Methods for Rearing Ground-Nesting Bees Under Laboratory Conditions Ryan J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Journal of Melittology Bee Biology, Ecology, Evolution, & Systematics the Latest Buzz in Bee Biology No
Journal of Melittology Bee Biology, Ecology, Evolution, & Systematics The latest buzz in bee biology No. 13, pp. 1–11 26 July 2013 A new species, Lasioglossum (Eickwortia) hienae, from Mexico (Apoidea: Halictidae) Jason Gibbs1 & Sheila Dumesh2 Abstract. A new species from Colima, Mexico, Lasioglossum (Eickwortia) hienae Gibbs & Du- mesh, new species, is described and illustrated. Lasioglossum hienae is distinguished from re- lated species based on a combination of morphological, geographical, and molecular evidence. A species distribution model is used to predict the potential distribution of the known species of L. (Eickwortia). An identification key is provided. INTRODUCTION The bee genus Lasioglossum Curtis (1833) is exceptionally diverse in terms of species richness, habitat use, and social behavior (Michener, 1974, 1979, 2000, 2007; Yanega, 1997; Schwarz et al., 2007). Eickwortia McGinley, 1999, now recognized as a subgenus of Lasioglossum (Michener 2000, 2007), was proposed for two species of high- elevation bees in Mexico and Central America, Lasioglossum nyctere (Vachal, 1904) and L. alexanderi (McGinley, 1999). Lasioglossum (Eickwortia) belongs to the informal group known as the Hemihalictus series, which is recognizable by its weak distal wing vena- tion (Michener, 2007). Ascher & Pickering (2013) have included these two species in L. (Evylaeus) Robertson, a subgenus we treat in a much narrower sense (Gibbs et al., 2013). The taxonomic limits of Lasioglossum subgenera require revision (Gibbs et al., 2012b, 2013), but recognition of the subgenus L. (Eickwortia) seems reasonable based on its apomorphic traits, including infuscate wings, strongly bidentate mandibles of the females, and slender metasoma of the males. We are reluctant to describe new species based on few specimens, but in the case of rare bees like L. -
Notes on Alien and Native Bees (Hymenoptera: Apoidea) from the Hawaiian Islands1
Records of the Hawaii Biological Survey for 2012. Edited by Neal L. Evenhuis & Lucius G. Eldredge. Bishop Museum Occasional Papers 114: 61 –65 (2013) Notes on alien and native bees (Hymenoptera : Apoidea ) from the Hawaiian Islands 1 KARl N. M AGNACCA 2,3 Hawai‘i Division of Forestry and Wildlife, c/o University of Hawai‘i–Hilo, Dept. of Biology, 200 W. Kawili St., Hilo, Hawaii 96720, USA; email: [email protected] JASoN GiBBS Cornell University, Department of Entomology, 3119 Comstock Hall, Ithaca, New York, 14853, USA; email: [email protected] SAM dRoeGe U.S. Geological Survey, Patuxent Wildlife Research Center, 11510 American Holly Drive, Laurel, Maryland 20708-4017, USA; email: [email protected]) Four introduced bees are recorded from the Hawaiian islands for the first time, along with notes on previously recorded species, including rediscovery of the endemic Hylaeus anom - alus (Perkins, 1899). Both of the new Lasioglossum species are relatively recent arrivals, but their precise date of introduction is not known because the alien Lasioglossum are often ignored by collectors and are poorly represented in collections. it had been assumed that all were L. impavidum (Sandhouse, 1924), which has been present in the islands since at least 1957 (Beardsley 1958, Beardsley 1959). A recent survey of o‘ahu lowland disturbed sites by Sd found three distinct species – L. impavidum , L. imbrex Gibbs, 2010, and L. microlepoides (ellis, 1914) – prompting a review of earlier specimens. Unless otherwise noted, specimens listed below were collected by KNM; specimens are deposited at the Bishop Museum (BPBM) and University of Hawai‘i–Mānoa insect Museum (UHiM). -
Profile for Halictus Harmonius
Packer, L. 2005. Species Profile: Halictus harmonius. In Shepherd, M. D., D. M. Vaughan, and S. H. Black (Eds). Red List of Pollinator Insects of North America. CD-ROM Version 1 (May 2005). Portland, OR: The Xerces Society for Invertebrate Conservation. ________________________________________________________________________ Halictus harmonius Sandhouse, 1941 (Halictidae: Halictinae: Halictini) ________________________________________________________________________ Prepared by Dr. Laurence Packer, York University. ________________________________________________________________________ SUMMARY Halictus harmonius is a rare localized species that has only ever been recorded from the foothills of the San Bernardino and, but with less certainty, from the San Jacinto mountains in Southern California. This whole area is subject to considerable anthropogenic disturbance through construction, pollution and agriculture. The species is active for long periods in spring and summer and appears to be primitively eusocial with macrocephalic queens and smaller workers. It appears not to be restricted in pollen and nectar source plants. A survey of suitable habitat in the small area from which the species is known is badly required. CONSERVATION STATUS Xerces Red List Status: Critically Imperiled Other Rankings: Canada – Species at Risk Act: N/A Canada – provincial status: N/A Mexico: N/A USA – Endangered Species Act None USA – state status: None Nature Serve: N/A IUICH Red List: N/A ________________________________________________________________________ SPECIES PROFILE DESCRIPTION Halictus harmonius is a member of the subgenus Seladonia. This is the only subgenus of Halictine bee in North America that has the combination of greenish metallic coloration and apical bands of pale hairs on the metasomal terga. Halictine bees can be readily identified on the basis of the strongly curved basal vein and, except in certain cleptoparasitic forms, by the pseudopygidial area on female T5. -
Hymenoptera: Aculeata Part 1 – Bees
SCOTTISH INVERTEBRATE SPECIES KNOWLEDGE DOSSIER Hymenoptera: Aculeata Part 1 – Bees A. NUMBER OF SPECIES IN UK: 318 B. NUMBER OF SPECIES IN SCOTLAND: 110 (4 thought to be extinct, 2 may be found – insufficient data) C. EXPERT CONTACTS Please contact [email protected] for details. D. SPECIES OF CONSERVATION CONCERN Listed species UK Biodiversity Action Plan Species known to occur in Scotland (the current list was published in August 2007): Andrena tarsata Tormentil mining bee Bombus distinguendus Great yellow bumblebee Bombus muscorum Moss (Large) carder bumblebee Bombus ruderarius Red-shanked (Red-tailed) carder bumblebee Colletes floralis Northern colletes Osmia inermis a mason bee Osmia parietina a mason bee Osmia uncinata a mason bee Bombus distinguendus is also listed under the Species Action Framework of Scottish Natural Heritage, launched in 2007 (Category 1: Species for Conservation Action). 1 Other species The Scottish Biodiversity List was published in 2005 and lists the additional species (arranged below by sub-family): Andreninae Andrena cineraria Andrena helvola Andrena marginata Andrena nitida 1 Andrena ruficrus Anthophorinae Anthidium maniculatum Anthophora furcata Epeolus variegatus Nomada fabriciana Nomada leucophthalma Nomada obtusifrons Nomada robertjeotiana Sphecodes gibbus Apinae Bombus monticola Colletinae Colletes daviesanus Colletes fodiens Hylaeus brevicornis Halictinae Lasioglossum fulvicorne Lasioglossum smeathmanellum Lasioglossum villosulum Megachillinae Osmia aurulenta Osmia caruelescens Osmia rufa Stelis -
Lasioglossum Sexstrigatum (Hymenoptera: Apidae, Halictinae) New to Britain
90 BR. J. ENT. NAT. HIST., 24: 2011 LASIOGLOSSUM SEXSTRIGATUM (HYMENOPTERA: APIDAE, HALICTINAE) NEW TO BRITAIN ROGER D. HAWKINS 30D, Meadowcroft Close, Horley, Surrey RH6 9EL ABSTRACT A female Lasioglossum sexstrigatum (Schenck), a species not previously known in Britain, was found in a sandpit near Merstham in Surrey in June 2008. Despite several searches, no further specimens of this bee have been recorded from this site. Recent evidence shows this species is widely distributed in central mainland Europe. INTRODUCTION AND DISCOVERY Small black bees, particularly those in the genus Lasioglossum, form a difficult area of study for the student of aculeate Hymenoptera, but can be identified with some confidence by careful use of a key and with reference to a reliably named collection. One such insect, a female bee taken at a flooded sandpit near Merstham in east Surrey, caused particular difficulty. This bee was small (6mm long) and black, the angles of the propodeum were rounded, and the marginal area of tergite 1 was shining, almost smooth, and without punctures. The specimen had one very distinctive feature: there was a narrow band of dense white hairs towards each side of the apical margin of each of tergites 2 to 4 (Plate 7, Fig. 2). The bee was given several different provisional names before being identified conclusively as Lasioglossum sexstrigatum (Schenck), a European species not previously recorded in Britain. The site is owned by WBB Minerals, part of the Sibelco Group, and since 2002 has been managed as a nature reserve by the Surrey Wildlife Trust under the name of Spynes Mere. -
Searles Mazzacano Pollinators - September 12, 2016 Who Pollinates? Who Pollinates?
Understanding and sustaining Insect Pollinators insect pollinators in your garden A. Importance of pollinators B. Cast of characters C. Creating habitat Mining bee; CASM Celeste A. Searles Mazzacano, Ph.D. D. Sustaining habitat Presented for EMSWCD E. Projects & resources Flower scarab; CASM © 2016 C. A. Searles Mazzacano yellow-faced bumble bee; C.A.S. Mazzacano 1 2 Why are pollinators important? Why are pollinators important? • pollination: transfer of pollen • 70% of flowering plants within or between flowers for pollinated by insects fertilization, seed & fruit set • ~1,000 plants grown • wind, insects, birds, mammals worldwide for food, fibers, drinks, spices, & medicine honey bee; C.A.S. Mazzacano pollinated by animals Bat Conservation International • most pollinated by bees Importance of bees to food production Bumble bee on echinacea; (Wilson & Carrill, 2016) Wikimedia Commons 3 4 Searles Mazzacano_Pollinators - September 12, 2016 Who pollinates? Who pollinates? More than bees!!!!! sand wasp; C.A.S. Mazzacano More than insects!!!!! • Wasps • Bats • Flies Tayler/naturepl.com • Hummingbirds • Beetles • Moths & butterflies Bee fly; C.A.S. Mazzacano C.A.S. Mazzacano 5 6 Who pollinates? Who pollinates? summer leafcutter bee, Bumble bee; C.A.S. Mazzacano “Managed” bees are Crown Bees catalog Much more than economically important European honey bees!!!!! • honey bees, bumble bees, - native bees (> 4000 NA spp.) orchard mason bees, alfalfa leafcutter bees ‣ social: bumble bees ‣ solitary: mining, mason, leafcutter, orchard, sweat, digger, and carpenter bees Sweat bee; C.A.S. Mazzacano CA almond grove; Kathy Keatley Garvey 7 8 Searles Mazzacano_Pollinators - September 12, 2016 Challenges for pollinators Challenges for pollinators Many stressors • Colony Collapse Disorder (2006) in managed honey • habitat loss bee hives • pesticides fouldbrood-infected larvae; Univ. -
Social Polymorphism in the Sweat Bee Lasioglossum (Evylaeus) Baleicum (Cockerell) (Hymenoptera, Halictidae) in Hokkaido, Northern Japan
Insect. Soc. 50 (2003) 379–386 0020-1812/03/040379-08 Insectes Sociaux DOI 10.1007/s00040-003-0693-1 © Birkhäuser Verlag, Basel, 2003 Research article Social polymorphism in the sweat bee Lasioglossum (Evylaeus) baleicum (Cockerell) (Hymenoptera, Halictidae) in Hokkaido, northern Japan A.L. Cronin 1 and M. Hirata 2 1 Department of Biology, University College London, Wolfson House, 4 Stephenson Way, London NW1 2HE, UK, e-mail: [email protected] 2 Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan Received 2 April 2002; revised 2 October 2002 and 9 June 2003; accepted 19 June 2003. Summary. The life cycle and social behaviour of the sweat Danforth, 1997). Eusociality has arisen three times in halic- bee Lasioglossum (Evylaeus) baleicum (Cockerell) was tid bees, with up to twelve reversions to solitary behaviour investigated in two geographically separate populations in and sociality can exhibit a wide diversity within closely relat- Hokkaido, northern Japan. Colonies were excavated ed species (Packer, 1991, 1997; Danforth, 2002). Eusociality throughout the brood rearing season from an aggregation in is predominantly facultative (except at least in Lasioglossum Nishioka forest park, Sapporo, and near Kawakita in eastern (Evylaeus) malachurum Richards, 2000; Paxton et al., 2002) Hokkaido during 2000 and 2001. The Nishioka population and may occur as delayed eusociality (where matrifilial asso- produced two discrete broods during the year and was weak- ciations arise after a period of overwintering, usually in ly eusocial; 57% of workers were mated and 28% exhibited singly-brooded populations) or non-delayed eusociality some ovarian development, 12–16% of the first brood was (where mother-daughter associations arise in the same year), male, and workers were on average 4.5% smaller than their and communal and semisocial species are known (Packer, respective queen. -
Small Sweat Bees (Hymenoptera: Halictidae) As Potential Major Pollinators of Melon (Cucumis Melo) in the Mediterranean
bs_bs_banner Entomological Science (2016) 19,55–66 doi: 10.1111/ens.12168 ORIGINAL ARTICLE Small sweat bees (Hymenoptera: Halictidae) as potential major pollinators of melon (Cucumis melo) in the Mediterranean Sara RODRIGO GÓMEZ1, Concepción ORNOSA2,JesúsSELFA1, Miguel GUARA3 and Carlo POLIDORI4,5 1 Departament de Zoologia, Universitat de València, València, Spain, 2 Departamento de Zoología y Antropología Física, Universidad Complutense de Madrid, Madrid, Spain, 3 Departament de Botànica, Universitat de València, València, Spain, 4 Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain and 5 Instituto de Ciencias Ambientales (ICAM), Universidad de Castilla-La Mancha, Toledo, Spain Abstract In the current scenario of a general decline of the honeybee worldwide, studies on the potential of alternative bee species in pollinating cultivated plants are important. Although melon, Cucumis melo,is a crop with great commercial importance, there is very little information on its pollinating fauna in Europe, and none from the southern Mediterranean area. In a locality in central Spain, using both pan- traps and net collections, we found that melon flowers are visited by 31 species of bees spanning four families, though only four were both dominant and constant. These four species belonged to the family Halictidae (sweat bees) and mostly (three species) to the genus Lasioglossum. Five other species could be defined as accessory: honeybee, Apis mellifera, and four other halictids. Individuals of the dominant species were smaller, on average, than those from all the other species. Observations on the frequency of pollen and nectar foraging and on flower visit duration further suggested L. -
Bees on Alternative Flowering Plants on Vegetable Farms
Dr. Kimberly A. Stoner Department of Entomology The Connecticut Agricultural Experiment Station 123 Huntington Street, P. O. Box 1106 New Haven, CT 06504 Phone: (203) 974-8480 Fax: (203) 974-8502 Founded in 1875 Email: [email protected] Putting science to work for society Website: www.ct.gov/caes Bees on Alternative Flowering Plants on Vegetable Farms in Connecticut Pollination is essential for the production of many fruit, nut, and vegetable crops. Because honey bees have suffered major losses in recent years, there has been an increase in research on the many species of other wild bees present on farms, revealing their importance in pollinating crops. One recent worldwide survey of 41 different crops found that in most cases, while honey bees can supplement the pollination services of wild bees in increasing fruit set, they cannot adequately substitute for them (1). Wild bees cannot be moved from one place to another to find plants in bloom like honey bees, so they need a diversity of flowers as sources of nectar and pollen onsite throughout their lifespan (2). Many crops grown on vegetable farms benefit from bee pollination, including cucumbers, melons, pumpkins, squash, beans, tomatoes, and small fruit such as strawberries and raspberries (3). Many of these crops are visited more frequently by wild bees than by honey bees, including tomatoes, pepper, and watermelon (4). In my own research on pumpkins, in three years of studies, we have found that most of bee visits to pumpkin flowers are by wild bees rather than honey bees, and this has been confirmed by others (5,6,7). -
Pollinator Project Summary
Assessing the potential for regenerating conifer forests to provide habitat for bees Jim Rivers and Matt Betts, College of Forestry, Oregon State University Introduction Animal pollinators represent upwards of 300,000 species worldwide (Kearns et al. 1998) and play indispensable roles by fertilizing nearly 90% of the world’s wild flowering plants (Ollerton et al. 2011) and 35% of agricultural crops (Klein et al. 2007). Despite their importance, many pollinators have experienced sharp declines, intensifying concerns regarding a “pollinator crisis” (Allen- Wardell et al. 1998, NRC 2007, Potts et al. 2010) that ultimately threatens global food security and the integrity of natural ecosystems. This has led to heightened interest in undertaking research to assess how land management influences pollinator populations and their associated pollination services. Indeed, concern over pollinators has become a national priority through the commission of an Executive Branch task force to identify priority areas for pollinator research and develop a strategy to promote pollinator health (WHPHTF 2015a,b). Managed forests are vital to the world’s economy because they provide wood fiber that supplies increasing demands of a growing global population (FAO 2016). Forests managed for timber production, especially those in temperate regions, can provide habitat for pollinators due to their thermal properties, floral resources, and nesting substrates (Hanula et al. 2016). Despite this, these habitats are virtually unstudied with respect to evaluating how intensive forest management influences pollinator populations. In turn, resource managers therefore have inadequate information for adjusting forest management in ways that can promote pollinator populations and the services they provide in managed forests. -
Lasioglossum Malachurum and Other Members Ofthe Subgenus Evylaeus
Intras·pecific and interspecific social variation in the sweat bee Lasioglossum malachurum and other members ofthe subgenus Evylaeus By Laura M. Wyman, B.Sc. A thesis submitted to the Department ofBiological Sciences in partial fulfilment ofthe requirements for the degree of Master ofScience February 2002 Brock University St. Catharines, Ontario © Laura M. Wyman, 2002 2 ABSTRACT Sweat bees exhibit a range of social behaviours, from solitary nesting, in which no workers are produced, to strong eusociality, in which workers exhibit a high degree of altruism, behaviour that is measured by the degree of personal reproductive sacrifice. Field studies were carried out for seven weeks during May-June 2000 in southern Greece in order to investigate intraspecific social variation, and test the hypothesis of a north-south cline of decreasing eusociality in the obligately eusocial sweat bee L. (E.) malachurum. A comparative study, using principal components analysis, was performed to determine if patterns of intraspecific social variation in L. malachurum reflect the patterns of social variation within the subgenus, Evylaeus, as a whole. The results of the field study reveal that, in Greece, two worker broods were produced followed by a third brood consisting of gynes, males and some workers, indicating that there was an overlap in worker and gyne production. There was strong caste distinction between queens and workers. Workers actively foraged and participated in nest construction as most workers (58%, n=303) had a high degree of mandibular wear. Workers did not participate in the oviposition ofBrood 3 gynes since only 0.7% (n=278) of workers were mated. -
Evidence of Pollinators Foraging on Centipedegrass Inflorescences
insects Communication Evidence of Pollinators Foraging on Centipedegrass Inflorescences Shimat V. Joseph 1,* , Karen Harris-Shultz 2 and David Jespersen 3 1 Department of Entomology, University of Georgia, Griffin, GA 30223, USA 2 Crop Genetics and Breeding Research Unit, USDA-ARS, Tifton, GA 31793, USA; [email protected] 3 Department of Crop and Soil Science, University of Georgia, Griffin, GA 30223, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-770-228-7312 Received: 19 October 2020; Accepted: 10 November 2020; Published: 13 November 2020 Simple Summary: Turfgrasses are generally considered devoid of pollinators, as turfgrasses are often described as being only wind-pollinated. Centipede grass is a popular turfgrass grown in the southeastern USA. Centipede grass produces a large number of inflorescences from August to October each year. In a recent study, honeybees were found to collect pollen from centipede grass. However, it is not clear whether other pollinators are attracted to centipede grass inflorescences and actively forage them. Thus, the aim of the current study was to document the pollinators that foraged on centipede grass inflorescences. Pollinators visiting centipede grass were sampled using (1) a sweep net when actively foraging on an inflorescence; (2) blue, white and yellow pan traps; and (3) malaise or flight-intercept traps. Sweat-, bumble- and honeybees were captured while actively foraging on the centipede grass inflorescences. In the pan and flight-intercept traps, more sweat-bees were collected than honey- or bumblebees. We also captured hoverflies in the samples. The adult hoverflies consumed pollen during flower visits. This research is a first step toward developing bee-friendly lawns.