Assessing Red Algal Supraordinal Diversity and Taxonomy in the Context of Contemporary Systematic Data -- Saunders and Hommersan
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Red Algae (Bangia Atropurpurea) Ecological Risk Screening Summary
Red Algae (Bangia atropurpurea) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, February 2014 Revised, March 2016, September 2017, October 2017 Web Version, 6/25/2018 1 Native Range and Status in the United States Native Range From NOAA and USGS (2016): “Bangia atropurpurea has a widespread amphi-Atlantic range, which includes the Atlantic coast of North America […]” Status in the United States From Mills et al. (1991): “This filamentous red alga native to the Atlantic Coast was observed in Lake Erie in 1964 (Lin and Blum 1977). After this sighting, records for Lake Ontario (Damann 1979), Lake Michigan (Weik 1977), Lake Simcoe (Jackson 1985) and Lake Huron (Sheath 1987) were reported. It has become a major species of the littoral flora of these lakes, generally occupying the littoral zone with Cladophora and Ulothrix (Blum 1982). Earliest records of this algae in the basin, however, go back to the 1940s when Smith and Moyle (1944) found the alga in Lake Superior tributaries. Matthews (1932) found the alga in Quaker Run in the Allegheny drainage basin. Smith and 1 Moyle’s records must have not resulted in spreading populations since the alga was not known in Lake Superior as of 1987. Kishler and Taft (1970) were the most recent workers to refer to the records of Smith and Moyle (1944) and Matthews (1932).” From NOAA and USGS (2016): “Established where recorded except in Lake Superior. The distribution in Lake Simcoe is limited (Jackson 1985).” From Kipp et al. (2017): “Bangia atropurpurea was first recorded from Lake Erie in 1964. During the 1960s–1980s, it was recorded from Lake Huron, Lake Michigan, Lake Ontario, and Lake Simcoe (part of the Lake Ontario drainage). -
The Global Dispersal of the Non-Endemic Invasive Red Alga Gracilariavermiculophylla in the Ecosystems of the Euro-Asia Coastal W
Review Article Oceanogr Fish Open Access J Volume 8 Issue 1 - July 2018 Copyright © All rights are reserved by Vincent van Ginneken DOI: 10.19080/OFOAJ.2018.08.555727 The Global Dispersal of the Non-Endemic Invasive Red Alga Gracilaria vermiculophylla in the Ecosystems of the Euro-Asia Coastal Waters Including the Wadden Sea Unesco World Heritage Coastal Area: Awful or Awesome? Vincent van Ginneken* and Evert de Vries Bluegreentechnologies, Heelsum, Netherlands Submission: September 05, 2017; Published: July 06, 2018 Corresponding author: Vincent van Ginneken, Bluegreentechnologies, Heelsum, Netherlands, Email: Abstract Gracilaria vermiculophylla (Ohmi) Papenfu ß 1967 (Rhodophyta, Gracilariaceae) is a red alga and was originally described in Japan in 1956 as Gracilariopsis vermiculophylla G. vermiculophylla is primarily used as a precursor for agar, which is widely used in the pharmaceutical and food industries. It has been introduced to the East . It is thought to be native and widespread throughout the Northwest Pacific Ocean. temperature) and can grow in an extremely wide variety of conditions; factors which contribute to its invasiveness. It invades estuarine areas Pacific, the West Atlantic and the East Atlantic, where it rapidly colonizes new environments. It is highly tolerant of stresses (nutrient, salinity, invaded: Atlantic, North Sea, Mediterranean and Baltic Sea. The Euro-Asian brackish Black-Sea have not yet been invaded but are very vulnerable towhere intense it out-competes invasion with native G. vermiculophylla algae species and modifies environments. The following European coastal and brackish water seas are already G. vermiculophylla among the most potent invaders out of 114 non-indigenous because they macro-algae are isolated species from indirect Europe. -
Divergence Time Estimates and the Evolution of Major Lineages in The
www.nature.com/scientificreports OPEN Divergence time estimates and the evolution of major lineages in the florideophyte red algae Received: 31 March 2015 Eun Chan Yang1,2, Sung Min Boo3, Debashish Bhattacharya4, Gary W. Saunders5, Accepted: 19 January 2016 Andrew H. Knoll6, Suzanne Fredericq7, Louis Graf8 & Hwan Su Yoon8 Published: 19 February 2016 The Florideophyceae is the most abundant and taxonomically diverse class of red algae (Rhodophyta). However, many aspects of the systematics and divergence times of the group remain unresolved. Using a seven-gene concatenated dataset (nuclear EF2, LSU and SSU rRNAs, mitochondrial cox1, and plastid rbcL, psaA and psbA genes), we generated a robust phylogeny of red algae to provide an evolutionary timeline for florideophyte diversification. Our relaxed molecular clock analysis suggests that the Florideophyceae diverged approximately 943 (817–1,049) million years ago (Ma). The major divergences in this class involved the emergence of Hildenbrandiophycidae [ca. 781 (681–879) Ma], Nemaliophycidae [ca. 661 (597–736) Ma], Corallinophycidae [ca. 579 (543–617) Ma], and the split of Ahnfeltiophycidae and Rhodymeniophycidae [ca. 508 (442–580) Ma]. Within these clades, extant diversity reflects largely Phanerozoic diversification. Divergences within Florideophyceae were accompanied by evolutionary changes in the carposporophyte stage, leading to a successful strategy for maximizing spore production from each fertilization event. Our research provides robust estimates for the divergence times of major lineages within the Florideophyceae. This timeline was used to interpret the emergence of key morphological innovations that characterize these multicellular red algae. The Florideophyceae is the most taxon-rich red algal class, comprising 95% (6,752) of currently described species of Rhodophyta1 and possibly containing many more cryptic taxa2. -
A Fossilized Microcenosis in Triassic Amber
J Eukaqlnr. Micmbrol., 46(6), 1999 pp. 571-584 0 1999 by the Society of Protozoologists A Fossilized Microcenosis in Triassic Amber WILFRIED SCHONBORN,a HEINRICH DORFELT? WILHELM FOISSNER,’ LOTHAR KRIENITZd and URSULA SCHAFER” “Friedrich-Schiller-UniversitatJena, Institut fur Okologie, Arbeitsgruppe Limnologie, Winzerlaer StraJe 10, 0-0774.5 Jena, Germany, and bFriedrich-Schiller-Univer.sitatJenn,lnstitut fiir Ernahrung und Umwelt, Lehrgebiet Lnndschaftsokologie und Naturschutz, DornburgerslraJe 159, 0-07743 Jena, Germany, and ‘Universitut Salzburg, Institut fur Zoologie, HellbrunnerstraJe 34, A-5020 Salzburg, Austria, and dInstitut fur Gewasseriikologie und Binnenjscherei, Alte Fischerhiitte 2, 0-16775 Neuglobsow, Germany ABSTRACT. Detailed data on bacterial and protistan microfossils are presented from a 0.003 mm3 piece of Triassic amber (Schlier- seerit, Upper Triassic period, 220-230 million years old). This microcenosis, which actually existed as such within a very small, probably semiaquatic habitat, included the remains of about two bacteria species, four fungi (Palaeodikaryomyces baueri, Pithomyces-like conidia, capillitium-like hyphae, yeast cells) two euglenoids, two chlamydomonas (Chlamydomonas sp., Chloromonas sp.), two coccal green microalgae (Chlorellu sp., Chorzcystis-like cells), one zooflagellate, three testate amoebae (Centropyxis aculeata var. oblonga-like, Cyclopyxis eurystoma-like, Hyalosphenia baueri n. sp.), seven ciliates (Pseudoplatyophrya nana-like, Mykophagophrys rerricola-like, Cvrtolophosis mucicola-like, Paracondylostoma -
Signal Conflicts in the Phylogeny of the Primary Photosynthetic
Signal Conflicts in the Phylogeny of the Primary Photosynthetic Eukaryotes Philippe Deschamps and David Moreira Unite´ d’Ecologie, Syste´matique et Evolution, UMR CNRS 8079, Universite Paris-Sud 11, Orsay Cedex, France It is widely accepted that the first photosynthetic eukaryotes arose from a single primary endosymbiosis of a cyanobacterium in a phagotrophic eukaryotic host, which led to the emergence of three major lineages: Chloroplastida (green algae and land plants), Rhodophyta, and Glaucophyta. For a long time, Glaucophyta have been thought to represent the earliest branch among them. However, recent massive phylogenomic analyses of nuclear genes have challenged this view, because most of them suggested a basal position of Rhodophyta, though with moderate statistical support. We have addressed this question by phylogenomic analysis of a large data set of 124 proteins transferred from the chloroplast to the nuclear genome of the three Archaeplastida lineages. In contrast to previous analyses, we found strong support for the basal emergence of the Chloroplastida and the sister-group relationship of Glaucophyta and Rhodophyta. Moreover, the reanalysis of chloroplast gene sequences using methods more robust against compositional and evolutionary rate biases sustained the same result. Finally, we observed that the basal position of Rhodophyta found in the phylogenies based on nuclear genes depended on the sampling of sequences used as outgroup. When eukaryotes supposed to have never had plastids (animals and fungi) were used, the analysis strongly supported the early emergence of Glaucophyta instead of Rhodophyta. Therefore, there is a conflicting signal between genes of different evolutionary origins supporting either the basal branching of Glaucophyta or of Chloroplastida within the Archaeplastida. -
Plenary Lecture & Symposium
PLENARY LECTURE & SYMPOSIUM SYMPOSIuM From genomics to flagellar and ciliary struc - MONDAY 29 JulY tures and cytoskeleton dynamics (by FEPS) PlENARY lECTuRE (ISoP Honorary Member lECTuRE) Chairs (by ISoP) Cristina Miceli , University of Camerino, Camerino, Italy Helena Soares , University of Lisbon and Gulbenkian Foun - Introduction - John Dolan , CNRS-Sorbonne University, Ville - dation, Lisbon, Portugal franche-sur-Mer, France. Jack Sunter - Oxford Brookes University, Oxford, UK- Genome Tom Fenchel University of Copenhagen, Copenhagen, Den - wide tagging in trypanosomes uncovers flagellum asymmetries mark Dorota Wloga - Nencki Institute of Experimental Biology, War - ISoP Honorary Member saw, Poland - Deciphering the molecular mechanisms that coor - dinate ciliary outer doublet complexes – search for “missing Size, Shape and Function among Protozoa links” Helena Soares - University of Lisbon and Polytechnic Institute of Lisbon, Lisbon, Portugal - From centrosomal microtubule an - SYMPOSIuM on ciliate biology and taxonomy in memory choring and organization to basal body positioning: TBCCD1 an of Denis lynn (by FEPS/ISoP) elusive protein Chairs Pierangelo luporini , University of Camerino, Camerino, Italy Roberto Docampo , University of Georgia, Athens, Georgia TuESDAY 30 JulY Alan Warren - Natural History Museum, London, UK. The bio - logy and systematics of peritrich ciliates: old concepts and new PlENARY lECTuRE (PAST-PRESIDENT LECTURE, by ISoP) findings Rebecca Zufall - University of Houston, Houston, USA. Amitosis Introduction - Avelina Espinosa , Roger Williams University, and the Evolution of Asexuality in Tetrahymena Ciliates Bristol, USA Sabine Agatha - University of Salzburg, Salzburg, Austria. The biology and systematics of oligotrichean ciliates: new findings David Bass and old concepts Natural History Museum London, London & Cefas, Weymouth, laura utz - School of Sciences, PUCRS, Porto Alegre, Brazil. -
Proposal for Practical Multi-Kingdom Classification of Eukaryotes Based on Monophyly 2 and Comparable Divergence Time Criteria
bioRxiv preprint doi: https://doi.org/10.1101/240929; this version posted December 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Proposal for practical multi-kingdom classification of eukaryotes based on monophyly 2 and comparable divergence time criteria 3 Leho Tedersoo 4 Natural History Museum, University of Tartu, 14a Ravila, 50411 Tartu, Estonia 5 Contact: email: [email protected], tel: +372 56654986, twitter: @tedersoo 6 7 Key words: Taxonomy, Eukaryotes, subdomain, phylum, phylogenetic classification, 8 monophyletic groups, divergence time 9 Summary 10 Much of the ecological, taxonomic and biodiversity research relies on understanding of 11 phylogenetic relationships among organisms. There are multiple available classification 12 systems that all suffer from differences in naming, incompleteness, presence of multiple non- 13 monophyletic entities and poor correspondence of divergence times. These issues render 14 taxonomic comparisons across the main groups of eukaryotes and all life in general difficult 15 at best. By using the monophyly criterion, roughly comparable time of divergence and 16 information from multiple phylogenetic reconstructions, I propose an alternative 17 classification system for the domain Eukarya to improve hierarchical taxonomical 18 comparability for animals, plants, fungi and multiple protist groups. Following this rationale, 19 I propose 32 kingdoms of eukaryotes that are treated in 10 subdomains. These kingdoms are 20 further separated into 43, 115, 140 and 353 taxa at the level of subkingdom, phylum, 21 subphylum and class, respectively (http://dx.doi.org/10.15156/BIO/587483). -
JPAS-11-Reduced.Pdf
PROCEEDINGS I OF THE PENNSYLVANIA ACADEMY OF SCIENCE VOLUME XI 1 9 3 7 I HARRISBURG, PENNSYLVANIA 1937 I CONTENTS PAGE Minutes of the 1936 Summer Meeting ,_....... - ...... ., .. _,_, ___, ___ ............ _.......................................... 5 Minutes of the Thirteenth Annual Meeting ............. - ................... - ........ - ........... - .......................... -... 6 Government Aid Proj()cts in Biology, Homer C. Will and Pressley L. Crummy ......... 13 The Osteology of a 'l'eratological Goose, Marcus H. Green ........................ ................................. ... 18 The Stereids in the Petioles of Nymphea Advcna, Marcus H. Green and Warren S. Buck ....... _ - ...-- ... - ....... - ...................... - ............................. ,....................... _ ............................. -.... 20 The Respiratory Metabolism in the Larvae of the Tobacco Homworm (Phlege- OFFICERS thontius Sexta), Cla1·ence A. Horn .... -...................................................... .............. .. ... ........... ... .. ............... 22 Devonian Nomenclatmc in P ennsylvania, Bradford Willard ..................- ....... _.,,_.,,,. ......... _ 26 1937-38 The Amphibians and Reptiles of Bedford County, Pennsylvania, Thomas H. Knepp 35 ReminisceiiCes of Dr. S. S. Haldeman, George N. C. Henschen ........ _....................................... 36 Notes on Cave Ve1·tebrates, Chnrles E. Mohr ...... _ .. _.. - .. - ......................................... _,..... 38 p 1·esident ..~ : ...................................... -
LS Student Ebook.Pdf
CPO Focus on Life Science First Edition Copyright 2007 Delta Education LLC, a member of the School Specialty Family ISBN-10: 1-58892-253-7 ISBN-13: 978-1-58892-253-3 2 3 4 5 6 7 8 9 - QWE- 11 10 09 08 07 All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, without permission in writing. For permission and other rights under this copyright, please contact: CPO Science 80 Northwest Boulevard Nashua, New Hampshire 03063 (866)588-6951 http://www.cposcience.com Printed and Bound in the United States of America Credits Writers Editorial Consultants Shannon Donovan B.S., Botany, University of Rhode Island; M.S., Biological Sciences, University of Rhode Island Scott Eddleman –Author Christine Golden B.A., Psychology, Gordon College; M.B.A., Rivier Teaches biology, physical science, and advanced biology B.S., Biology, Southern Illinois University; M.Ed., College Harvard University. at Scituate (Mass.) High School. Project manager at Imperial Communications since 1999. Melissa Vela Taught for 13 years in urban and rural settings. Developed With 22 years in publishing, now owner and managing two successful science-based school-to-career programs. M.S., Secondary Education, Boston College; M.S., editor of Big Dog Publishing Services. Christine's work Agricultural and Biological Engineering, Cornell Nationally recognized teacher trainer in inquiry-based and centers on editing K-12 textbook material. project-based instruction. Participated in Brown University. University fellowship conducting research on the coral Contributing Writers Teaches sixth-grade physical science and eighth-grade reefs of Belize. -
Timing of the Evolutionary History of Corallinaceae (Corallinales, Rhodophyta)1
J. Phycol. 53, 567–576 (2017) © 2017 Phycological Society of America DOI: 10.1111/jpy.12520 TIMING OF THE EVOLUTIONARY HISTORY OF CORALLINACEAE (CORALLINALES, RHODOPHYTA)1 Anja Rosler€ 2 Departamento de Estratigrafıa y Paleontologıa, Universidad de Granada, Campus Fuente Nueva, 18002 Granada, Spain Francisco Perfectti Departamento de Genetica, Universidad de Granada, Campus Fuente Nueva, 18002 Granada, Spain Viviana Pena~ Grupo de investigacion BIOCOST, Facultade de Ciencias, Universidade da Coruna,~ Campus de A Zapateira s/n, 15071 A Coruna,~ Spain Phycology Research Group, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium Equipe Exploration, Especes et Evolution, Institut de Systematique, Evolution, Biodiversite, UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, Museum national d’Histoire naturelle (MNHN), Sorbonne Universites, 57 rue Cuvier CP 39, F-75005 Paris, France Julio Aguirre and Juan Carlos Braga Departamento de Estratigrafıa y Paleontologıa, Universidad de Granada, Campus Fuente Nueva, 18002 Granada, Spain The temporal dimension of the most recent Abbreviations: mya, million years ago; myr, million Corallinaceae (order Corallinales) phylogeny was years; OTU, operational taxonomic unit presented here, based on first occurrence time estimates from the fossil record. Calibration of the molecular clock of the genetic marker SSU entailed a Coralline red algae (Corallinophycidae, Rhodo- separation of Corallinales from Hapalidiales in the phyta) constitute the major extant group of Albian (Early Cretaceous ~105 mya). Neither calcareous algae and are important components of the calibration nor the fossil record resolved the shallow-water marine hard and sediment bottoms in succession of appearance of the first three emerging areas of low siliciclastic influx from subpolar regions subfamilies: Mastophoroideae, Corallinoideae, and to the Equator (Adey and Mcintyre 1973, Adey Neogoniolithoideae. -
Testing and Evaluation in the Biological Sciences
REPORT OF THE PANEL ON EVALUATION AND TESTING NOVEMBER 1967/CUEBS Publication 20 TESTING AND EVALUATION IN THE BIOLOGICAL SCIENCES COMMISSION ON UNDERGRADUATE EDUCATION IN THE BIOLOGICAL SCIENCES This book is a wonderful resource but had only a limited distribution back around 1967. Thanks to GWU for permission to put it in digital form so that it can be shared widely. It is still under copyright, so please read the permission letter. Biology has changed quite a bit since 1967, so many of the example questions are dated and this book doesn’t serve as a simple question bank. Yet the questions can be very useful as exemplars of questions pointed at different topics and at different cognitive levels. Since you have the digital version, it is fairly easy to copy/paste them and then update/modify as you find appropriate and useful. While I did a lot of proofreading, I’m sure I’ve missed many details, so the scanned pages in jpg format are also available. Feel free to check them if anything puzzling is found. To me, the question bank emphasizes the value of the earlier discussion in the book about assessment and evaluation methods. While most of the items given are multiple choice questions, there is also presentation and discussion about essay and matching questions. Each question, of all types, has an associated cognitive level (using Bloom’s Taxonomy). This significantly assists the instructor in assessing the progress of the students, and there is also discussion of evaluating the validity of the questions. For courses in other areas than Biology, this book can also be valuable. -
Instructor: Steve Greenhouse 2 I Am Your Instructor: ◦ I Am Not a Paleontologist (I’M a Recently Retired Electrical Engineer)
Instructor: Steve Greenhouse 2 I am your instructor: ◦ I am not a paleontologist (I’m a recently retired electrical engineer). Paleontology and paleoanthropology are long-time interests of mine. ◦ I hope and expect there will be plenty of discussion and questions. ◦ So, I won’t have all the answers, but I’ll try to get them. ◦ I apologize in advance for mispronouncing some biological names (e.g., Archaeopteryx). This course will present evolution from a scientific point of view: ◦ It is, after all, a scientific discipline. ◦ This course is under the OLLI Science Program, not the Religion Program. 3 There is a lot of material to cover in 8 sessions: ◦ Slides I have generated. ◦ There are 17 DVDs from the “Great Courses” available (~30 min each). May only have time for several. These were used to create an outline for the course and are summarized in the slides. ◦ A guest lecturer from GMU’s biology department, Dr. Karl Fryxell (Week 4). I encourage discussion/feedback, but I would prefer to limit discussion of these two topics: ◦ Creationism/Intelligent design. ◦ The difference between a fact and a theory. Next term there will be another course: ◦ From Early Primates to Homo Sapiens. ◦ 4 sessions, Slides, 7 DVDs available. ◦ A guest lecturer from the SI Museum of Natural History’s Human Origins Program, Dr. Briana Pobiner. 4 The Last Paragraph of On the Origin of Species by Charles Darwin: “Thus, from the war of nature, from famine and death, the most exalted object of which we are capable of conceiving, namely, the production of the higher animals, directly follows.