi Asset Management, Paris [email protected] [email protected] Thierry Roncalli Rapha¨elSobotka Quantitative Research Multi-Asset Management Amundi Asset Management, Paris Amundi Asset Management, Paris [email protected] [email protected] February 2019 (First version: June 2018) Abstract In this article, we show how to take into account skewness risk in portfolio allocation. Until recently, this issue has been seen as a purely statistical problem, since skewness corresponds to the third statistical moment of a probability distribution. However, in finance, the concept of skewness is more related to extreme events that produce portfolio losses. More precisely, the skewness measures the outcome resulting from bad times and adverse scenarios in financial markets. Based on this interpretation of the skewness risk, we focus on two approaches that are closely connected. The first one is based on the Gaussian mixture model with two regimes: a `normal' regime and a `turbulent' regime. The second approach directly incorporates a stress scenario using jump-diffusion modeling. This second approach can be seen as a special case of the first approach. However, it has the advantage of being clearer and more in line with the experience of professionals in financial markets: skewness is due to negative jumps in asset prices. After presenting the mathematical framework, we analyze an investment portfolio that mixes risk premia, more specifically risk parity, momentum and carry strategies. We show that traditional portfolio management based on the volatility risk measure is biased and corresponds to a short-sighted approach to bad times.
    [Show full text]
  • Chapter 9. Properties of Point Estimators and Methods of Estimation
    Chapter 9. Properties of Point Estimators and Methods of Estimation 9.1 Introduction 9.2 Relative Efficiency 9.3 Consistency 9.4 Sufficiency 9.5 The Rao-Blackwell Theorem and Minimum- Variance Unbiased Estimation 9.6 The Method of Moments 9.7 The Method of Maximum Likelihood 1 9.1 Introduction • Estimator θ^ = θ^n = θ^(Y1;:::;Yn) for θ : a function of n random samples, Y1;:::;Yn. • Sampling distribution of θ^ : a probability distribution of θ^ • Unbiased estimator, θ^ : E(θ^) − θ = 0. • Properties of θ^ : efficiency, consistency, sufficiency • Rao-Blackwell theorem : an unbiased esti- mator with small variance is a function of a sufficient statistic • Estimation method - Minimum-Variance Unbiased Estimation - Method of Moments - Method of Maximum Likelihood 2 9.2 Relative Efficiency • We would like to have an estimator with smaller bias and smaller variance : if one can find several unbiased estimators, we want to use an estimator with smaller vari- ance. • Relative efficiency (Def 9.1) Suppose θ^1 and θ^2 are two unbi- ased estimators for θ, with variances, V (θ^1) and V (θ^2), respectively. Then relative efficiency of θ^1 relative to θ^2, denoted eff(θ^1; θ^2), is defined to be the ra- V (θ^2) tio eff(θ^1; θ^2) = V (θ^1) - eff(θ^1; θ^2) > 1 : V (θ^2) > V (θ^1), and θ^1 is relatively more efficient than θ^2. - eff(θ^1; θ^2) < 1 : V (θ^2) < V (θ^1), and θ^2 is relatively more efficient than θ^1.
    [Show full text]
  • Review of Mathematical Statistics Chapter 10
    Review of Mathematical Statistics Chapter 10 Definition. If fX1 ; ::: ; Xng is a set of random variables on a sample space, then any function p f(X1 ; ::: ; Xn) is called a statistic. For example, sin(X1 + X2) is a statistic. If a statistics is used to approximate an unknown quantity, then it is called an estimator. For example, we X1+X2+X3 X1+X2+X3 may use 3 to estimate the mean of a population, so 3 is an estimator. Definition. By a random sample of size n we mean a collection fX1 ;X2 ; ::: ; Xng of random variables that are independent and identically distributed. To refer to a random sample we use the abbreviation i.i.d. (referring to: independent and identically distributed). Example (exercise 10.6 of the textbook) ∗. You are given two independent estimators of ^ ^ an unknown quantity θ. For estimator A, we have E(θA) = 1000 and Var(θA) = 160; 000, ^ ^ while for estimator B, we have E(θB) = 1; 200 and Var(θB) = 40; 000. Estimator C is a ^ ^ ^ ^ weighted average θC = w θA + (1 − w)θB. Determine the value of w that minimizes Var(θC ). Solution. Independence implies that: ^ 2 ^ 2 ^ 2 2 Var(θC ) = w Var(θA) + (1 − w) Var(θB) = 160; 000 w + 40; 000(1 − w) Differentiate this with respect to w and set the derivative equal to zero: 2(160; 000)w − 2(40; 000)(1 − w) = 0 ) 400; 000 w − 80; 000 = 0 ) w = 0:2 Notation: Consider four values x1 = 12 ; x2 = 5 ; x3 = 7 ; x4 = 3 Let's arrange them in increasing order: 3 ; 5 ; 7 ; 12 1 We denote these \ordered" values by these notations: x(1) = 3 ; x(2) = 5 ; x(3) = 7 ; x(4) = 12 5+7 x(2)+x(3) The median of these four values is 2 , so it is 2 .
    [Show full text]
  • Chapter 4 Efficient Likelihood Estimation and Related Tests
    1 Chapter 4 Efficient Likelihood Estimation and Related Tests 1. Maximum likelihood and efficient likelihood estimation 2. Likelihood ratio, Wald, and Rao (or score) tests 3. Examples 4. Consistency of Maximum Likelihood Estimates 5. The EM algorithm and related methods 6. Nonparametric MLE 7. Limit theory for the statistical agnostic: P/ ∈P 2 Chapter 4 Efficient Likelihood Estimation and Related Tests 1Maximumlikelihoodandefficientlikelihoodestimation We begin with a brief discussion of Kullback - Leibler information. Definition 1.1 Let P be a probability measure, and let Q be a sub-probability measure on (X, ) A with densities p and q with respect to a sigma-finite measure µ (µ = P + Q always works). Thus P (X)=1andQ(X) 1. Then the Kullback - Leibler information K(P, Q)is ≤ p(X) (1) K(P, Q) E log . ≡ P q(X) ! " Lemma 1.1 For a probability measure Q and a (sub-)probability measure Q,theKullback-Leibler information K(P, Q)isalwayswell-defined,and [0, ]always K(P, Q) ∈ ∞ =0 ifandonlyifQ = P. ! Proof. Now log 1 = 0 if P = Q, K(P, Q)= log M>0ifP = MQ, M > 1 . ! If P = MQ,thenJensen’sinequalityisstrictandyields % q(X) K(P, Q)=E log P − p(X) # $ q(X) > log E = log E 1 − P p(X) − Q [p(X)>0] # $ log 1 = 0 . ≥− 2 Now we need some assumptions and notation. Suppose that the model is given by P = P : θ Θ . P { θ ∈ } 3 4 CHAPTER 4. EFFICIENT LIKELIHOOD ESTIMATION AND RELATED TESTS We will impose the following hypotheses about : P Assumptions: A0. θ = θ implies P = P .
    [Show full text]