Differentially Expressed Proteins in Platelets Derived from Patients with Hypertension

Total Page:16

File Type:pdf, Size:1020Kb

Differentially Expressed Proteins in Platelets Derived from Patients with Hypertension Journal of Human Hypertension https://doi.org/10.1038/s41371-021-00555-y ARTICLE Differentially expressed proteins in platelets derived from patients with hypertension 1 1 2 3 Yobana Armenta-Medina ● Ivette Martínez-Vieyra ● Oscar Medina-Contreras ● Claudia G. Benitez-Cardoza ● 3 4 1 Albertana Jiménez-Pineda ● César A. Reyes-López ● Doris Cerecedo Received: 19 February 2021 / Revised: 7 May 2021 / Accepted: 20 May 2021 © The Author(s), under exclusive licence to Springer Nature Limited 2021 Abstract Hypertension (HTN) causes end-organ damage and is a major cause of morbidity and mortality globally. Recent studies suggested blood cells participate in the maintenance of HTN. Platelets—anucleated cell fragments derived from megakaryocytes—exert diverse functions, including their well-characterized role in the formation of hemostatic clots. However, platelets from patients with HTN exhibit altered membrane lipid and protein compositions that impact platelet function and lead to formation of aggregates and vascular obstructions. Here, for the first time, we have identified, by proteomic analyses, the most relevant 11 proteins that show the greatest difference in their expression in platelets derived 1234567890();,: 1234567890();,: from patients with HTN, in comparison with those from normotensive individuals. These proteins are involved in cytoskeletal organization and the coagulation cascade that contributes to platelet activation, release of granule contents, and aggregation, which culminate in thrombus formation. These results have important implications in our understanding of the molecular mechanisms associated with the development of HTN, and in consequence, the development of new strategies to counteract the cardiovascular disorders associated with constitutive activation of platelets in HTN. Introduction rejuvenating our interest in better understanding this condi- tion [1]. Mechanisms such as overactivation of the Hypertension (HTN) is a common, multifactorial disease and renin–angiotensin–aldosterone system and sympathetic ner- the major risk factor for heart attacks, stroke, and kidney vous system, hypertrophy, endothelial dysfunction, and oxi- failure. Furthermore, HTN has been implicated in higher dative stress have been related the pathogenesis of HTN [2]. susceptibility and adverse outcomes of patients infected HTN is characterized by spontaneous platelet aggrega- with the current pandemic caused by SARS-CoV2, thereby tion due to increased platelet activation. Hemodynamic and vascular factors generated by the higher sheer forces in patients with HTN, as well as atherosclerosis, contribute to platelet activation [3]. In addition, the release of higher Supplementary information The online version contains concentrations of catecholamines and increased sensitivity supplementary material available at https://doi.org/10.1038/s41371- of platelets to these patients with HTN also plays key roles 021-00555-y. in platelet activation [4]. * Doris Cerecedo Activated platelets undergo a dramatic change in shape [email protected] from disc shaped to a spherical morphology due to dynamic reorganization of cytoskeletal components, including 1 Laboratorio de Hematobiología, ENMyH, Instituto Politécnico Nacional, Mexico City, Mexico assembly and disassembly of structural proteins. The per- 2 centage of platelets exhibiting active actin polymerization Unidad de Investigación Epidemiológica en Endocrinología y – Nutrición, Hospital Infantil de México Federico Gómez, increases from ~35 40 to 70% during the activation pro- Mexico City, Mexico cess. In turn, activated platelets form filopodia and lamel- 3 Laboratorio de Investigación Bioquímica, ENMyH, Instituto lipodia adhere to each other and release their granule Politécnico Nacional, Mexico City, Mexico contents [5]. 4 Laboratorio de Bioquímica Estructural, ENMyH, Instituto Platelets from patients with HTN are constituently acti- Politécnico Nacional, Mexico City, Mexico vated and exhibit morphological, biophysical, biochemical, Y. Armenta-Medina et al. and functional modifications [6]. Recently, we reported that Table 1 General characteristics of hypertensive patients and controls. platelets from patients with HTN possess numerous long Parameter Hypertensive Controls p value filopodia, exhibit deregulated expression of cytoskeletal proteins, and overexpress the epithelial sodium channel. Age ± SD (years) 55.83 ± 9.26 49 ± 12.56 0.2439 – These changes were associated with altered phospholipid Sex (%male/%female) 38/62 40/60 and cholesterol contents and changes in the microviscosity SBP (mmHg) 149 ± 23 117 ± 5 0.0019 of the plasma membrane [7]. Atomic force microscopy and DBP (mmHg) 89 ± 8 79 ± 4 0.0001 liquid chromatography–tandem mass spectrometry BMI 28 ± 5 27 ± 4 0.0898 ns (LC–MS/MS) confirmed the changes in fluidity and altered Glucose (mg/dl) 105 ± 11.5 89 ± 5 0.0001 lipid contents in platelets from patients with HTN compared Total cholesterol (mg/dl) 185.8 ± 10 191 ± 13 0.1815 ns to platelets from normotensive individuals (NTI). In addi- Triglycerides (mg/dl) 220.4 ± 52.5 140 ± 38 0.0001 tion, transmission electron microscopy revealed changes in MPV (fl) 9.1 ± 0.84 8.7 ± 0.6 0.403 the inner membranous structure of platelets from patients Platelet count (×109) 161 ± 21.9 235 ± 30.3 0.0007 with HTN [8]. Hypertension grades (%) Proteomic analysis provides an important tool to identify Controlled 44.4 – proteins; ~80% of the total protein content of platelets has 1 44.4 – been characterized [9]. The aim of the present study was to 2 11.2 – identify differentially expressed proteins in platelets derived Values are the mean ± SD of ten patients and controls in each group. from patients with HTN compared to platelets from NTI. BMI body mass index, SBP systolic blood pressure, DBP diastolic Using 2D electrophoresis, we resolved whole platelet pro- blood pressure, MPV mean platelet volume, ns non significant. teins from nine patients with HTN and nine NTI. The 11 most importantly differentially expressed electrophoretic entities, between the two groups, were identified using a blood samples in an automatic blood counter (Beckman LC–MS/MS approach and an interactome of the identified Coulter) within 30 min after venipuncture. proteins was built using STRING. This information may HTN grades were defined according to 2013 ESC/ESH help to identify specific therapeutic target proteins to ame- Guidelines for the management of arterial HTN. liorate or avoid thrombotic events, or identify biomarkers of Controlled BP was defined as systolic blood pressure disease progression. (SBP) < 140 mmHg and/or diastolic blood pressure (DBP) < 90 mmHg; grade 1 was defined as SBP 140–159 mmHg and/or DBP 90–99 mmHg; grade 2 was defined as Materials and methods SBP 160–179 mmHg and/or DBP 100–109 mmHg; and grade 3 was defined as SBP ≥ 180 mmHg and/or DBP ≥ Reagents 110 mmHg. All subjects maintained their usual diets; the patients SDS, acrylamide, bis-acrylamide, urea, thiourea, CHAPS, with HTN maintained their treatment, which included ena- TEMED, DTT, Tris, TCA, acetic acid, ethanol, Coomassie lapril, losartan, telmisartan, or amlodipine; no platelet brilliant blue G 250, aluminum sulfate, and orthophosphoric aggregation inhibitors were prescribed. The NTI group had acid were purchased from Sigma Chemical Co. (St. Louis, not received any drug treatment during the previous MO, USA). Immobilized pH gradient strips (pH 3–10) and 10 days. Exclusion criteria included pregnancy, smoking, the 2D electrophoresis reagents and electrophoresis instru- valvular heart disease, type 2 diabetes mellitus, and dysli- ments were obtained from Bio-Rad Laboratories Inc. pidemia. For the 2D gel analysis the patients were grouped (Hercules, CA, USA). regardless the treatment they were receiving. Subjects Platelet sample preparation Human peripheral blood samples were collected from Platelet isolation, protein extraction, and protein preparation patients diagnosed with essential systemic arterial HTN for analysis were performed as previously reported by (n = 9) and NTI (n = 9) after obtaining signed informed García et al. [10]. consent. This project was approved by the ethics com- LC–MS/MS approach analyzes many proteins in a single mittee of the ENMyH Instituto Politécnico Nacional experiment, this methodology is not suitable to assess large (No. 001/2019). Table 1 summarizes the anthropometric number of individuals; the washed platelet suspensions characteristics of the two groups. Mean platelet volume were pooled in groups of three to produce three samples for (MPV) and platelet count were measured from whole patients with HTN and three samples for NTI. Each pooled Differentially expressed proteins in platelets derived from patients with hypertension sample was assessed on three independent gels; therefore, a Irapuato, México. All experiments were performed on a total of nine gels for patients with HTN and nine gels for nanoAcquity nanoflow LC system (Waters Corporation) NTI were obtained and analyzed. coupled to a linear ion trap LTQ Velos mass spectrometer One thousand two hundred and fifty micrograms of total (Thermo Fisher Scientific, Bremen, Germany) equipped protein extracts were solubilized in a rehydration buffer with a nanoelectrospray ion source. Solvent A was 0.1% (8 M urea, 2 M thiourea, CHAPS 2%, 50 mM DTT) sup- formic acid and solvent B was 100% acetonitrile in 0.1% plemented with 1% Bio-LyteTM ampholyte (Bio-Rad)), and formic acid. Protein digestate samples (3 µl) were bound to were loaded onto 17 cm immobilized pH gradient IPG
Recommended publications
  • Supplementary Figures
    Mena regulates the LINC complex to control actin–nuclear lamina associations, trans-nuclear membrane signalling and cancer gene expression Frederic Li Mow Chee!, Bruno Beernaert!, Alexander Loftus!, Yatendra Kumar", Billie G. C. Griffith!, Jimi C. Wills!, Ann P. Wheeler#, J. Douglas Armstrong$, Maddy Parsons%, Irene M. Leigh,(, Charlotte M. Proby&, Alex von Kriegsheim!, Wendy A. Bickmore", Margaret C. Frame,* & Adam Byron,* Supplementary Information Supplementary Figure 1 Supplementary Figure 2 Supplementary Figure 3 Supplementary Table 1 Supplementary Table 2 Supplementary Table 3 Supplementary Table 4 !Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH< =XR, UK. "MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH< =XU, UK. #Advanced Imaging Resource, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH< =XU, UK. $Simons Initiative for the Developing Brain, School of Informatics, University of Edinburgh, Edinburgh EHH IYL, UK. %Randall Centre for Cell and Molecular Biophysics, King’s College London, London SEM MUL, UK. &Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee DD <HN, UK. 'Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EM =AT, UK. *email: [email protected] or [email protected] 1 a cSCC IAC correlation b cSCC IAC pathways c Core adhesome network ENAH −log10(q) MACF1 CSRP1 Met1 Met4 0 5 10 + + CORO2A Integrin signalling + CFL1 pathway PRNP ILK + HSPB1 PALLD PPFIA1 TES RDX Cytoskeletal regulation + VASP + + ARPC2 by Rho GTPase PPP2CA + Met1 + LASP1 MYH9 + VIM TUBA4A Huntington ITGA3 + disease ITGB4 VCL CAV1 ACTB ROCK1 KTN1 FLNA+ CALR DNA FBLIM1 CORO1B RAC1 + replication +ACTN1 ITGA6 + Met4 ITGAV Parkinson ITGB1 disease Actin cytoskel.
    [Show full text]
  • Tubulin in Platelets: When the Shape Matters
    International Journal of Molecular Sciences Review Tubulin in Platelets: When the Shape Matters Ernesto José Cuenca-Zamora 1 , Francisca Ferrer-Marín 1,2,*, José Rivera 1 and Raúl Teruel-Montoya 1 1 Servicio de Hematología y Oncología Médica, Centro Regional de Hemodonación, Hospital Universitario Morales Meseguer, IMIB-Arrixaca, Red CIBERER CB15/00055, 30003 Murcia, Spain 2 Grado de Medicina, Universidad Católica San Antonio (UCAM), Campus de los Jerónimos, 30107 Murcia, Spain * Correspondence: ff[email protected]; Tel.: +34-968-341990 Received: 1 May 2019; Accepted: 17 June 2019; Published: 16 July 2019 Abstract: Platelets are anuclear cells with a short lifespan that play an essential role in many pathophysiological processes, including haemostasis, inflammation, infection, vascular integrity, and metastasis. Billions of platelets are produced daily from megakaryocytes (platelet precursors). Despite this high production, the number of circulating platelets is stable and, under resting conditions, they maintain their typical discoid shape thanks to cytoskeleton proteins. The activation of platelets is associated with dynamic and rapid changes in the cytoskeleton. Two cytoskeletal polymer systems exist in megakaryocytes and platelets: actin filaments and microtubules, based on actin, and α- and β-tubulin heterodimers, respectively. Herein, we will focus on platelet-specific tubulins and their alterations and role of the microtubules skeleton in platelet formation (thrombopoiesis). During this process, microtubules mediate elongation
    [Show full text]
  • Integrin Beta3 (Ab 773) Antibody Cat
    Integrin beta3 (Ab 773) Antibody Cat. No.: 79-317 Integrin beta3 (Ab 773) Antibody Immunohistochemical analysis of paraffin-embedded human breast carcinoma tissue using Integrin β3 (Ab-773). Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse Integrin beta3 (Ab-773) antibody was raised against a peptide sequence around aa. IMMUNOGEN: 771~775 (P-L-Y-K-E) derived from Human Integrin β3. TESTED APPLICATIONS: IHC, WB APPLICATIONS: Western Blot: 1:500~1:1000, Immunohistochemistry: 1:50~1:100 SPECIFICITY: This antibody detects endogenous level of total Integrin β3 protein. PREDICTED MOLECULAR 110 kDa WEIGHT: October 1, 2021 1 https://www.prosci-inc.com/integrin-beta3-ab-773-antibody-79-317.html Properties PURIFICATION: Antibodies were purified by affinity-chromatography using epitope-specific peptide. CLONALITY: Polyclonal CONJUGATE: Unconjugated PHYSICAL STATE: Liquid Antibody supplied in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM BUFFER: NaCl, 0.02% sodium azide and 50% glycerol. CONCENTRATION: 1 mg/mL STORAGE CONDITIONS: Store antibody at -20˚C for up to one year. Additional Info OFFICIAL SYMBOL: ITGB3 GT, CD61, GP3A, BDPLT2, GPIIIa, BDPLT16, CREB2, CREBP1, Platelet membrane ALTERNATE NAMES: glycoprotein IIIa ACCESSION NO.: NP_000203.2 PROTEIN GI NO.: 47078292 GENE ID: 3690 Background and References Integrin alpha-V/beta-3 is a receptor for cytotactin, fibronectin, laminin, matrix metalloproteinase-2, osteopontin, osteomodulin, prothrombin, thrombospondin, vitronectin and von Willebrand factor. Integrin alpha-IIb/beta-3 is a receptor for fibronectin, fibrinogen, plasminogen, prothrombin, thrombospondin and vitronectin. Integrins alpha-IIb/beta-3 and alpha-V/beta-3 recognize the sequence R-G-D in a wide BACKGROUND: array of ligands.
    [Show full text]
  • Original Article Plasma CAMK2A Predicts Chemotherapy Resistance in Metastatic Triple Negative Breast Cancer
    Int J Clin Exp Pathol 2018;11(2):650-663 www.ijcep.com /ISSN:1936-2625/IJCEP0069558 Original Article Plasma CAMK2A predicts chemotherapy resistance in metastatic triple negative breast cancer Bin Shao1*, Zhihua Tian2*, Huirong Ding2*, Qingsong Wang3, Guohong Song1, Lijun Di1, Hong Zhang2, Huiping Li1, Jing Shen2 Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), 1Department of Medical Oncology, 2Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, P. R. China; 3State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, P. R. China. *Equal contributors. Received November 21, 2017; Accepted December 15, 2017; Epub February 1, 2018; Published February 15, 2018 Abstract: Background: Chemotherapy resistance is a great obstacle in effective treatment for metastatic triple nega- tive breast cancer (TNBC). The ability to predict chemotherapy response would allow chemotherapy administration to be directed toward only those patients who would benefit, thus maximizing treatment efficiency. Differentially expressed plasma proteins may serve as putative biomarkers for predicting chemotherapy outcomes. Patients and methods: In this study, 26 plasma samples (10 samples with partial response (S) and 16 samples with progression disease (R)) from patients with metastatic TNBC were measured by Tandem Mass Tag (TMT)-based proteomics analysis to identify differentially expressed proteins between the S and R group. Potential proteinswere validated with enzyme-linked immunosorbent assay (ELISA) in another 67 plasma samples. Results: A total of 320 plasma proteins were identified, and statistical analysis showed that 108 proteins were significantly dysregulated between R and S groups in the screening stage. Bioinformatics revealed relevant pathways and regulatory networks of the differentially expressed proteins.
    [Show full text]
  • Update on Antithrombin I (Fibrin)
    ©2007 Schattauer GmbH,Stuttgart AnniversaryIssueContribution Update on antithrombinI(fibrin) Michael W. Mosesson 1957–2007) The Blood Research Institute,BloodCenter of Wisconsin, Milwaukee,Wisconsin, USA y( Summary AntithrombinI(fibrin) is an important inhibitor of thrombin exosite 2.Thelatterreaction results in allostericchanges that generation that functions by sequestering thrombin in the form- down-regulate thrombin catalytic activity. AntithrombinIdefi- Anniversar ingfibrin clot,and also by reducing the catalytic activity of fibrin- ciency (afibrinogenemia), defectivethrombin binding to fibrin th boundthrombin.Thrombin binding to fibrin takesplace at two (antithrombin Idefect) found in certain dysfibrinogenemias (e.g. 50 classesofnon-substrate sites: 1) in thefibrin Edomain (two per fibrinogen Naples 1), or areduced plasma γ ’ chain content (re- molecule) throughinteractionwith thrombin exosite 1; 2) at a ducedantithrombin Iactivity),predispose to intravascular singlesite on each γ ’ chain through interaction with thrombin thrombosis. Keywords Fibrinogen,fibrin, thrombin, antithrombin I ThrombHaemost 2007; 98: 105–108 Introduction meric with respecttoits γ chains,and accounts for ~85% of human plasma fibrinogen. Thrombinbinds to its substrate, fibrinogen, through an anion- Low-affinity thrombin binding activity reflects thrombin ex- binding sitecommonlyreferred to as ‘exosite 1’ (1,2). Howell osite1bindinginEdomain of fibrin, as recentlydetailedbyana- recognized nearly acenturyago that the fibrin clot itself exhibits lysesofthrombin-fibrin
    [Show full text]
  • Familial Multiple Coagulation Factor Deficiencies
    Journal of Clinical Medicine Article Familial Multiple Coagulation Factor Deficiencies (FMCFDs) in a Large Cohort of Patients—A Single-Center Experience in Genetic Diagnosis Barbara Preisler 1,†, Behnaz Pezeshkpoor 1,† , Atanas Banchev 2 , Ronald Fischer 3, Barbara Zieger 4, Ute Scholz 5, Heiko Rühl 1, Bettina Kemkes-Matthes 6, Ursula Schmitt 7, Antje Redlich 8 , Sule Unal 9 , Hans-Jürgen Laws 10, Martin Olivieri 11 , Johannes Oldenburg 1 and Anna Pavlova 1,* 1 Institute of Experimental Hematology and Transfusion Medicine, University Clinic Bonn, 53127 Bonn, Germany; [email protected] (B.P.); [email protected] (B.P.); [email protected] (H.R.); [email protected] (J.O.) 2 Department of Paediatric Haematology and Oncology, University Hospital “Tzaritza Giovanna—ISUL”, 1527 Sofia, Bulgaria; [email protected] 3 Hemophilia Care Center, SRH Kurpfalzkrankenhaus Heidelberg, 69123 Heidelberg, Germany; ronald.fi[email protected] 4 Department of Pediatrics and Adolescent Medicine, University Medical Center–University of Freiburg, 79106 Freiburg, Germany; [email protected] 5 Center of Hemostasis, MVZ Labor Leipzig, 04289 Leipzig, Germany; [email protected] 6 Hemostasis Center, Justus Liebig University Giessen, 35392 Giessen, Germany; [email protected] 7 Center of Hemostasis Berlin, 10789 Berlin-Schöneberg, Germany; [email protected] 8 Pediatric Oncology Department, Otto von Guericke University Children’s Hospital Magdeburg, 39120 Magdeburg, Germany; [email protected] 9 Division of Pediatric Hematology Ankara, Hacettepe University, 06100 Ankara, Turkey; Citation: Preisler, B.; Pezeshkpoor, [email protected] B.; Banchev, A.; Fischer, R.; Zieger, B.; 10 Department of Pediatric Oncology, Hematology and Clinical Immunology, University of Duesseldorf, Scholz, U.; Rühl, H.; Kemkes-Matthes, 40225 Duesseldorf, Germany; [email protected] B.; Schmitt, U.; Redlich, A.; et al.
    [Show full text]
  • The Case of Meat Color from Charolais Breed Mohammed Gagaoua, Muriel Bonnet, Leanne De Koning, Brigitte Picard
    Reverse phase protein array for the quantification and validation of protein biomarkers of beef qualities: The case of meat color from Charolais breed Mohammed Gagaoua, Muriel Bonnet, Leanne de Koning, Brigitte Picard To cite this version: Mohammed Gagaoua, Muriel Bonnet, Leanne de Koning, Brigitte Picard. Reverse phase protein array for the quantification and validation of protein biomarkers of beef qualities: The case of meat colorfrom Charolais breed. Meat Science, Elsevier, 2018, 145 (C), pp.308-319. 10.1016/j.meatsci.2018.06.039. hal-01860004 HAL Id: hal-01860004 https://hal.archives-ouvertes.fr/hal-01860004 Submitted on 22 Aug 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Meat Science 145 (2018) 308–319 Contents lists available at ScienceDirect Meat Science journal homepage: www.elsevier.com/locate/meatsci Reverse Phase Protein array for the quantification and validation of protein biomarkers of beef qualities: The case of meat color from Charolais breed T ⁎ Mohammed Gagaouaa, , Muriel Bonneta, Leanne De Koningb, Brigitte Picarda a INRA, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle F-63122, France b Institut Curie centre de recherche, Université de recherche PSL Plateforme RPPA, 26 rue de l'UlM, Paris 75248, France ARTICLE INFO ABSTRACT Keywords: Reverse Phase Protein Arrays (RPPA) were applied for the quantification and validation of protein biomarkers of Biomarkers beef qualities on M.
    [Show full text]
  • Supplementary Information
    Supplementary Information 1. Depletion of Macrophages In Vivo Figure S1. Depletion of macrophages in vivo using clodronate-lipsomes. The ratio between F480+ cells (macrophage) and total cell number was calculated. For statistical analysis a two-way ANOVA test was performed. ns = not significant, p < 0.05* p < 0.01** p < 0.001*** (n = 12 for un- treated, n = 8 for clodronate treated n = 34 for clodronate + mgHES treated). 2. In Vitro Protein Corona Analysis Figure S2. mgHES nanoparticles were incubated with plasma or serum for 1 min (A) or 2 h (B). The protein corona was purified via magnetic separation. Proteins were desorbed from the nanoparticle surface and visualized by SDS PAGE. Figure S3. Protein corona proteins after 1 min (A) or 2 h (B) in vitro incubation were analysed by LC-MS. The most abun- dant proteins (25) are summarized in the heat map. Table S1. p values for all corona proteins shown in Figure S3. p values were determined for each protein source individu- ally and the amount of each corona protein was compared for the two time points (1 min vs. 2 h). Citrate p value EDTA p value Alpha-2-HS-glycoprotein * 0,0222 Alpha-2-HS-glycoprotein ns 0,9983 Apolipoprotein A-I ns 0,518 Apolipoprotein A-I ns >0,9999 Calcium-binding protein ns 0,2388 Calcium-binding protein ns >0,9999 Complement C3 ns 0,9967 Complement C3 ns >0,9999 Fibrinogen alpha chain ns 0,199 Fibrinogen alpha chain ns >0,9999 Fibrinogen gamma chain ns 0,1127 Fibrinogen gamma chain ns >0,9999 Hemoglobin subunit beta-1 ns >0,9999 Hemoglobin subunit beta-1 ns >0,9999
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Proteomic Expression Profile in Human Temporomandibular Joint
    diagnostics Article Proteomic Expression Profile in Human Temporomandibular Joint Dysfunction Andrea Duarte Doetzer 1,*, Roberto Hirochi Herai 1 , Marília Afonso Rabelo Buzalaf 2 and Paula Cristina Trevilatto 1 1 Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; [email protected] (R.H.H.); [email protected] (P.C.T.) 2 Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-41-991-864-747 Abstract: Temporomandibular joint dysfunction (TMD) is a multifactorial condition that impairs human’s health and quality of life. Its etiology is still a challenge due to its complex development and the great number of different conditions it comprises. One of the most common forms of TMD is anterior disc displacement without reduction (DDWoR) and other TMDs with distinct origins are condylar hyperplasia (CH) and mandibular dislocation (MD). Thus, the aim of this study is to identify the protein expression profile of synovial fluid and the temporomandibular joint disc of patients diagnosed with DDWoR, CH and MD. Synovial fluid and a fraction of the temporomandibular joint disc were collected from nine patients diagnosed with DDWoR (n = 3), CH (n = 4) and MD (n = 2). Samples were subjected to label-free nLC-MS/MS for proteomic data extraction, and then bioinformatics analysis were conducted for protein identification and functional annotation. The three Citation: Doetzer, A.D.; Herai, R.H.; TMD conditions showed different protein expression profiles, and novel proteins were identified Buzalaf, M.A.R.; Trevilatto, P.C.
    [Show full text]
  • Protein Network Analyses of Pulmonary Endothelial Cells In
    www.nature.com/scientificreports OPEN Protein network analyses of pulmonary endothelial cells in chronic thromboembolic pulmonary hypertension Sarath Babu Nukala1,8,9*, Olga Tura‑Ceide3,4,5,9, Giancarlo Aldini1, Valérie F. E. D. Smolders2,3, Isabel Blanco3,4, Victor I. Peinado3,4, Manuel Castell6, Joan Albert Barber3,4, Alessandra Altomare1, Giovanna Baron1, Marina Carini1, Marta Cascante2,7,9 & Alfonsina D’Amato1,9* Chronic thromboembolic pulmonary hypertension (CTEPH) is a vascular disease characterized by the presence of organized thromboembolic material in pulmonary arteries leading to increased vascular resistance, heart failure and death. Dysfunction of endothelial cells is involved in CTEPH. The present study describes for the frst time the molecular processes underlying endothelial dysfunction in the development of the CTEPH. The advanced analytical approach and the protein network analyses of patient derived CTEPH endothelial cells allowed the quantitation of 3258 proteins. The 673 diferentially regulated proteins were associated with functional and disease protein network modules. The protein network analyses resulted in the characterization of dysregulated pathways associated with endothelial dysfunction, such as mitochondrial dysfunction, oxidative phosphorylation, sirtuin signaling, infammatory response, oxidative stress and fatty acid metabolism related pathways. In addition, the quantifcation of advanced oxidation protein products, total protein carbonyl content, and intracellular reactive oxygen species resulted increased
    [Show full text]
  • The Human in Vivo Biomolecule Corona Onto Pegylated Liposomes
    RevisedView metadata, Manuscript citation and similar papers at core.ac.uk brought to you by CORE provided by Nottingham Trent Institutional Repository (IRep) 1 2 3 4 5 6 The human in vivo biomolecule corona onto PEGylated 7 8 liposomes: a proof-of-concept clinical study 9 10 11 Marilena Hadjidemetriou1, Sarah McAdam2, Grace Garner2, Chelsey Thackeray3, David Knight4, Duncan 12 Smith5, Zahraa Al-Ahmady1, Mariarosa Mazza1, Jane Rogan2, Andrew Clamp3 and Kostas Kostarelos1* 13 14 15 16 17 1Nanomedicine Lab, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, United Kingdom; 2 18 Manchester Cancer Research Centre Biobank, The Christie NHS Foundation Trust, CRUK Manchester Institute, Manchester, United Kingdom 3Institute of Cancer Sciences and The Christie NHS Foundation Trust, Manchester Cancer Research Centre (MCRC), 19 University of Manchester, Manchester, United Kingdom 20 4Bio-MS Facility, Michael Smith Building, The University of Manchester, Manchester, United Kingdom; 21 5xCRUK Manchester Institute, The University of Manchester, Manchester, United Kingdom 22 23 24 25 26 27 28 29 30 31 _______________________________________ 32 * Correspondence should be addressed to: [email protected] 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 1 63 64 65 1 2 3 4 5 Abstract 6 7 The self-assembled layered adsorption of proteins onto nanoparticle (NP) surfaces, once in contact 8 with biological fluids, has been termed the ‘protein corona’ and it is gradually seen as a determinant 9 10 factor for the overall biological behavior of NPs.
    [Show full text]