Geomorphology and Sedimentology of the South Western Planning Area of Australia

Total Page:16

File Type:pdf, Size:1020Kb

Geomorphology and Sedimentology of the South Western Planning Area of Australia GEOSCIENCE AUSTRALIA Geomorphology and Sedimentology of the South Western Planning Area of Australia Review and synthesis of relevant literature in support of Regional Marine Planning Laura Richardson, Emma Mathews & Andrew Heap Record 2005/17 SPA TIAL INFORMATION FOR THE NA TION Geoscience Australia Record 2005/17 Geomorphology and Sedimentology of the South Western Planning Area of Australia Review and synthesis of relevant literature in support of Regional Marine Planning Laura Richardson, Emma Mathews and Andrew Heap Geoscience Australia, GPO Box 378, Canberra, ACT 2601, Australia Geomorphology and Sedimentology of the SWPA of Australia Department of Industry, Tourism & Resources Minister for Industry, Tourism & Resources: The Hon. Ian Macfarlane, MP Parliamentary Secretary: The Hon. Warren Entsch, MP Secretary: Mark Paterson Geoscience Australia Chief Executive Officer: Dr Neil Williams © Commonwealth of Australia, 2005 This work is copyright. Apart from any fair dealings for the purpose of study, research, criticism, or review, as permitted under the Copyright Act 1968, no part may be reproduced by any process without written permission. Copyright is the responsibility of the Chief Executive Officer, Geoscience Australia. Requests and enquiries should be directed to the Chief Executive Officer, Geoscience Australia, GPO Box 378 Canberra ACT 2601. Geoscience Australia has tried to make the information in this product as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore, you should not solely rely on this information when making a commercial decision. ISSN: 1448-2177 ISBN: 1 920871 56 X GeoCat No. 63721 Bibliographic reference: Richardson, L., Mathews, E. and Heap, A. (2005). Geomorphology and Sedimentology of the South Western Planning Area of Australia: review and synthesis of relevant literature in support of Regional Marine Planning. Geoscience Australia, Record 2005/17. 124pp. Correspondence for feedback: Andrew Heap Geoscience Australia GPO Box 378 Canberra ACT 2601 [email protected] ii Contents List of Figures.................................................................................................................. v List of Tables ..................................................................................................................vi Acknowledgements .......................................................................................................vii Executive Summary........................................................................................................ x 1. Introduction.................................................................................................................1 1.1. Background........................................................................................................ 1 1.1.1. Oceans Policy and Regional Marine Planning ..................................... 1 1.1.2. Scope and Relevance ............................................................................. 1 1.2. South Western Planning Area............................................................................ 3 1.2.1. Rottnest .................................................................................................. 5 1.2.2. South West.............................................................................................. 8 1.2.3. Great Australian Bight......................................................................... 10 1.2.4. Spencer and St. Vincent Gulfs.............................................................. 10 2. Rottnest...................................................................................................................... 11 2.1. Tectonic Setting ............................................................................................... 12 2.2. Geomorphology ............................................................................................... 14 2.3. Oceanography .................................................................................................. 21 2.4. Surface Sediments............................................................................................ 26 2.5. Late Quaternary Evolution............................................................................... 33 3. South West................................................................................................................. 38 3.1. Tectonic Setting ............................................................................................... 38 3.2. Geomorphology ............................................................................................... 40 3.3. Oceanography .................................................................................................. 44 3.4. Surface Sediments............................................................................................ 47 3.5. Late Quaternary Evolution............................................................................... 51 4. Great Australian Bight............................................................................................. 53 4.1. Tectonic Setting ............................................................................................... 53 4.2. Geomorphology ............................................................................................... 56 4.3. Oceanography .................................................................................................. 60 4.4. Surface Sediments............................................................................................ 64 4.5. Acoustic Facies................................................................................................ 68 4.6. Late Quaternary Evolution............................................................................... 72 5. Spencer and St. Vincent Gulfs................................................................................. 74 5.1. Tectonic Setting ............................................................................................... 75 5.2. Geomorphology ............................................................................................... 76 5.3. Oceanography .................................................................................................. 79 5.4. Surface Sediments............................................................................................ 84 5.5. Acoustic Facies................................................................................................ 90 5.6. Late Quaternary Evolution............................................................................... 91 iii Geomorphology and Sedimentology of the SWPA of Australia 6. Implications for Regional Marine Planning ...........................................................94 6.1. Habitat Mapping...................................................................................................94 6.2. Sediment and Biota Relationships......................................................................101 6.3. Summary ............................................................................................................104 7. References ................................................................................................................106 8. Appendix A: Classification of Acoustic Facies .....................................................122 iv List of Figures Figure 1.1. Map of South Western Planning Area............................................................ 2 Figure 1.2. False-colour bathymetric image of southwestern Australian margin............. 3 Figure 1.3. False-colour image showing features cited in the text ................................... 4 Figure 1.4. Map showing major geomorphic features of the region................................. 6 Figure 1.5. Physical oceanography of the southwestern Australian margin..................... 7 Figure 1.6. Map showing locations of samples held in MARS ........................................ 8 Figure 1.7. Map showing samples with quantitative grain size held in MARS. .............. 9 Figure 1.8. Map showing samples with quantitative CaCO3 content held in MARS....... 9 Figure 2.1. False-colour bathymetric image of the Rottnest Shelf ................................. 12 Figure 2.2. Map showing the geological setting of the Rottnest .................................... 13 Figure 2.3. Schematic diagram of southern Rottnest Shelf morphology........................ 15 Figure 2.4. Schematic cross-section of the northern Rottnest Shelf............................... 16 Figure 2.5. False-colour bathymetric image of the Houtman Abrolhos Islands............. 18 Figure 2.6. Bathymetry map of the Houtman Abrolhos platform groups....................... 19 Figure 2.7. Schematic cross-section of the Easter Platform ........................................... 19 Figure 2.8. Idealised morphology of the inner Abrolhos Shelf ...................................... 20 Figure 2.9. False-colour bathymetric image of the Perth Canyon .................................. 20 Figure 2.10. Satellite image of the Leeuwin Current...................................................... 23 Figure 2.11. Map showing interpreted saline outflow from Shark Bay ......................... 24 Figure 2.12. Map showing the distribution of significant wave height .......................... 25 Figure 2.13. Map showing the distribution of wave energy ........................................... 26 Figure 2.14.
Recommended publications
  • A High-Quality Historical Humidity Database for Australia
    The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology A High-quality Historical Humidity Database for Australia Chris Lucas CAWCR Technical Report No. 024 July 2010 A High-quality Historical Humidity Database for Australia Chris Lucas1 1The Centre for Australian Weather and Climate Research - a partnership between CSIRO and the Bureau of Meteorology CAWCR Technical Report No. 024 July 2010 ISSN: 1835-9884 National Library of Australia Cataloguing-in-Publication entry Author: Lucas, Chris. Title: A High-quality Historical Humidity Database for Australia [electronic resource] / Chris Lucas. ISBN: 9781921605864 (pdf) Series: CAWCR technical report; 24. Notes: Included bibliography references and index. Subjects: Humidity--Australia--Databases. Meteorology--Australia--Databases. Australia--Climate. Dewey Number: 551.5710994 Enquiries should be addressed to: Chris Lucas Centre for Australian Weather & Climate Research GPO Box 1289 Melbourne Victoria 3001, Australia [email protected] Copyright and Disclaimer © 2010 CSIRO and the Bureau of Meteorology. To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO and the Bureau of Meteorology. CSIRO and the Bureau of Meteorology advise that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice.
    [Show full text]
  • Bulletin of the Geological Society of America Vol. 71. Pp. 1729-1754, 7 Figs. December 1960 Bermuda: a Partially Drowned, Late M
    BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 71. PP. 1729-1754, 7 FIGS. DECEMBER 1960 BERMUDA: A PARTIALLY DROWNED, LATE MATURE, PLEISTOCENE KARST BY J HARLEN BRETZ ABSTRACT During Pleistocene time, the Bermuda Islands repeatedly underwent partial inundation and re-emergence. The land areas were continuously attacked and reduced by rain and ground water but repeatedly renewed, during times of submergence, by deposition of marine limestone and by contemporaneous additions of shore-born and wind-transported carbonate sand, now eolianite. Soils formed under subaerial conditions are now buried be- neath later deposits and constitute important stratigraphic markers. The igneous founda- tion rock appears to have been exposed during some low marine stands, and the former shore lines seem to be recorded by submerged terraces. The major karst features are largely below sea level, and they must date from times of continental glaciations. Previous writers have assigned eolian accumulation to times of Pleistocene low sea level and soil-making to times of interglacial high sea. Both conclusions are held to be er- roneous. CONTENTS TEXT Figure Page Page Navy and Air Force modifications of the Introduction 1729 shore line 1730 Acknowledgments 1732 2. Bermuda Islands with the adjacent Dunes and eolianites 1732 banks 1733 Paleosols 1736 3. Diagram of section at Whalebone Bay, Ber- Caves 1741 muda Islands 1735 Origin of the interior basins 1744 4. Diagram to show contrast in soil record on Correlation of soil-making and dune-building uplands and lowlands, Bermuda with Pleistocene eustatism 1746 Islands 1736 Conclusion 1752 5. Diagram of Shore Hills type section, References cited 1754 Bermuda Islands 1737 6.
    [Show full text]
  • Acf Final Cs
    A B C D E F G H I J K L M N O P NORTH MARINE REGION AUSTRALIA’S OCEANS: FROM ASIA TO ANTARCTICA AUSTRALIAN www.acfonline.org.au/oceans 1 1 NORTH-WEST MARINE REGION The 700,000 square kilometres of this region cover the shallow waters of the Gulf of Carpentaria and the oceans treasure map The region’s one million square kilometres contain Arafura and Timor seas. Inshore ocean life is an extensive continental shelf, diverse and influenced by the mixing of freshwater runoff from productive coral reefs and some of the best examples Australia’s oceans are the third largest and most Without our oceans, Australia’s environment, tropical rainfall and wind and storm-driven surges of tropical and arid-zone mangroves in the world. of sea water. Many turtles, dugongs, dolphins and diverse on Earth. Three major oceans, five climate economy, society and culture would be very The breeding and feeding grounds for a number of seabirds travel through the area. threatened migratory species are found here along Christmas zones, varied underwater seascapes and mighty different. They are our lifestyle-support system. But Island currents bring together an amazing wealth of ocean they have suffered from our use and less than five 2 with large turtle and seabird populations. 2 Cocos treasures. This map shows you where to find them. per cent is free of fishing and offshore oil and gas. e Ara in fura C R Keeling r any eg a ons io Islands M n Tor Norfolk res rth Island Australia has the world’s largest area of coral reefs, To protect our ocean treasures Australia needs to: o Strait TIMOR N DARWIN Van Diemen Raine Island the largest single reef−the Great Barrier Reef−and • create a network of marine national parks free of SEA Rise Wessel the largest seagrass meadow in Shark Bay.
    [Show full text]
  • A Pilot Study for the Proposed Eradication of Feral Cats on Dirk Hartog Island, Western Australia
    Algar, D.; M. Johnston, and S.S. Hilmer. A pilot studyIsland for the proposed invasives: eradication eradicationof feral cats on Dirk Hartogand Island, management Western Australia A pilot study for the proposed eradication of feral cats on Dirk Hartog Island, Western Australia D. Algar1, M. Johnston2, and S.S. Hilmer1 1Department of Environment and Conservation, Science Division, P.O. Box 51, Wanneroo, Western Australia 6946, Australia. <[email protected]>. 2Department of Sustainability and Environment, Arthur Rylah Institute for Environmental Research, P.O. Box 137, Heidelberg, Victoria 3084, Australia. Abstract Feral cat eradication is planned for Dirk Hartog Island (620 km2), which is the largest island off the Western Australian coast. The island, in the Shark Bay World Heritage Property, once supported at least 13 species of native mammals but only three species remain. Since the 1860s, Dirk Hartog Island has been managed as a pastoral lease grazed by sheep and goats. Cats were probably introduced by early pastoralists and became feral during the late 19th century. Dirk Hartog Island was established as a National Park in November 2009, which provides the opportunity to eradicate feral cats and reconstruct the native mammal fauna. A 250 km2 pilot study was conducted on the island to assess the efficacy of aerial baiting as the primary technique for the eradication campaign. Initially, cats were trapped and fitted with GPS data-logger radio-collars. The collars were to provide information on daily activity patterns, to determine detection probabilities, and to optimise the proposed spacing of aerial baiting transects and the monitoring track network for the eradication.
    [Show full text]
  • Crater Gradation in Gusev Crater and Meridiani Planum, Mars J
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, E02S08, doi:10.1029/2005JE002465, 2006 Crater gradation in Gusev crater and Meridiani Planum, Mars J. A. Grant,1 R. E. Arvidson,2 L. S. Crumpler,3 M. P. Golombek,4 B. Hahn,5 A. F. C. Haldemann,4 R. Li,6 L. A. Soderblom,7 S. W. Squyres,8 S. P. Wright,9 and W. A. Watters10 Received 19 April 2005; revised 21 June 2005; accepted 27 June 2005; published 6 January 2006. [1] The Mars Exploration Rovers investigated numerous craters in Gusev crater and Meridiani Planum during the first 400 sols of their missions. Craters vary in size and preservation state but are mostly due to secondary impacts at Gusev and primary impacts at Meridiani. Craters at both locations are modified primarily by eolian erosion and infilling and lack evidence for modification by aqueous processes. Effects of gradation on crater form are dependent on size, local lithology, slopes, and availability of mobile sediments. At Gusev, impacts into basaltic rubble create shallow craters and ejecta composed of resistant rocks. Ejecta initially experience eolian stripping, which becomes weathering-limited as lags develop on ejecta surfaces and sediments are trapped within craters. Subsequent eolian gradation depends on the slow production of fines by weathering and impacts and is accompanied by minor mass wasting. At Meridiani the sulfate-rich bedrock is more susceptible to eolian erosion, and exposed crater rims, walls, and ejecta are eroded, while lower interiors and low-relief surfaces are increasingly infilled and buried by mostly basaltic sediments. Eolian processes outpace early mass wasting, often produce meters of erosion, and mantle some surfaces.
    [Show full text]
  • The Ninth Issue of Ngari Capes Marine Park News
    Ngari Capes Newsletter Page 1 of 17 Issue 9 - Autumn 2021 Welcome to the ninth issue of Ngari Capes Marine Park News In this issue: • Introducing District Manager Wayne Elliott • The wreck of SS Pericles • Eight new angel rings installed within Ngari Capes • "Mutant" kelp found within the Ngari Capes Marine Park • 2021 Ngari Capes Seagrass Monitoring • Best science minds in underwater think tank • Do you know about marine park sanctuary zones? Above: Torpedo Rocks, Yallingup Introducing District Manager Wayne Elliott file:///C:/Users/NICOLE~1/AppData/Local/Temp/Low/WMCKOHD6.htm 27/04/2021 Ngari Capes Newsletter Page 2 of 17 I grew up in Cape Town, South Africa close enough to the Atlantic Ocean that on most mornings, I awoke to the sound of the waves in Table Bay. My earliest childhood memories were been stung by jellyfish everytime I swam in the ocean and just how cold the Atlantic Ocean was. Whilst at the University of Cape Town, I worked as a ranger at the Cape of Good Hope Nature Reserve. The reserve, now part of a larger national park was bounded by the Atlantic Ocean to the west and the Indian Ocean to the east which resulted in a very diverse marine environment. I had the privilege of monitoring the Black Oystercatcher population within a 7 km sanctuary zone and have fond memories of been the only person, apart from the baboons on the beach every day. In later years, I worked for a provincial conservation organisation in KwaZulu- Natal, much like DBCA and was responsible, amongst other duties, for the overall management of the many marine reserves.
    [Show full text]
  • 43. Southwest Australian Shelf.Pdf
    XIX Non Regional Seas LMEs 839 XIX-64 Southwest Australian Shelf: LME #43 T. Irvine, J. Keesing, N. D’Adamo, M.C. Aquarone and S. Adams The Southwest Australian Shelf LME extends from the estuary of the Murray-Darling River to Cape Leeuwin on Western Australia’s coast (~32°S). It borders both the Indian and Southern Oceans and has a narrow continental shelf until it widens in the Great Australian Bight. The LME covers an area of about 1.05 million km2, of which 2.23% is protected, with 0.03% and 0.18% of the world’s coral reefs and sea mounts, respectively, as well as 10 major estuaries (Sea Around Us, 2007). This is an area of generally high energy coast exposed to heavy wave action driven by the West Wind Belt and heavy swell generated in the Southern Ocean. However, there are a few relatively well protected areas, such as around Albany, the Recherche Archipelago off Esperance, and the Cape Leeuwin / Cape Naturaliste region, with the physical protection facilitating relatively high marine biodiversity. Climatically, the LME is generally characterised by its temperate climate, with rainfall relatively high in the west and low in the east. However, rainfall is decreasing and Western Australia is getting warmer, with a 1°C rise in Australia predicted by 2030 (CSIRO, 2007) and an increase in the number of dry days also predicted. The overall environmental quality of the waters and sediments of the region is excellent (Environmental Protection Authority, 2007). The LME is generally low in nutrients, due to the seasonal winter pressure of the tail of the tropical Leeuwin Current and limited terrestrial runoff (Fletcher and Head, 2006).
    [Show full text]
  • Special Issue3.7 MB
    Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird
    [Show full text]
  • Locational Factors Determining the Distribution of Nesting Sites for A
    Edith Cowan University Research Online Theses : Honours Theses 1998 Locational factors determining the distribution of nesting sites for a colony of wedge-tailed shearwaters, puffinus pacificus, onest W Wallabi Island, Houtman Abrolhos, Western Australia Julie Davis Edith Cowan University Follow this and additional works at: https://ro.ecu.edu.au/theses_hons Part of the Ecology and Evolutionary Biology Commons, and the Ornithology Commons Recommended Citation Davis, J. (1998). Locational factors determining the distribution of nesting sites for a colony of wedge- tailed shearwaters, puffinus pacificus, onest W Wallabi Island, Houtman Abrolhos, Western Australia. https://ro.ecu.edu.au/theses_hons/473 This Thesis is posted at Research Online. https://ro.ecu.edu.au/theses_hons/473 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth).
    [Show full text]
  • Evolution and Deformation of the Onshore Eucla Basin During the Cenozoic
    Government of Western Australia Department of Mines and Petroleum RECORD 2016/10 EVOLUTION AND DEFORMATION OF THE ONSHORE EUCLA BASIN DURING THE CENOZOIC by LC Mounsher Record 2016/10 EVOLUTION AND DEFORMATION OF THE ONSHORE EUCLA BASIN DURING THE CENOZOIC by LC Mounsher Perth 2016 MINISTER FOR MINES AND PETROLEUM Hon. Sean K L’Estrange MLA DIRECTOR GENERAL, DEPARTMENT OF MINES AND PETROLEUM Richard Sellers EXECUTIVE DIRECTOR, GEOLOGICAL SURVEY OF WESTERN AUSTRALIA Rick Rogerson REFERENCE The recommended reference for this publication is: Mounsher, LC 2016, Evolution and deformation of the onshore Eucla Basin during the Cenozoic: Geological Survey of Western Australia, Record 2016/10, 70p. National Library of Australia Card Number and ISBN PDF 978-1-74168-695-1 About this publication This Record is an Honours thesis researched, written and compiled as part of a collaborative project between the Geological Survey of Western Australia (GSWA) and Curtin University, Western Australia. Although GSWA has provided support for this project including access to core, the scientific content of the Record, and the drafting of figures, was the responsibility of the author. No editing has been undertaken by GSWA. Disclaimer This product was produced using information from various sources. The Department of Mines and Petroleum (DMP) and the State cannot guarantee the accuracy, currency or completeness of the information. DMP and the State accept no responsibility and disclaim all liability for any loss, damage or costs incurred as a result of any use of or reliance whether wholly or in part upon the information provided in this publication or incorporated into it by reference.
    [Show full text]
  • Ngari Talestales News from the Ngari Capes Marine Park No
    Department of Fisheries Department of Parks and Wildlife Department of Regional Development NgariNgari TalesTales News from the Ngari Capes Marine Park No. 3: Autumn 2014 Welcome to the third issue of Ngari Tales, a newsletter for everyone who wants to know more about the Ngari Capes Marine Park: one of Western Australia’s most recently created State marine parks, located in the south-west of WA. Have you seen any damselfish along the Capes? Researchers at the Department of Fisheries, Curtin University and the Western Australian Museum are asking divers in the Cape Naturaliste to Cape Leeuwin area to report any sightings of two damselfish: scissortail Scissortail sergeant (Abudefduf sexfasciatus). sergeant (Abudefduf sexfasciatus) and the Indo-Pacific sergeant (A. vaigiensis) (pictured right). For more than three decades, Barry Hutchins from the Western Australian Museum has been monitoring the annual arrival of pulses of tropical fish larvae at Rottnest Island, and the above two damselfish species have always figured prominently. These tropical species do not breed at Rottnest and it appears that larvae originate from the Houtman Abrolhos Islands off Geraldton, where these species are known to breed. Oceanographic studies by Alan Pearce (Department of Fisheries and Curtin University) have demonstrated that they are carried down in the Leeuwin Current to the waters around Rottnest, which has been their southernmost limit along the Western Australian coast. Indo-Pacific sergeant (A. vaigiensis). An event known as the ’marine heat wave‘ in early 2011 Alan’s investigation of the ocean currents and water resulted in ecological changes ranging from devastating temperatures have led him to suspect that these fish mortality at a number of localities to a variety of damselfish species could be found between the Capes tropical fish, including whale sharks and manta rays, during March and April.
    [Show full text]
  • Amphipod Newsletter 39 (2015)
    AMPHIPOD NEWSLETTER 39 2015 Interviews BIBLIOGRAPHY THIS NEWSLETTER PAGE 19 FEATURES INTERVIEWS WITH ALICJA KONOPACKA AND KRZYSZTOF JAŻDŻEWSKI PAGE 2 MICHEL LEDOYER WORLD AMPHIPODA IN MEMORIAM DATABASE PAGE 14 PAGE 17 AMPHIPOD NEWSLETTER 39 Dear Amphipodologists, Statistics from We are delighted to present to you Amphipod Newsletter 39! this Newsletter This issue includes interviews with two members of our amphipod family – Alicja Konopacka and Krzysztof Jazdzewski. Both tell an amazing story of their lives and work 2 new subfamilies as amphipodologists. Sadly we lost a member of our amphipod 21 new genera family – Michel Ledoyer. Denise Bellan-Santini provides us with a fitting memorial to his life and career. Shortly many 145 new species members of the amphipod family will gather for the 16th ICA in 5 new subspecies Aveiro, Portugal. And plans are well underway for the 17th ICA in Turkey (see page 64 for more information). And, as always, we provide you with a Bibliography and index of amphipod publications that includes citations of 376 papers that were published in 2013-2015 (or after the publication of Amphipod Newsletter 38). Again, what an amazing amount of research that has been done by you! Please continue to notify us when your papers are published. We hope you enjoy your Amphipod Newsletter! Best wishes from your AN Editors, Wim, Adam, Miranda and Anne Helene !1 AMPHIPOD NEWSLETTER 39 2015 Interview with two prominent members of the “Polish group”. The group of amphipod workers in Poland has always been a visible and valued part of the amphipod society. They have organised two of the Amphipod Colloquia and have steadily provided important results in the world of amphipod science.
    [Show full text]