Chaos-Based Crypto and Joint Crypto-Compression Systems for Images and Videos Mousa Farajallah
Total Page:16
File Type:pdf, Size:1020Kb
Chaos-based crypto and joint crypto-compression systems for images and videos Mousa Farajallah To cite this version: Mousa Farajallah. Chaos-based crypto and joint crypto-compression systems for images and videos. Engineering Sciences [physics]. UNIVERSITE DE NANTES, 2015. English. tel-01179610 HAL Id: tel-01179610 https://hal.archives-ouvertes.fr/tel-01179610 Submitted on 23 Jul 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Public Domain Thèse de Doctorat Mousa FARAJALLAH Mémoire présenté en vue de l’obtention du grade de Docteur de l’Université de Nantes sous le label de l’Université de Nantes Angers Le Mans École doctorale : Sciences et technologies de l’information, et mathématiques Discipline : Electronique/spécialité: Traitement du signal et des images Unité de recherche : Institut d’Electronique et de Télécommunications de Rennes UMR CNRS 6164(IETR) Soutenue le 30 Juin 2015 Chaos-based crypto and joint crypto-compression systems for images and videos JURY Présidente : Mme Danièle FOURNIER-PRUNARET, Professeur des universités, INSA de Toulouse Rapporteurs : Mme Christine GUILLEMOT, Directrice de Recherche, IRISA, Rennes M. Thomas GROSGES, Professeur des universités, Université de Technologie de Troyes Examinateurs : M. Pascal MOLLI, Professeur des universités, Université de Nantes M. Calin VLADEANU, Professeur des universités, University Politehnica of Bucharest Directeur de thèse : M. Safwan EL ASSAD, Maître de Conférences, HDR, Université de Nantes Co-encadrant de thèse : M. Olivier DEFORGES, Professeur des universités, INSA de Rennes Contents I Chaos-Based Cryptosystems 13 1 Introduction 15 1.1 Cryptography based chaos......................... 16 1.2 Thesis contributions............................. 17 2 chaos-based cryptosystems, related work and measurement tools of perfor- mances 19 2.1 Chaos-based cryptosystems, related work................. 19 2.1.1 Confusion and diffusion in chaos................. 20 2.1.2 State of the art........................... 20 2.1.2.1 Fridrich cryptosystems................. 20 2.1.2.2 A symmetric image encryption scheme based on 3D chaotic cat maps..................... 21 2.1.2.3 Enhanced 1-D Chaotic Key-Based Algorithm for Im- age Encryption...................... 21 2.1.2.4 Chaotic block ciphers: from theory to practical algo- rithms.......................... 21 2.1.2.5 A fast image encryption and authentication scheme based on chaotic maps..................... 22 2.1.2.6 An image encryption scheme based on new spatiotem- poral chaos........................ 22 2.1.2.7 A new chaos-based fast image encryption algorithm.. 22 2.1.2.8 Zhang et al cryptosystem................ 23 2.2 Common and standard security evaluation tools.............. 24 2.2.1 Cryptanalysis attacks........................ 24 2.2.2 Plain-text sensitivity attack..................... 24 2.2.3 Key sensitivity attack........................ 26 2.2.4 Histogram analysis......................... 27 2.2.5 Correlation analysis........................ 27 2.2.6 Information entropy........................ 28 2.2.7 Measurement of encryption quality................ 28 2.2.8 Time performance......................... 29 3 First Contribution: Design and Realization of Efficient Chaos-based Cryp- tosystems 31 3.1 Cryptosystem-A: Chaos-based substitution permutation network..... 32 3.1.1 Encryption structure........................ 32 3.1.1.1 Substitution layer.................... 32 3 4 CONTENTS 3.1.1.2 Pre-diffusion....................... 40 3.1.1.3 Permutation layer.................... 40 3.1.2 Proposed chaotic generator..................... 41 3.1.3 Decryption structure........................ 43 3.1.3.1 Reverse Permutation Layer............... 44 3.1.3.2 Inverse Pre-diffusion layer................ 45 3.1.3.3 Inverse Substitution layer................ 45 3.2 Cryptosystem-B: Chaos-based SPN with authentication process..... 45 3.3 Cryptosystem-C: Binary diffusion layer and a bit-permutation layer cryp- tosystem................................... 49 3.3.1 Description of the encryption process............... 49 3.3.1.1 Diffusion layer...................... 50 3.3.1.2 Permutation Layer.................... 51 3.3.2 Description of the decryption process............... 56 3.3.2.1 Reverse of the new formulation based on the modified 2-D cat map....................... 56 3.3.2.2 Inverse Diffusion Layer................. 57 3.4 Time performance and security analysis.................. 57 3.4.1 Performance of the speed of calculations............. 57 3.4.2 Plain-text sensitivity attack..................... 58 3.4.3 Key sensitivity attack........................ 59 3.4.4 Correlation analysis........................ 59 3.4.5 Histogram analysis......................... 64 3.5 Conclusion................................. 67 4 Second Contribution: Partial Cryptanalysis of Zhang cryptosystem and de- sign of a very fast and secure cryptosystem 69 4.1 Partial cryptanalysis of the first Zhang cryptosystem............ 69 4.1.1 The first Zhang cryptosystem.................... 70 4.1.2 Partial cryptanalysis of the Zhang cryptosystem.......... 71 4.1.2.1 Decreasing the dynamic key space of the whole cryp- tosystem......................... 72 4.1.2.2 Chosen plaintext attack on the first Zhang cryptosystem 73 4.1.2.3 Combination of brute force and chosen plaintext attacks 80 4.1.3 Decreasing the UACI and NPCR values significantly....... 80 4.2 Designe and realization of very fast and secure cryptosystems....... 86 4.2.1 General concepts.......................... 86 4.2.2 General differences of the proposed cryptosystem with the Zhang one................................. 86 4.2.3 First proposed cryptosystem.................... 87 4.2.3.1 Encryption scheme of the first proposed cryptosystem. 88 4.2.3.2 Decryption scheme of the first proposed cryptosystem. 91 4.2.3.3 Analysis of the first proposed cryptosystem....... 93 4.2.3.4 Dynamic key space analysis of Fridrich, Zhang and our cryptosystems...................... 93 4.2.3.5 Chosen-plaintext attack................. 94 4.2.3.6 Some specific differences in the diffusion process... 95 4.2.4 Second proposed cryptosystem................... 95 CONTENTS 5 4.2.4.1 Finite Skew Tent Map as diffusion layer........ 95 4.2.4.2 Analysis of the second proposed cryptosystem..... 97 4.2.4.3 Dynamic key space analysis............... 97 4.2.4.4 Chosen-plaintext attack................. 97 4.2.5 Time and complexity analysis................... 97 4.2.6 Plain-text sensitivity attack..................... 99 4.2.7 Key sensitivity attack........................ 100 4.2.8 Correlation analysis........................ 102 4.2.9 Histogram analysis......................... 103 4.3 Example of a real-time application..................... 106 4.3.1 Real-time computing........................ 106 4.3.1.1 Issues in conventional real-time computing systems.. 106 4.3.1.2 The deadline mechanism................ 107 4.3.1.3 Scheduling framework.................. 107 4.3.2 Security in energy harvesting systems............... 107 4.3.2.1 System model...................... 107 4.3.2.2 The scheduling issue................... 108 4.4 Conclusion................................. 109 II Joint Crypto-Compression 111 5 Video coding and crypto-compression stat of the art 113 5.1 Video compression steps.......................... 113 5.1.1 Prediction.............................. 114 5.1.2 Transform.............................. 114 5.1.3 Quantization............................ 114 5.1.4 Entropy coding........................... 114 5.2 H.264/Advance Video Coding (AVC) and scalable extension....... 115 5.3 High Efficiency Video Coding (HEVC) standard.............. 116 5.3.1 HEVC partitioning......................... 117 5.3.2 HEVC Intra prediction....................... 118 5.3.3 HEVC Inter prediction....................... 118 5.3.4 HEVC transformation and quantization.............. 123 5.3.5 CABAC entropy coding...................... 123 5.4 Video encryption algorithms - related works................ 126 5.4.1 MPEG Video encryption algorithms................ 127 5.4.1.1 I-frames encryption................... 128 5.4.1.2 A non-compatible four level of security......... 128 5.4.1.3 Zig-Zag permutation algorithms............. 128 5.4.1.4 Change the sign bits or the values of DCT coefficients. 128 5.4.2 AVC and SVC encryption algorithms............... 129 5.4.2.1 Transparent encryption techniqes for AVC and SVC.. 129 5.4.2.2 Digital video scrambling method using Intra prediction mode........................... 130 5.4.2.3 Entropy coding encryption in AVC........... 130 5.4.2.4 Selective video encryption based on AVC........ 131 5.4.2.5 Fast protection of the AVC by selective encryption... 131 5.4.2.6 Fast protection of AVC by reduced selective encryption of CAVLC........................ 131 5.4.2.7 Design of new unitary transforms for perceptual video encryption........................ 132 5.4.3 HEVC encryption algorithms................... 132 5.5 Conclusion and discussion......................... 134 6 Third Contribution: Selective encryption algorithms for Video 135 6.1 Selective