<I>Echinometra Lucunter</I> (L.)

Total Page:16

File Type:pdf, Size:1020Kb

<I>Echinometra Lucunter</I> (L.) BULLETIN OF MARINE SCIENCE, 28(1): 181-188, 1978 CORAL REEF PAPER INTRASPECIFIC AGONISTIC BEHAVIOR IN THE ROCK-BORING SEA URCHIN ECHINOMETRA LUCUNTER (L.) (ECHINODERMATA: ECHINOIDEA) Herman Griinbaum, Glen Bergman, Donald P. Abbott, and John C. Ogden ABSTRACT The agonistic behavior of the sea urchin Echinometra lucunter (L.) was studied in the algal ridge reefs of Boiler Bay, St. Croix, U.S. Virgin Islands, where it inhabits burrows in the reef surface. Sixty-four encounters were set up by placing an urchin (intruder) at the opening of an occupied burrow (host). In 46 cases, agonistic behavior between the host and intruder resulted. Most of the interactions involved pushing, but biting was fre- quently observed. The encounter usually resulted in the eviction of the intruder from the burrow, but occasionally the host was evicted or the urchins cohabited the burrow. Burrow occupants successfully evicted all intruding urchins of their own or slightly larger size, and regained possession of their burrows after being experimentally replaced by an urchin of equal size. As Echinometra live in dense aggregations in wave-swept areas, this behavior may be significant in defending protected living space and access to a food sup- ply. Many echinoids in the sea today are gre- in a variety of habitats. It is most abundant garious and form homotypic and heterotypic on tidal terraces, beachrock, and other areas aggregations which have been considered to of rocky shore from just below the low tide be the result of individual reactions to the level to depths of a few meters, especially in physical environment or short-term aggrega- regions swept by surge and surf (Ginsburg, tions for reproductive activities, and not the 1953; Kaye, 1959; Lewis, 1960; McPher- result of any social behavior (Reese, 1966). son, 1969; Hunt, 1969; Teytaud, 1971; Ab- Pearse and Arch (1969), however, con- bott et aI., 1974; and earlier authors cited in sider that the large groups of diademid Mortensen, 1943). Here it usually inhabits echinoids common in tropical seas do in- holes and crevices that afford protection volve true social behavior. They present against dislodgment. evidence to support this view consisting of The northeast coast of St. Croix, U.s.V.I., group responses to disturbance, and aggre- in the area of Boiler Bay, has well developed gation behavior involving particular patterns algal ridge reefs and beachrock benches of spine contact. Other authors have exam- which are extensively tunnelled and bur- ined different sorts of echinoderm aggrega- rowed by E. lucunter (Adey, 1975 and Ab- tions and have concluded that some form of bott et aI., 1974 for detailed maps of the social interaction is involved (Dix, 1969; area). Within this area, as elsewhere, most Branham et aI., 1971; Warner, 1971). 80- animals are in individual pits or burrows cial behavior involving agonistic encounters (Fig. 1). Others are arranged along con- has been recently reported for all three or- tinuous crevices, and in areas where urchin ders of sea stars by Wobber (1975) and de- boring has been extensive, adjacent bur- scribed for a few species. rows have run together and a small group Echinometra lucunter (L.), a widely dis- of animals occupies a larger open depres- tributed sea urchin in the tropical and sub- sion. However, even in situations where ad- tropical Atlantic (Mortensen, 1943; Clark, jacent animals are not separated by obvious 1954) is found abundantly in shallow waters physical barriers, they are always out of 181 182 BULLETIN OF MARINE SCIENCE, VOL. 28, NO. I, 1978 Figure 1. Echillometra [ucullter in burrows in one of the algal ridge reefs at Boiler Bay, St. Croix. Note close spacing of burrows and benthic algae at burrow openings. reach of one another. Repeated observa- appeared in a preliminary account (Griin- tions on selected individuals, day and night, baum and Bergman, 1974). show that each animal has its home site, distinct from that of any other individual. It METHODS AND MATERIALS moves short distances, especially at night, From January 11 to 20, 1974, observa- but each animal clearly "homes" in the tions were made on the agonistic behavior of classic sense, and ranges over a narrow area. E. lucunter living in the algal ridges of Boiler One rarely finds two individuals in the same Bay. The ridges, located within 50 m of the burrow, or two with spines, tests, or tube shoreline, afford an excellent site for ob- feet touching; when one does, the situation servation of the urchins in their burrows, as is far from static (Abbott et al., 1974). well as providing protection from the surge Prior to the present study, Griinbaum, characteristic of this bay. Observations were Warner and Ogden (unpubl.) noted the made both day and night by observers rapid disappearance of tagged E. lucunter standing on the bottom near the ridges us- which were released in areas with extensive ing snorkel gear. All burrows chosen for ex- burrows of conspecifics. On closer exam- perimentation were completely submerged ination it was discovered that the tagged during observations. As the ridges are ex- urchins were being forcibly prevented from tensively burrowed, many burrows run to- taking residence in occupied burrows. The gether and thus have multiple entrances, present study documents this behavior and large openings, or complex structures. Ex- assesses its importance in the establishment perimental situations were set up by remov- and stabilization of urchin populations in ing urchins of various sizes from their bur- burrows. Some details of the work have rows and moving them to the entrances of GRONBAUM ET AL.: BEHAVIOR IN THE SEA URCHIN ECHINOMETRA 183 BURROW TOO SMALL TO INTER IN'mUDEA MOVED AWAY ~ NO VISIBU! CONTACT BETWI(N ~ HOST AND INTRUDER NO 'IGHT.. >1 INTRUDER un ~ ," BURROW ~ IPINI tONIACT BITWIIN . HOST AND INTAUDiA INTRUDIR ATTEMptED FUR'tHEA ADVANCE 1 BUT WAS PUSHED OUT ~ 0' BURROWBYHOS'> HOST ADVANCED AND INTRUDER LEfT PUS~~~R~::RINS' ~ BURROW INTRUDER RUIiAnD WIIHOUT 'URTHER .PUSHING BY HOSt INnUDII PLACID A'"IN- [),. 'NTRUDER .HTlRED D TRAHC' r~.H6~~T BURROW \)HOST BUIAOW HOST PUSHED .0 BURROW . fiGHT INVOLVED 6 INTRUDER ADVANCED ~ OPENING, LE" BURROW 46 . PUSHINGIONLY ~ AND PUSHED AGAINST HOST ~ BURROW LARG' 'NOUGH '011 ~ two. IHfRUDER DISPLACED 26 HOST BUT BOTH CONtiNUE TO OCCUpy BURROW FIOHT B RESULTED ':~.~~:~,~~T~:L~~::CTED 80T" HOST AND 'NTAUDER UUD ~'NTRUD'R ACTIVELy.nR'ATID MOUT" (91 FROM HOST, LEFT BURROW PlOHT INVOLVED IITING AS WELL AS PUSHING ONl Y Hon USED HOST ACTIVELY IVlcnD IY MOUTH (7) PUSHING OF INTRUDIR, I UFT IURROW ONl'f INUUI.'IU } USED MOUTH (4) aURROW LARGI ENOUGH fOIl lWOI INTRUDeR I.'IISP1.ACED 1 Hon BUT BC)IH CONTINUE TO 'OCCUpy BURROW Figure 2. Agonistic behavior patterns between host and intruder. Figures and relative width of arrow indicates number of occurrences of each sequence. See text for details. already occupied burrows. The transferred visible contact with the host, (3) aU of the urchin was called the "intruder" and the oc- remaining 46 trials resulted in agonistic be- cupant of the burrow the "host." Sizes of havior. urchins were taken by measuring the largest The agonistic encounters began when the test diameter at the equator with a vernier intruder moved far enough into the burrow caliper (the test is often markedly oval). to make physical contact with the host, which reacted with immediate movement of RESULTS spines and tube feet. Once aware of the in- trusion, the host usually moved directly to- Sixty-four encounters were set up and ward the intruder, keeping spines and tube various sequences of agonistic behavior were feet in constant motion. In nine out of 20 noted (Fig. 2). Following the initial place- encounters (Fig. 2) in which the host gave ment of the intruder, one of three events an initial push to the intruder, the latter ac- occurred: (1) in three trials the intruder was too large for the opening of the burrow, tively backed off and left the burrow; in the and simply moved away, (2) in another 15 other 11 encounters the intruder resisted the trials there were no agonistic responses; in push but was forced all the way out by the 10 of these cases the intruder retreated im- host. While being evicted the intruder often mediately after making physical contact with flattened its spines against the test. In six the host in the burrow; in the other five cases the results were reversed, the intruder cases the intruder retreated prior to any pushing harder than the host; here the host 184 BULLETIN OF MARINE SCIENCE, VOL. 28, NO. I, 1978 Figure 3. Agonistic encounter between two E. lucunter in an aquarium involving the use of teeth. Photograph by C. Kitting. was either evicted altogether (N == 4) or in host (eight cases) or by cohabiting the bur- the case of larger burrows, was displaced to row. Cohabitation was observed in three in- one side and continued to cohabit the bur- stances; in all cases the cohabiting urchins row with the intruder (N == 2). took up positions well-separated from the Twenty trials resulted in the use of the host in the burrow. teeth by either host or intruder or both (Fig. The duration of the encounters varied 2). Here the attacker rotated its body until considerably. Interactions involving only tbe oral surface faced tbe opponent, then pushing lasted 3 to 30 min. When biting was protruded its Aristotle's lantern and pro- involved, the interactions lasted up to 5 h. ceeded to bite spines off of the opponent The greater the size difference between the (Fig. 3). Subsequent pushing, often with urchins, the shorter the encounter. continued biting, led to the eviction of the The correlation between the size of the opponent or to a counterattack.
Recommended publications
  • Redalyc.Proximate Composition of Marine Invertebrates from Tropical
    Latin American Journal of Aquatic Research E-ISSN: 0718-560X [email protected] Pontificia Universidad Católica de Valparaíso Chile Diniz, Graciela S.; Barbarino, Elisabete; Oiano-Neto, João; Pacheco, Sidney; Lourenço, Sergio O. Proximate composition of marine invertebrates from tropical coastal waters, with emphasis on the relationship between nitrogen and protein contents Latin American Journal of Aquatic Research, vol. 42, núm. 2, mayo, 2014, pp. 332-352 Pontificia Universidad Católica de Valparaíso Valparaíso, Chile Available in: http://www.redalyc.org/articulo.oa?id=175031018005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Lat. Am. J. Aquat. Res., 42(2): 332-352, 2014 Chemical composition of some marine invertebrates 332 1 “Proceedings of the 4to Brazilian Congress of Marine Biology” Sergio O. Lourenço (Guest Editor) DOI: 10.3856/vol42-issue2-fulltext-5 Research Article Proximate composition of marine invertebrates from tropical coastal waters, with emphasis on the relationship between nitrogen and protein contents Graciela S. Diniz1,2, Elisabete Barbarino1, João Oiano-Neto3,4, Sidney Pacheco3 & Sergio O. Lourenço1 1Departamento de Biologia Marinha, Universidade Federal Fluminense Caixa Postal 100644, CEP 24001-970, Niterói, RJ, Brazil 2Instituto Virtual Internacional de Mudanças Globais-UFRJ/IVIG, Universidade Federal do Rio de Janeiro. Rua Pedro Calmon, s/nº, CEP 21945-970, Cidade Universitária, Rio de Janeiro, RJ, Brazil 3Embrapa Agroindústria de Alimentos, Laboratório de Cromatografia Líquida Avenida das Américas, 29501, CEP 23020-470, Rio de Janeiro, RJ, Brazil 4Embrapa Pecuária Sudeste, Rodovia Washington Luiz, km 234, Caixa Postal 339, CEP 13560-970 São Carlos, SP, Brazil ABSTRACT.
    [Show full text]
  • The Following Section Has ! Been Excerpted from A
    THE FOLLOWING SECTION HAS ! BEEN EXCERPTED FROM A LARGER DOCUMENT. Handbook of Seagrass Biology: An Ecosystem Perspective Edited by RONALD C. PHILLIPS Departmentof Biology SeattlePacificUniversity Seattle, Washington C. PETER McRoY Instituteof MarineScience University ofAlaska Fairbanks,Alaska Garland STPM Press, New York &London :172 FaunalRelationshipsin 2. 'perate SeagrassBeds biotsenozov v pribrezhnyh vodah zoliva Possiet (Japonskoe More). In Biolsenozy zaliva Possjet, Japonskogo Mora. (English r/sum6, by courtesy of Prs, J. M.) pp. 5-61. Stevens, N. E. (1936). Environmental conditions and the wasting disease of eelgrass. Science 84: 87-89. Taylor, J. L., and Saloman, C. H. (1968). Some effects of hydraulic dredging and coastal development in Boca Ciega Bay, Florida. U.S. Fish. WildI. Ser., Fish.Bull. 67: 213-241. Tenore, K. R., Tietjen, J. H., and Lee, J. J. (1977). Effect of meiofauna on in. corporation of aged eelgrass, Zostera marina, detritw, by the polychaete Nephtys incisa. J.Fish. Res. Bd. Can.34: 563-567. Thayer, G. W., Adams, S. M., and LaCroix, M. W. (1975a). Structural and functional aspects of a recently established Zostera marina community. Estuarine Research 1:518-540. Thayer, G. W., Wolfe, D. A., and Williams, R. B. (1975b). The impact of man on seagrass systems. Amer. Sci. 63: 288-296. Tutin, T. G. (1934). The fungus on Zosteramarina. Nature 134(3389): 573. Welsh, B. L. (1975). The role of grass shrimp, Palaemonetes pugio, in a tidal marsh ecosystem. Ecology 56: 513-530. Wilson, D. P. (1949). The decline of Zostera marina L. at Salcombe and its ef­ fects on the shore. J. Mar.Biol.Ass.
    [Show full text]
  • Invertebrate Predators and Grazers
    9 Invertebrate Predators and Grazers ROBERT C. CARPENTER Department of Biology California State University Northridge, California 91330 Coral reefs are among the most productive and diverse biological communities on earth. Some of the diversity of coral reefs is associated with the invertebrate organisms that are the primary builders of reefs, the scleractinian corals. While sessile invertebrates, such as stony corals, soft corals, gorgonians, anemones, and sponges, and algae are the dominant occupiers of primary space in coral reef communities, their relative abundances are often determined by the activities of mobile, invertebrate and vertebrate predators and grazers. Hixon (Chapter X) has reviewed the direct effects of fishes on coral reef community structure and function and Glynn (1990) has provided an excellent review of the feeding ecology of many coral reef consumers. My intent here is to review the different types of mobile invertebrate predators and grazers on coral reefs, concentrating on those that have disproportionate effects on coral reef communities and are intimately involved with the life and death of coral reefs. The sheer number and diversity of mobile invertebrates associated with coral reefs is daunting with species from several major phyla including the Annelida, Arthropoda, Mollusca, and Echinodermata. Numerous species of minor phyla are also represented in reef communities, but their abundance and importance have not been well-studied. As a result, our understanding of the effects of predation and grazing by invertebrates in coral reef environments is based on studies of a few representatives from the major groups of mobile invertebrates. Predators may be generalists or specialists in choosing their prey and this may determine the effects of their feeding on community-level patterns of prey abundance (Paine, 1966).
    [Show full text]
  • Redalyc.Reproductive Biology of Echinometra Lucunter
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil LIMA, EDUARDO J.B.; GOMES, PAULA B.; SOUZA, JOSÉ R.B. Reproductive biology of Echinometra lucunter (Echinodermata: Echinoidea) in a northeast Brazilian sandstone reef Anais da Academia Brasileira de Ciências, vol. 81, núm. 1, marzo, 2009, pp. 51-59 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32713478007 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative “main” — 2008/12/16 — 13:23 — page 51 — #1 Anais da Academia Brasileira de Ciências (2009) 81(1): 51-59 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc Reproductive biology of Echinometra lucunter (Echinodermata: Echinoidea) in a northeast Brazilian sandstone reef EDUARDO J.B. LIMA1, PAULA B. GOMES2 and JOSÉ R.B. SOUZA1 1Departamento de Zoologia, Centro de Ciências Biológicas (CCB), Programa de Pós-Graduação em Ciências Área de Biologia Animal, Universidade Federal de Pernambuco (UFPE), Av. Professor Moraes Rego, 1235 50670-420 Recife, PE, Brasil 2Departamento de Biologia, Universidade Federal Rural de Pernambuco (UFRPE), Área de Ecologia Rua Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brasil Manuscript received on April 2, 2008; accepted for publication on July 22, 2008; presented by ALEXANDER W.A. KELLNER ABSTRACT The edible sea urchin Echinometra lucunter (Linnaeus, 1758) is a very common species on the sublittoral-midlittoral in Brazilian rocky shores.
    [Show full text]
  • Mollusca: Cassidae), a Heavily Exploited Marine Gastropod?
    SHORT REVIEW Ethnobiology and Conservation 2017, 6:16 (27 August 2017) doi:10.15451/ec2017­08­6.16­1­13 ISSN 2238­4782 ethnobioconservation.com What do we know about Cassis tuberosa (Mollusca: Cassidae), a heavily exploited marine gastropod? Thelma Lúcia Pereira Dias1*, Ellori Laíse Silva Mota1,2, Rafaela Cristina de Souza Duarte1,2 and Rômulo Romeu Nóbrega Alves1 ABSTRACT Cassis tuberosa is a key species in reefs and sandy beaches, where it plays an essential role as a predator of sea urchins and sand dollars. Due to the beauty of its shell, it is one of the most exploited species for trade as marine souvenirs throughout its distribution in the Western Atlantic. Despite its ecological importance, there is little available information about population and biological data or the impacts of its removal from its natural habitats. Considering the economic and ecological importance of this species, this study provides a short review of existing studies and highlights research and conservation needs for this highly exploited marine gastropod. Keywords: Brazil; Predatory Gastropod; Marine Curio Trade; Species Conservation; Shell Trade 1 Departamento de Biologia, Universidade Estadual da Paraíba, Av. Baraúnas, 351, Bairro Universitário, Campina Grande, PB, 58429­500, Brazil 2 Programa de Pós­Graduação em Ciências Biológicas (Zoologia), Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, PB, 58059­970, Brazil * E­mail address: DIAS, T.L.P. ([email protected]), MOTA, E.L.S. ([email protected]), DUARTE, R.C.S. ([email protected]), ALVES, R.R.N. ([email protected]) INTRODUCTION species has a heavy and large shell, reaching up to 30 cm in total length (Ardila et The king helmet Cassis tuberosa al.
    [Show full text]
  • Journal of Marine Research, Sears Foundation for Marine Research
    The Journal of Marine Research is an online peer-reviewed journal that publishes original research on a broad array of topics in physical, biological, and chemical oceanography. In publication since 1937, it is one of the oldest journals in American marine science and occupies a unique niche within the ocean sciences, with a rich tradition and distinguished history as part of the Sears Foundation for Marine Research at Yale University. Past and current issues are available at journalofmarineresearch.org. Yale University provides access to these materials for educational and research purposes only. Copyright or other proprietary rights to content contained in this document may be held by individuals or entities other than, or in addition to, Yale University. You are solely responsible for determining the ownership of the copyright, and for obtaining permission for your intended use. Yale University makes no warranty that your distribution, reproduction, or other use of these materials will not infringe the rights of third parties. This work is licensed under the Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Journal of Marine Research, Sears Foundation for Marine Research, Yale University PO Box 208118, New Haven, CT 06520-8118 USA (203) 432-3154 fax (203) 432-5872 [email protected] www.journalofmarineresearch.org Bioerosion by two rock boring echinoids (Echinometra mathaei and Echinostrephus aciculatus) on Enewetak Atoll, Marshall Islands 1 2 by Anthony R.
    [Show full text]
  • Echinometra Viridis (Reef Urchin)
    UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Echinometra viridis (Reef Urchin) Order: Camarodonta (Globular Sea Urchins) Class: Echinoidea (Sea Urchins) Phylum: Echinodermata (Starfish, Sea Urchins and Sea Cucumbers) Fig. 1. Reef urchin, Echinometra viridis. [https://commons.wikimedia.org/w/index.php?curid=11448993, downloaded 24 February 2016] TRAITS. Echinometra viridis is elliptical in shape with approximately 100-150 spines (Blevins and Johnsen, 2004). Each spine has a violet tip, rarely seen in other species, and a thin white ring at the base (McPherson, 1969). The spines of E. viridis are short and thick, with sharp points (Kluijver et al., 2016). The colour of this species ranges from reddish to maroon, with green spines. The approximate size is a body of 5cm and spines of up to 3cm (Kluijver et al., 2016). Echinometra species are known to reproduce sexually however they reveal no clear external sexual dimorphism (Lawrence, 2013). DISTRIBUTION. This species is geographically located in the Caribbean Sea, from southern Florida and Mexico to Venezuela (Kroh and Mooi, 2013) (Fig. 2). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology HABITAT AND ACTIVITY. Located along the shoreline to the outer edge of the reef, at depths ranging from 1-20m (McPherson, 1969) and temperatures from 26-28°C (Lawrence, 2013). They are found in the intertidal zone (McPherson, 1969), in small dark crevices of rocks where they are protected from predators and turbulence (Blevins and Johnsen, 2004). McPherson (1969) collected E. viridis from shallow coral reef “patches” off the Florida coast; a reef patch is located between the fringe and barrier of the reef, it is usually separated by algae and coral, and rarely reaches the surface of the water.
    [Show full text]
  • Syndisyrinx Evelinae (Marcus, 1968) N
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 8-1991 Syndisyrinx evelinae (Marcus, 1968) n. comb., from the Rock- Boring Urchin, Echinometra lucunter, from St. Barthélemy Lynn Ann Hertel University of New Mexico Donald W. Duszynski University of New Mexico, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Hertel, Lynn Ann and Duszynski, Donald W., "Syndisyrinx evelinae (Marcus, 1968) n. comb., from the Rock- Boring Urchin, Echinometra lucunter, from St. Barthélemy" (1991). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 171. https://digitalcommons.unl.edu/parasitologyfacpubs/171 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 638 THEJOURNAL OF PARASITOLOGY, VOL. 77, NO.4, AUGUST1991 J. Parasitol., 77(4), 1991, p. 638-639 ? American Society of Parasitologists 1991 Syndisyrinx evelinae (Marcus, 1968) N. Comb., from the Rock-boring Urchin, Echinometra lucunter, from St. Barthelemy Lynn A. Hertel and Donald W. Duszynski, Department of Biology, The University of New Mexico, Albuquerque, New Mexico 87131 ABSTRACr: The umagillidturbellarian Syndesmis eve- Bay of St. Jean were found to contain 1-4 (x = linae, originally described from unnamed Caribbean 2.4) S. evelinae. In 6 of the 8 E. lucunter, a second sea is redescribedand in the urchins, placed genus worm species was present, Syndisyrinx collon- Syndisyrinx.Syndisyrinx evelinae n.
    [Show full text]
  • Tese De Doutorado (5.962Mb)
    UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE CIÊNCIAS NATURAIS E EXATAS PROGRAMA DE PÓS-GRADUAÇÃO EM BIODIVERSIDADE ANIMAL Larissa Novaes Simões ÓLEO ESSENCIAL DE LIPPIA ALBA COMO SEDATIVO E ANESTÉSICO EM DIVERSOS ANIMAIS AQUÁTICOS Santa Maria, RS 2016 Larissa Novaes Simões ÓLEO ESSENCIAL DE LIPPIA ALBA COMO SEDATIVO E ANESTÉSICO EM DIVERSOS ANIMAIS AQUÁTICOS Tese apresentada ao Curso de Pós-Graduação em Biodiversidade Animal, da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para obtenção do título de Doutor em Biodiversidade Animal. Orientador: Prof. Dr. Bernardo Baldisserotto Co-orientador: Prof. Dr. Levy de Carvalho Gomes Santa Maria, RS 2016 AGRADECIMENTOS Ao meu grande Deus, por todos os momentos intensos de fé e persistência, por ser o meu melhor amigo e por me abençoar, com mais esta conquista. Agradeço ao meu orientador o Prof. Bernardo Baldisserotto, em primeiro lugar pela honra em trabalhar ao seu lado e pelas oportunidades a mim oferecidas, pela confiança, dedicação e muita paciência. É um pesquisador e professor que todos admiram e buscam inspiração. Também agradeço ao meu co-orientador Prof. Levy de Carvalho Gomes, com quem iniciei esta grande jornada e sempre está ao meu lado, com sua amizade, confiança, rigidez e sempre auxiliando de alguma forma aos meus trabalhos. Agradeço por toda facilidade estrutural e apoio do Programa de Pós-Graduação em Biodiversidade Animal da Universidade Federal de Santa Maria (UFSM), ao Complexo Biopráticas da Universidade de Vila Velha (UVV) e à Universidade de Cádiz (UCA - Espanha), em especial todos colaboradores e co-autores que foram de grande importância para a realização desta tese, doando além do seu conhecimento, também muita dedicação, disponibilidade, amizade e paciência.
    [Show full text]
  • Differences in Morphology and Life History Traits of the Echinoid Echinometra Lucunter from Different Habitats
    MARINE ECOLOGY PROGRESS SERIES Vol. 15: 207-211, 1984 - Published January 3 Mar. Ecol. hog. Ser. NOTE Differences in morphology and life history traits of the echinoid Echinometra lucunter from different habitats John B. Lewisl and Gail S. Storey2 ' The Redpath Museum and The Institute of Oceanography, McGill University. Montreal, Quebec H3A 2K6, Canada 3010 West Fifth Ave.. Vancouver. B. C. V6K ITS. Canada ABSTRACT: Populations of the echinoid Echinometra luc- of Barbados. At Little Bav on the east coast the urchins unter (Linnaeus) were sampled every month for 1 yr from a live in the intertidal zone on a ledge which fronts a habitat subjected to heavy wave action and from a low wave- vertical cliff between 5 and 15 m in height. The site is energy habitat at Barbados, West Indies. Differences in mor- phology and life history traits between the 2 sites were com- subjected to heavy wave action (Lewis, 1960) as is the pared. Urchins from the high wave-energy habitat had whole of the east (windward) coast (Lawrence and thicker tests, were smaller, flatter and narrower, and differed Kafri, 1979).The Graves End location is situated on the in their pattern of ocular insertion from urchins at the low low wave-energy south coast of Barbados. The sub- wave-energy site. Urchins from the high wave-energy habitat spawned once a year whereas those from the low wave- stratum at this site is composed of sand and coral energy habitat spawned twice a year. rubble and supports a flourishing Thalassia tes- tudinurn Konig seagrass community.
    [Show full text]
  • Echinoidea) En Los Parques Nacionales Sistema Arrecifal Veracruzano Y Arrecifes De Cozumel, México
    Universidad Nacional Autónoma de México ESTRUCTURA DE LAS ASOCIACIONES Y DIVERSIDAD MORFOLÓGICA DE ERIZOS DE MAR (ECHINOIDEA) EN LOS PARQUES NACIONALES SISTEMA ARRECIFAL VERACRUZANO Y ARRECIFES DE COZUMEL, MÉXICO T E S I S Que para obtener el grado académico de Maestro en Ciencias (Biología Marina) P r e s e n t a BIOL. MAR. ADRIANA GONZÁLEZ AZCÁRRAGA Director de Tesis: Dr. Francisco A. Solís Marín Comité Tutoral: Dr. José Luis Carballo Cenizo Dr. Héctor Reyes Bonilla Dra. Ma. Nuria Méndez Ubach Dr. Horacio Pérez España Mazatlán, Sin. Marzo 2009 ÍNDICE GENERAL Índice general………………………………………………………………........... I Índice de tablas………………………….……………………………………....... II Índice de figuras………………………….……………………………………...... III Resumen…………………………………………………………………………… V INTRODUCCIÓN………………………………………………………………..... 1 ANTECEDENTES……………………………………………………………….... 6 OBJETIVOS……………………………………………………………………...... 11 ÁREA DE ESTUDIO…………………………………………………………….... 12 Veracruz…………………………………………………………………..... 12 Cozumel…………………………………………………………………..... 14 METODOLOGÍA…………………………………………………………………... 18 RESULTADOS…………………………………………………………………..... 24 Riqueza…………………………………………………………………...... 29 Abundancia……………………………………………………………....... 31 Diversidad………………………………………………………………...... 33 Equitatividad……………………………………………………………...... 35 Distintividad Taxonómica……………………………………………........ 37 Diversidad Morfológica………………………………………………........ 39 Amplitud de Hábitat…..………………………………………………….... 41 Escalamiento Multidimensional no Métrico…………………………...... 45 DISCUSIÓN………………………………………………………………………... 48 Índices Comunitarios
    [Show full text]
  • Echinometra Vanbrunti (ECHINOMETRIDAE) COMO HOSPEDERO DE RELACIONES COMENSALISTAS EN EL PACÍFICO COLOMBIANO
    Acta biol. Colomb., Vol. 12 No. 1, 2007 57 - 66 Echinometra vanbrunti (ECHINOMETRIDAE) COMO HOSPEDERO DE RELACIONES COMENSALISTAS EN EL PACÍFICO COLOMBIANO Echinometra vanbrunti (Echinometridae) as a Host of Commensal Relationships in the Colombian Pacific Ocean VANESSA AMAYA VALLEJO, Bióloga con énfasis en Biología Marina, Estudiante de Maestría en Ciencias Biológicas. Laboratorio de Zoología y Ecología Acuática LAZOEA, Universidad de los Andes, Carrera 1 No.18A-10, bloque J, laboratorio J303. Bogotá, Colombia. [email protected] Presentado 10 de octubre de 2005, aceptado 3 de abril de 2006, correcciones 31 de enero de 2007. RESUMEN Entre junio de 2003 y febrero de 2004 se estudió la macrofauna bentónica acompañante de las cavidades de Echinometra vanbrunti en el acantilado Verde de la isla de Palma, bahía Málaga-Pacífico colombiano, con el fin de detectar las relaciones ecológicas existentes entre el erizo y dicha fauna. Se determinó la abundancia y composición de la misma y sus interacciones con E. vanbrunti. Se registraron 27 especies acompañantes de seis taxo- nes diferentes, siendo Crustacea el taxón más representativo. Solo Clastotoechus gorgonensis y Thais melones fueron clasificadas como acompañantes frecuentes y abundantes dentro de las cavidades. Ninguna especie fue clasificada como acompañante permanente. Se determinó que el tamaño del erizo condiciona la abundancia de fauna presente dentro de las cavidades, y que el tipo de relación establecida entre los acompañantes frecuentes y E. vanbrunti fue de tipo comensalista oportunista, en donde los comensales recibieron protección y refugio, mientras el erizo no recibió beneficio o daño alguno. Palabras clave: Echinometra vanbrunti, fauna acompañante, relaciones comensalistas, Colombia.
    [Show full text]