Distributed Playback™ Contents

Total Page:16

File Type:pdf, Size:1020Kb

Distributed Playback™ Contents Introducing the Next Generation of In-Vehicle Infotainment: Distributed Playback™ Contents Introduction: Closing the gap in IVI ..............................................3 Industry trends driving IVI .......................................................4 Key features of Distributed Playback™ ...........................................6 Field-proven reliability ..........................................................7 Wide cross-platform support ....................................................9 Universal API functions ........................................................ 10 Highly optimized media player ................................................ 12 Seamless access to online services ............................................. 13 Economical use of system resources ........................................... 15 Advanced use cases ........................................................... 17 Industry recognition .......................................................... 22 Conclusions .................................................................. 23 About Cinemo ................................................................ 23 Appendix A: Media formats supported by Cinemo ............................. 24 Appendix B: Platforms supported by Cinemo .................................. 25 Sources ....................................................................... 26 Cinemo GmbH © 2016 by Cinema GmbH. All rights reserved. Kaiserstrasse 72 76133 Karlsruhe, Germany Distributed Playback is a trademark of Cinemo GmbH. [email protected] Any other trademarked names are used for editorial purposes www.cinemo.com only, with no intention of infringing the trademark holder. Introduction: Closing the gap in IVI This white paper introduces the next-generation of in-vehicle infotainment (IVI): the patented and award-winning Distributed Playback™ technology from Cinemo. Cinemo ofers automotive-grade embedded middleware that enables fawless multimedia playback, streaming, media management and connectivity. This dramatically extends the possibilities of IVI for automotive OEMs and Tier 1 head unit makers. As shown in Figure 1, Cinemo’s embedded middleware links a vast array of media and devices to the vehicle’s head unit, either through wired or wireless connections. The head unit can use any popular platform, operating system, chips, media standards, or fle formats. The innovative Distributed Playback™ feature supports multiple sources, multiple screens, and multiple devices, enabling complete in-vehicle BYOD (Bring Your Own Device). All functions are available to all passengers in the rear seat as well. And any licensed online services can be linked to the IVI as well. In this way, Distributed Playback™ opens up exciting new capabilities that were never before possible, and closes the gaps in the user experience outside and inside the vehicle. And it will help OEMs and Tier 1s take advantage of three major industry trends: the connected car, ride sharing, and autonomous vehicles. Figure 1 Cinemo IVI block diagram, showing how passengers can bring their own devices or access online services 3 Introducing Distributed PlaybackTM www.cinemo.com Industry trends driving IVI Three major trends are driving the need for the next generation of in-vehicle infotainment: the connected car which is always online, the worldwide popularity of ride-sharing services, and the dawn of autonomous (self-driving) vehicles. Industry trend: The connected car For most of its history, the automotive industry moved at a somewhat sedate pace. But today, the industry is being re-shaped by technology, especially the notion of the connected car. Most people think a connected car simply has internet access and an in-vehicle network, likely Wi-Fi. McKinsey goes further, saying that a connected car can “optimize its own operation and maintenance as well as the convenience and comfort of passengers.”1 Consumers are pushing for this faster than many OEMs can respond. For example, in 2014 Accenture asked 14,000+ consumers around the world about the connected car. The results were dramatic: t 89% already stream music in their cars, or would like to t 71% surf the Web from a screen in their cars, or would like to t 65% listen to and dictate e-mail in their cars, or would like to Perhaps the biggest surprise: 2 out of 3 consumers said that when they shop for a car today, in-car technology is more important to them than driving performance. The era of the connected car has clearly arrived. 2 Industry trend: Ride sharing By now, ride-sharing services like Uber, Lyft, and China’s Didi are mainstream. And these services are changing attitudes about owning cars. For example, close to 10% of Uber users surveyed in London have decided not to buy a car, or to get rid of their existing car.3 And the proportion of Americans who hold driver’s licenses has been dropping, especially among younger people ages 16 to 24.4 Instead, many now rely on ride sharing. As this trend grows, McKinsey estimates 1 in 10 cars sold in 2030 could be for ride sharing.5 Yet most cars today still lack a signifcant capability. Passengers can easily order a ride using a mobile device; but once inside, they can’t use their devices efectively. Wi-Fi and cell connections are often poor, and the IVI can’t support their devices. 4 Introducing Distributed PlaybackTM www.cinemo.com Consumers want to bring their mobile devices into any vehicle, even when getting a lift from Uber or Lyft. The OEMs that meet this need frst will attract buyers, perhaps for entire feets. Autonomous vehicles will free up billions of hours that many drivers will want to fill with audio, video, and online services. Industry trend: Autonomous vehicles Meanwhile, mass-market autonomous vehicles (AVs) are expected to arrive during the 2020s. By 2030, McKinsey estimates at least 15% of all cars sold will be fully autonomous, and perhaps as many as 50%.6 One factor behind this trend is probably the growing congestion on our roads. Trafc analysis frm Inrix found these numbers for 2015: t Los Angeles drivers spend 81 hours a year stuck in trafc t San Francisco and Washington, DC: 75 hours t New York: 73 hours The frm reported that trafc in Europe could be just as bad: t London drivers sit 101 hours a year in trafc jams t Stuttgart, Germany: 73 hours t Brussels, Belgium: 70 hours t Paris: 45 hours7 The Castrol Start-Stop Index found that drivers in Shanghai are stuck in idle one- third of the time, and in Beijing 27% of the time. Hong Kong was only slightly better. And some of the worst trafc jams in the world are in Jakarta, Indonesia.8 No matter the location, nobody wants to sit in stop-and-go trafc for hours every day. AVs will free up literally billions of hours for drivers—hours that many will want to fll with in-vehicle audio, video, and online services. The companies that meet this need best will be rewarded with more sales. 5 Introducing Distributed PlaybackTM www.cinemo.com Key features of Distributed Playback™ Cinemo can help OEMs and Tiers 1s beneft from the important trends driving the industry. Distributed Playback™ technology provides all these key features: t Field-proven reliability t Wide cross-platform support t Universal API functions t Highly optimized media player t Seamless access to online services t Economical use of system resources All these features come together to support exciting new possibilities for advanced front- and rear-seat infotainment and fexible video playback. The rest of this white paper describes these features and benefts in more detail. All these features come together to support exciting new possibilities for advanced in-vehicle infotainment 6 Introducing Distributed PlaybackTM www.cinemo.com Field-proven reliability It’s easier to design an infotainment system for a living room than an automobile. As you know, in-vehicle technologies must withstand some of the most punishing conditions on earth. These include: t Physical stress from bumping, shaking and vibration t Temperature extremes from freezing winter nights to sizzling summer days t Humidity extremes from torrential monsoons to arid desserts t Electromagnetic noise from static, other vehicle systems, and outside interference t Limited bandwidth from in-vehicle networks t Poor internet connections to mobile devices Yet in-vehicle systems must operate fawlessly for an extended period, surpassing the vehicle’s expected lifespan. These are not simple challenges to solve. These are regular topics of discussion within industry associations and automotive engineering societies such as the AEC9, AIAG10, EAIG11, FISITA12, and SAE International,13 not to mention the International Congress on Advances in Automotive Electronics.14 Failure is not an option Rain or shine, drivers depend on their vehicles. By the same token, passengers expect their IVI systems to work properly, no matter what the conditions outside. All OEMs, Tier 1s, and online service providers seek to deliver top-quality, reliable infotainment. Failure is not an option. Car buyers will not tolerate software that crashes or playback that skips at every bump in the road. Consider a recent survey from Consumer’s Reports, which criticized many IVI systems for software crashes, freezes, glitches, and slow response to commands. Some unhappy owners called their systems “buggy, clunky, fakey, and sluggish.”15 This is not what any OEM or Tier 1 wants to hear. If an IVI system does not work reliably, instead of an added incentive to purchase, it can become a convincing reason not
Recommended publications
  • High Level Architecture Framework
    Java Media Framework Multimedia Systems: Module 3 Lesson 1 Summary: Sources: H JMF Core Model H JMF 2.0 API Programmers m Guide from Sun: Architecture http://java.sun.com/products/java-media/jmf/2.1/guide/ m Models: time, event, data H JMF 2.0 API H JMF Core Functionality H JMF White Paper from IBM m Presentation http://www- 4.ibm.com/software/developer/library/jmf/jmfwhite. m Processing html m Capture m Storage and Transmission H JMF Extensibility High Level Architecture H A demultiplexer extracts individual tracks of media data JMF Applications, Applets, Beans from a multiplexed media stream. A mutliplexer performs the JMF Presentation and Processing API opposite function, it takes individual tracks of media data and merges them into a single JMF Plug-In API multiplexed media stream. H A codec performs media-data Muxes & Codecs Effects Renderers Demuxes compression and decompression. Each codec has certain input formats that it can handle and H A renderer is an abstraction of a certain output formats that it can presentation device. For audio, the generate presentation device is typically the H An effect filter modifies the computer's hardware audio card track data in some way, often to that outputs sound to the speakers. create special effects such as For video, the presentation device is blur or echo typically the computer monitor. Framework JMF H Media Streams m A media stream is the media data obtained from a local file, acquired over the network, or captured from a camera or microphone. Media streams often contain multiple channels of data called tracks.
    [Show full text]
  • Capabilities of the Horchow Auditorium and the Orientation
    Performance Capabilities of Horchow Auditorium and Atrium at the Dallas Museum of Art Horchow Auditorium Capacity and Stage: The auditorium seats 333 people (with a 12 removable chair option in the back), maxing out the capacity at 345). The stage is 45’ X 18’and the screen is 27’ X 14’. A height adjustable podium, microphone, podium clock and light are standard equipment available. Installed/Available Equipment Sound: Lighting: 24 channel sound board 24 fixed lights 4 stage monitors (with up to 4 Mixes) 5 movers (these give a wide array of lighting looks) 6 hardwired microphones 4 wireless lavaliere microphones 2 handheld wireless microphones (with headphone option) 9-foot Steinway Concert Grand Piano 3 Bose towers (these have been requested by Acoustic performers before and work very well) Music stands Projection Panasonic PTRQ32 4K 20,000 Lumen Laser Projector Preferred Video Formats in Horchow Blu Ray DVD Apple ProRes 4:2:2 Standard in a .mov wrapper H.264 in a .mov wrapper Formats we can use, but are not optimal MPEG-1/2 Dirac / VC-2 DivX® (1/2/3/4/5/6) MJPEG (A/B) MPEG-4 ASP WMV 1/2 XviD WMV 3 / WMV-9 / VC-1 3ivX D4 Sorenson 1/3 H.261/H.263 / H.263i DV H.264 / MPEG-4 AVC On2 VP3/VP5/VP6 Cinepak Indeo Video v3 (IV32) Theora Real Video (1/2/3/4) Atrium Capacity and Stage: The Atrium seats up to 500 people (chair rental required). The stage available to be installed in the Atrium is 16’ x 12’ x 1’.
    [Show full text]
  • (A/V Codecs) REDCODE RAW (.R3D) ARRIRAW
    What is a Codec? Codec is a portmanteau of either "Compressor-Decompressor" or "Coder-Decoder," which describes a device or program capable of performing transformations on a data stream or signal. Codecs encode a stream or signal for transmission, storage or encryption and decode it for viewing or editing. Codecs are often used in videoconferencing and streaming media solutions. A video codec converts analog video signals from a video camera into digital signals for transmission. It then converts the digital signals back to analog for display. An audio codec converts analog audio signals from a microphone into digital signals for transmission. It then converts the digital signals back to analog for playing. The raw encoded form of audio and video data is often called essence, to distinguish it from the metadata information that together make up the information content of the stream and any "wrapper" data that is then added to aid access to or improve the robustness of the stream. Most codecs are lossy, in order to get a reasonably small file size. There are lossless codecs as well, but for most purposes the almost imperceptible increase in quality is not worth the considerable increase in data size. The main exception is if the data will undergo more processing in the future, in which case the repeated lossy encoding would damage the eventual quality too much. Many multimedia data streams need to contain both audio and video data, and often some form of metadata that permits synchronization of the audio and video. Each of these three streams may be handled by different programs, processes, or hardware; but for the multimedia data stream to be useful in stored or transmitted form, they must be encapsulated together in a container format.
    [Show full text]
  • Compression for Great Video and Audio Master Tips and Common Sense
    Compression for Great Video and Audio Master Tips and Common Sense 01_K81213_PRELIMS.indd i 10/24/2009 1:26:18 PM 01_K81213_PRELIMS.indd ii 10/24/2009 1:26:19 PM Compression for Great Video and Audio Master Tips and Common Sense Ben Waggoner AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Focal Press is an imprint of Elsevier 01_K81213_PRELIMS.indd iii 10/24/2009 1:26:19 PM Focal Press is an imprint of Elsevier 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA Linacre House, Jordan Hill, Oxford OX2 8DP, UK © 2010 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions . This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this fi eld are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein.
    [Show full text]
  • Codec Is a Portmanteau of Either
    What is a Codec? Codec is a portmanteau of either "Compressor-Decompressor" or "Coder-Decoder," which describes a device or program capable of performing transformations on a data stream or signal. Codecs encode a stream or signal for transmission, storage or encryption and decode it for viewing or editing. Codecs are often used in videoconferencing and streaming media solutions. A video codec converts analog video signals from a video camera into digital signals for transmission. It then converts the digital signals back to analog for display. An audio codec converts analog audio signals from a microphone into digital signals for transmission. It then converts the digital signals back to analog for playing. The raw encoded form of audio and video data is often called essence, to distinguish it from the metadata information that together make up the information content of the stream and any "wrapper" data that is then added to aid access to or improve the robustness of the stream. Most codecs are lossy, in order to get a reasonably small file size. There are lossless codecs as well, but for most purposes the almost imperceptible increase in quality is not worth the considerable increase in data size. The main exception is if the data will undergo more processing in the future, in which case the repeated lossy encoding would damage the eventual quality too much. Many multimedia data streams need to contain both audio and video data, and often some form of metadata that permits synchronization of the audio and video. Each of these three streams may be handled by different programs, processes, or hardware; but for the multimedia data stream to be useful in stored or transmitted form, they must be encapsulated together in a container format.
    [Show full text]
  • Format Support
    Episode 6 Format Support FILE FORMAT CODEC Episode Episode Episode Pro EngineCOMMENTS Adaptive bitrate streaming Microsoft Smooth Streaming H.264 (AAC audio) O Windows OS only. Available with Episode Engine License. Apple HLS H.264 (AAC audio) O Available with Episode Engine License. Windows Media WMV, ASF VC-1 O O O WM9 I/O I/O I/O WMV7 and 8 through F4M component on Mac WMA I/O I/O I/O WMA Pro I/O I/O I/O Flash FLV Flash 8 (VP6s/VP6e) I/O I/O I/O SWF Flash 8 (VP6s/VP6e) I/O I/O I/O MOV/MP4/F4V Flash 9 (H.264) I/O I/O I/O F4V as extension to MP4 WebM WebM VP8 O O O Vorbis O O O 3GPP 3GPP AAC I/O I/O I/O H.263 I/O I/O I/O H.264 I/O I/O I/O MainConcept and x264 MPEG-4 I/O I/O I/O 3GPP2 3GPP2 AAC I/O I/O I/O H.263 I/O I/O I/O H.264 I/O I/O I/O MainConcept and x264 MPEG-4 I/O I/O I/O MPEG Elementary Streams MPEG-1 Elementary Stream MPEG-1 (video) I/O I/O I/O MPEG-2 Elementary Stream MPEG-2 I/O I/O I/O MPEG Program Streams PS AAC O O O MainConcept and x264 H.264 I/O I/O I/O MPEG-1/2 (audio) I/O I/O I/O MPEG-2 I/O I/O I/O MPEG-4 I/O I/O I/O MPEG Transport Streams TS AAC I O O AES I I/O I/O H.264 I I/O I/O MainConcept and x264 AVCHD I I I HDV I I/O I/O MPEG - 1/2 (audio) I I/O I/O MPEG - 2 I I/O I/O MPEG - 4 I I/O I/O PCM I I I Matrox MAX H.264 I/O I/O I/O QT codec (*output possible via QT), Requires Matrox MAX hardware - Mac OS X only MPEG System Streams M1A MPEG-1 (audio) I/O I/O I/O M1V MPEG-1 (audio) I/O I/O I/O Episode 6 Format Support Format Support FILE FORMAT CODEC Episode Episode Episode Pro EngineCOMMENTS MPEG-4 MP4 AAC I/O I/O I/O
    [Show full text]
  • How to Play Itunes Purchased and Rental Movies with XBMC
    How to Play iTunes Purchased and Rental Movies with XBMC What are XBMC Player Video Formats? XBMC is an open source media player software developed by XBMC team. With XBMC media player, you can view and watch any videos, music, podcasts on your local computer or from internet. XBMC is developed for Mac, Windows, iOS, Android platform now. So almost all of us can use this powerful media player app without obstacles. XBMC for Mac can be compatible with Mac OS X tiger or later. It supports playing 1080p video on Mac computer via software decoding on the CPU if it is powerful enough. And XBMC for Windows is compatible with Windows 7, Vista and XP. Even though it can run well on 64-bit machine, it is not yet optimized for that architecture so there is no performance gain when running on 64-bit Windows. Let's learn what formats does XBMC support at first. Video formats supported by XBMC: MPEG-1, MPEG-2, H.263, MPEG-4 SP and ASP, MPEG-4 AVC (H.264), HuffYUV, Indeo, MJPEG, RealVideo, RMVB, Sorenson, WMV, Cinepak. Audio formats supported by XBMC: MIDI, AIFF, WAV/WAVE, AIFF, MP2, MP3, AAC, AACplus (AAC+), Vorbis, AC3, DTS, ALAC, AMR, FLAC, Monkey's Audio (APE), RealAudio, SHN, WavPack, MPC/Musepack/Mpeg+, Shorten, Speex, WMA, IT, S3M, MOD (Amiga Module), XM, NSF (NES Sound Format), SPC (SNES), GYM (Genesis), SID (Commodore 64), Adlib, YM (Atari ST), ADPCM (Nintendo GameCube), and CD-DA. Can XBMC Play iTunes Downloaded Videos? The current software limitation on XBMC is that it can't play any DRM-protected music and videos, like audio files purchased from online music stores as iTunes Music Store, MSN Music, Audible.com, Windows Media Player Stores, and video files protected with Windows Media DRM, Fairplay DRM or DivX proprietary DRM.
    [Show full text]
  • Bdp-450 Bdp-150 Bdp-150-K Bdp-150-S
    BDP-450_VXE8_IBD_EN.book 1 ページ 2012年6月22日 金曜日 午後2時11分 BDP-450 BDP-150 Blu-ray 3DTM PLAYER BDP-150-K BDP-150-S For customers in Europe: Discover the benefits of registering your product online at http://www.pioneer.co.uk (or http://www.pioneer.eu) Download an electronic version of this manual from our website. Operating Instructions BDP-450_VXE8_IBD_EN.book 2 ページ 2012年6月22日 金曜日 午後2時11分 Thank you for buying this Pioneer product. Please read through these operating instructions so you will know how to operate your model properly. After you have finished reading the instructions, put them away in a safe place for future reference. IMPORTANT CAUTION RISK OF ELECTRIC SHOCK DO NOT OPEN The lightning flash with arrowhead symbol, CAUTION: The exclamation point within an equilateral within an equilateral triangle, is intended to TO PREVENT THE RISK OF ELECTRIC triangle is intended to alert the user to the alert the user to the presence of uninsulated SHOCK, DO NOT REMOVE COVER (OR presence of important operating and “dangerous voltage” within the product’s BACK). NO USER-SERVICEABLE PARTS maintenance (servicing) instructions in the enclosure that may be of sufficient INSIDE. REFER SERVICING TO QUALIFIED literature accompanying the appliance. magnitude to constitute a risk of electric SERVICE PERSONNEL. shock to persons. D3-4-2-1-1_A1_En CAUTION Operating Environment This product is a class 1 laser product classified Operating environment temperature and humidity: under the Safety of laser products, IEC 60825-1:2007. +5 °C to +35 °C (+41 °F to +95 °F); less than 85 %RH (cooling vents not blocked) Do not install this unit in a poorly ventilated area, or in CLASS 1 LASER PRODUCT locations exposed to high humidity or direct sunlight (or strong artificial light) D3-4-2-1-7c*_A1_En D58-5-2-2a_A1_En If the AC plug of this unit does not match the AC WARNING outlet you want to use, the plug must be removed This equipment is not waterproof.
    [Show full text]
  • Finding an Appropriate Codec -.:: GEOCITIES.Ws
    1 Adobe Premiere Technical Guides Finding an appropriate codec Codecs are compression/decompression algorithms that are crucial for producing digital video and audio. Some codecs are more appropriate for certain kinds of work than others. Which codecs are available to you when editing digital video in Adobe® Premiere® 6.0 depends on your system and capture card. This choice is further constrained by the Editing Mode you choose in Premiere’s Project Settings dialog box. For example, in Windows the video codecs you can choose in Project Settings will be different if you choose Video for Windows as your Editing Mode than if you choose Quicktime. When you export digital video, the available codecs are determined by the File Type you choose in the Export Movie Settings dialog box. You can evaluate codecs by their intended uses, compression methods, and how they handle different kinds of pictures or sound. Video for Windows and QuickTime software are used for a wide range of video-related tasks, such as video conferencing, so they include many codecs which are not appropriate for video editing. Codecs intended for purposes other than video editing are identified in this section so that you can avoid them. If your video card provides hardware compression and its software is properly installed, its codec will appear in the Compressor menu in the Video Settings panel of the Project Settings dialog box. You can also access the codec in the dialog box for your video-capture hardware, which you can open by clicking the Video button in the Capture Settings panel of the Project Settings dialog box.
    [Show full text]
  • MP3 the MP3 Audio Format Lossy Data Compression. Audio Quality
    Voice Data Voice data is something which is comprised of different wavelengths of sound. A simple exam can be found in an E.C.G Report of Heart. It has different wavelengths showing the Heartbeat. If you observe you will find that these wavelengths are of different height, which is basically indicating the Pitch of Sound Wave. Video Data Video data is a compilation of some Pixel or Vector based Images. A simple digital camera has an option of Multi Shot Mode. What happens in this mode is that a Picture is taken 10 to 15 times in a Sec. These images are then converted into a video. 1 Picture in this compilation will serve as 1 Frame. Now for a standard, Human Eye is capable of considering 30 Frames per second as a video. that means if 30 pictures are moved accross in front of human eye within a Second, it will turn into a video. A Simple example is an OLD Cinema House. In old days pictures, were used to entertain people in Cinema. Those pictures were moved across a projector with a speed of 30 FPS. Audio MP3 The MP3 audio format lossy data compression. Audio quality improves with increasing bitrate. 32 kbit/s - generally acceptable only for speech 96 kbit/s - generally used for speech or low-quality streaming 128 or 160 kbit/s – mid-range bitrate quality 192 kbit/s - a commonly used high-quality bitrate 320 kbit/s - highest level supported by MP3 standard Other audio 800 bit/s – minimum necessary for recognizable speech, using the special-purpose FS- 1015 speech codecs.
    [Show full text]
  • "Digital Video and Graphics for Planetaria and Exhibits" © Jeff Bowen
    3924 Pendleton Way • Indianapolis, IN• 46226• 317-536-1283 www.bowentechnovation.com "Digital Video and Graphics for Planetaria and Exhibits" © Jeff Bowen. June 25, 2004 [email protected] Section 1.0 Workshop Synopsis As we are heading into an era in which all visual media in the planetarium will be digital, attendees will learn what are current and forthcoming visual file formats and production methodologies. What is MPEG...DVI...when do you import an avi or mov? What are SD files...is 16:9 HD? Why is editing MPEG a bad idea? How do you archive and access digital files? What formats will soon be obsolete and which new ones will stay? Which of the new DVD formats will stick around? Jeff Bowen will share his extensive experience in producing award-winning digital media for education, planetariums, exhibits and broadcast. Section 2.0 Qualification of Attendees Number who have worked with video editing? Number who have worked with Photoshop? Number who have worked with digital video editing? Number who use digital playback in the dome? Number who have worked with digital audio editing? Number who have worked with digital editing? Created by Jeff Bowen Page 1 7/6/2004 Section 3.0 Digital Video Terminology and Specs Analog Video is represented as a continuous (time varying) signal. Digital Video is represented as a sequence of digital images. NTSC Video- 525 scan lines per frame, 30 frames per second (or be exact, 29.97 fps, 33.37 msec/frame) Interlaced, each frame is divided into 2 fields, 262.5 lines/field.
    [Show full text]
  • Forcepoint DLP Supported File Formats and Size Limits
    Forcepoint DLP Supported File Formats and Size Limits Supported File Formats and Size Limits | Forcepoint DLP | v8.8.1 This article provides a list of the file formats that can be analyzed by Forcepoint DLP, file formats from which content and meta data can be extracted, and the file size limits for network, endpoint, and discovery functions. See: ● Supported File Formats ● File Size Limits © 2021 Forcepoint LLC Supported File Formats Supported File Formats and Size Limits | Forcepoint DLP | v8.8.1 The following tables lists the file formats supported by Forcepoint DLP. File formats are in alphabetical order by format group. ● Archive For mats, page 3 ● Backup Formats, page 7 ● Business Intelligence (BI) and Analysis Formats, page 8 ● Computer-Aided Design Formats, page 9 ● Cryptography Formats, page 12 ● Database Formats, page 14 ● Desktop publishing formats, page 16 ● eBook/Audio book formats, page 17 ● Executable formats, page 18 ● Font formats, page 20 ● Graphics formats - general, page 21 ● Graphics formats - vector graphics, page 26 ● Library formats, page 29 ● Log formats, page 30 ● Mail formats, page 31 ● Multimedia formats, page 32 ● Object formats, page 37 ● Presentation formats, page 38 ● Project management formats, page 40 ● Spreadsheet formats, page 41 ● Text and markup formats, page 43 ● Word processing formats, page 45 ● Miscellaneous formats, page 53 Supported file formats are added and updated frequently. Key to support tables Symbol Description Y The format is supported N The format is not supported P Partial metadata
    [Show full text]