First Steps Towards Echinometra Lucunter Embryo Cryopreservation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Redalyc.Proximate Composition of Marine Invertebrates from Tropical
Latin American Journal of Aquatic Research E-ISSN: 0718-560X [email protected] Pontificia Universidad Católica de Valparaíso Chile Diniz, Graciela S.; Barbarino, Elisabete; Oiano-Neto, João; Pacheco, Sidney; Lourenço, Sergio O. Proximate composition of marine invertebrates from tropical coastal waters, with emphasis on the relationship between nitrogen and protein contents Latin American Journal of Aquatic Research, vol. 42, núm. 2, mayo, 2014, pp. 332-352 Pontificia Universidad Católica de Valparaíso Valparaíso, Chile Available in: http://www.redalyc.org/articulo.oa?id=175031018005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Lat. Am. J. Aquat. Res., 42(2): 332-352, 2014 Chemical composition of some marine invertebrates 332 1 “Proceedings of the 4to Brazilian Congress of Marine Biology” Sergio O. Lourenço (Guest Editor) DOI: 10.3856/vol42-issue2-fulltext-5 Research Article Proximate composition of marine invertebrates from tropical coastal waters, with emphasis on the relationship between nitrogen and protein contents Graciela S. Diniz1,2, Elisabete Barbarino1, João Oiano-Neto3,4, Sidney Pacheco3 & Sergio O. Lourenço1 1Departamento de Biologia Marinha, Universidade Federal Fluminense Caixa Postal 100644, CEP 24001-970, Niterói, RJ, Brazil 2Instituto Virtual Internacional de Mudanças Globais-UFRJ/IVIG, Universidade Federal do Rio de Janeiro. Rua Pedro Calmon, s/nº, CEP 21945-970, Cidade Universitária, Rio de Janeiro, RJ, Brazil 3Embrapa Agroindústria de Alimentos, Laboratório de Cromatografia Líquida Avenida das Américas, 29501, CEP 23020-470, Rio de Janeiro, RJ, Brazil 4Embrapa Pecuária Sudeste, Rodovia Washington Luiz, km 234, Caixa Postal 339, CEP 13560-970 São Carlos, SP, Brazil ABSTRACT. -
Growth, Regeneration, and Damage Repair of Spines of the Slate-Pencil Sea Urchin Heterocentrotus Mammillatus (L.) (Echinodermata: Echinoidea)!
Pacific Science (1988), vol. 42, nos. 3-4 © 1988 by the University of Hawaii Press. All rights reserved Growth, Regeneration, and Damage Repair of Spines of the Slate-Pencil Sea Urchin Heterocentrotus mammillatus (L.) (Echinodermata: Echinoidea)! THOMAS A. EBERT2 ABSTRACT: Spines of sea urchins are appendages that are associated with defense, locomotion, and food gathering. Spines are repaired when damaged, and the dynamics of repair was studied in the slate-pencil sea urchin Hetero centrotus mammillatus to provide insights not only into the processes of healing . but also into the normal growth of spines and the formation of growth lines. Regeneration of spines on tubercles following complete removal of a spine was slow and depended upon the size of the original spine. The maximum amount of regeneration occurred on tubercles with spines of intermediate size (1.6 g), which, on average, developed regenerated spines weighing 0.1, 0.3, and 0.7 g after 4, 8, and 12 months, respectively. Some large tubercles, which had original spines weighing over 3 g, failed to develop a new spine even after 8-12 months. Regeneration ofa new tip on a cut stump was more rapid than production of a new spine on a tubercle . Regeneration to original size was more rapid for small spines than for large spines, but large stumps produced more calcite per unit time. In 4 months, a small spine with a removed tip weighing 0.15 g regenerated a new tip weighing 0.09 g, or 63% of its original weight. In the same time, a large spine with 2.35 g of tip removed regenerated 0.40 g of new tip, or 17% of the original weight. -
The Following Section Has ! Been Excerpted from A
THE FOLLOWING SECTION HAS ! BEEN EXCERPTED FROM A LARGER DOCUMENT. Handbook of Seagrass Biology: An Ecosystem Perspective Edited by RONALD C. PHILLIPS Departmentof Biology SeattlePacificUniversity Seattle, Washington C. PETER McRoY Instituteof MarineScience University ofAlaska Fairbanks,Alaska Garland STPM Press, New York &London :172 FaunalRelationshipsin 2. 'perate SeagrassBeds biotsenozov v pribrezhnyh vodah zoliva Possiet (Japonskoe More). In Biolsenozy zaliva Possjet, Japonskogo Mora. (English r/sum6, by courtesy of Prs, J. M.) pp. 5-61. Stevens, N. E. (1936). Environmental conditions and the wasting disease of eelgrass. Science 84: 87-89. Taylor, J. L., and Saloman, C. H. (1968). Some effects of hydraulic dredging and coastal development in Boca Ciega Bay, Florida. U.S. Fish. WildI. Ser., Fish.Bull. 67: 213-241. Tenore, K. R., Tietjen, J. H., and Lee, J. J. (1977). Effect of meiofauna on in. corporation of aged eelgrass, Zostera marina, detritw, by the polychaete Nephtys incisa. J.Fish. Res. Bd. Can.34: 563-567. Thayer, G. W., Adams, S. M., and LaCroix, M. W. (1975a). Structural and functional aspects of a recently established Zostera marina community. Estuarine Research 1:518-540. Thayer, G. W., Wolfe, D. A., and Williams, R. B. (1975b). The impact of man on seagrass systems. Amer. Sci. 63: 288-296. Tutin, T. G. (1934). The fungus on Zosteramarina. Nature 134(3389): 573. Welsh, B. L. (1975). The role of grass shrimp, Palaemonetes pugio, in a tidal marsh ecosystem. Ecology 56: 513-530. Wilson, D. P. (1949). The decline of Zostera marina L. at Salcombe and its ef fects on the shore. J. Mar.Biol.Ass. -
Invertebrate Predators and Grazers
9 Invertebrate Predators and Grazers ROBERT C. CARPENTER Department of Biology California State University Northridge, California 91330 Coral reefs are among the most productive and diverse biological communities on earth. Some of the diversity of coral reefs is associated with the invertebrate organisms that are the primary builders of reefs, the scleractinian corals. While sessile invertebrates, such as stony corals, soft corals, gorgonians, anemones, and sponges, and algae are the dominant occupiers of primary space in coral reef communities, their relative abundances are often determined by the activities of mobile, invertebrate and vertebrate predators and grazers. Hixon (Chapter X) has reviewed the direct effects of fishes on coral reef community structure and function and Glynn (1990) has provided an excellent review of the feeding ecology of many coral reef consumers. My intent here is to review the different types of mobile invertebrate predators and grazers on coral reefs, concentrating on those that have disproportionate effects on coral reef communities and are intimately involved with the life and death of coral reefs. The sheer number and diversity of mobile invertebrates associated with coral reefs is daunting with species from several major phyla including the Annelida, Arthropoda, Mollusca, and Echinodermata. Numerous species of minor phyla are also represented in reef communities, but their abundance and importance have not been well-studied. As a result, our understanding of the effects of predation and grazing by invertebrates in coral reef environments is based on studies of a few representatives from the major groups of mobile invertebrates. Predators may be generalists or specialists in choosing their prey and this may determine the effects of their feeding on community-level patterns of prey abundance (Paine, 1966). -
Redalyc.Reproductive Biology of Echinometra Lucunter
Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil LIMA, EDUARDO J.B.; GOMES, PAULA B.; SOUZA, JOSÉ R.B. Reproductive biology of Echinometra lucunter (Echinodermata: Echinoidea) in a northeast Brazilian sandstone reef Anais da Academia Brasileira de Ciências, vol. 81, núm. 1, marzo, 2009, pp. 51-59 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32713478007 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative “main” — 2008/12/16 — 13:23 — page 51 — #1 Anais da Academia Brasileira de Ciências (2009) 81(1): 51-59 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc Reproductive biology of Echinometra lucunter (Echinodermata: Echinoidea) in a northeast Brazilian sandstone reef EDUARDO J.B. LIMA1, PAULA B. GOMES2 and JOSÉ R.B. SOUZA1 1Departamento de Zoologia, Centro de Ciências Biológicas (CCB), Programa de Pós-Graduação em Ciências Área de Biologia Animal, Universidade Federal de Pernambuco (UFPE), Av. Professor Moraes Rego, 1235 50670-420 Recife, PE, Brasil 2Departamento de Biologia, Universidade Federal Rural de Pernambuco (UFRPE), Área de Ecologia Rua Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brasil Manuscript received on April 2, 2008; accepted for publication on July 22, 2008; presented by ALEXANDER W.A. KELLNER ABSTRACT The edible sea urchin Echinometra lucunter (Linnaeus, 1758) is a very common species on the sublittoral-midlittoral in Brazilian rocky shores. -
Mollusca: Cassidae), a Heavily Exploited Marine Gastropod?
SHORT REVIEW Ethnobiology and Conservation 2017, 6:16 (27 August 2017) doi:10.15451/ec2017086.16113 ISSN 22384782 ethnobioconservation.com What do we know about Cassis tuberosa (Mollusca: Cassidae), a heavily exploited marine gastropod? Thelma Lúcia Pereira Dias1*, Ellori Laíse Silva Mota1,2, Rafaela Cristina de Souza Duarte1,2 and Rômulo Romeu Nóbrega Alves1 ABSTRACT Cassis tuberosa is a key species in reefs and sandy beaches, where it plays an essential role as a predator of sea urchins and sand dollars. Due to the beauty of its shell, it is one of the most exploited species for trade as marine souvenirs throughout its distribution in the Western Atlantic. Despite its ecological importance, there is little available information about population and biological data or the impacts of its removal from its natural habitats. Considering the economic and ecological importance of this species, this study provides a short review of existing studies and highlights research and conservation needs for this highly exploited marine gastropod. Keywords: Brazil; Predatory Gastropod; Marine Curio Trade; Species Conservation; Shell Trade 1 Departamento de Biologia, Universidade Estadual da Paraíba, Av. Baraúnas, 351, Bairro Universitário, Campina Grande, PB, 58429500, Brazil 2 Programa de PósGraduação em Ciências Biológicas (Zoologia), Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, PB, 58059970, Brazil * Email address: DIAS, T.L.P. ([email protected]), MOTA, E.L.S. ([email protected]), DUARTE, R.C.S. ([email protected]), ALVES, R.R.N. ([email protected]) INTRODUCTION species has a heavy and large shell, reaching up to 30 cm in total length (Ardila et The king helmet Cassis tuberosa al. -
Journal of Marine Research, Sears Foundation for Marine Research
The Journal of Marine Research is an online peer-reviewed journal that publishes original research on a broad array of topics in physical, biological, and chemical oceanography. In publication since 1937, it is one of the oldest journals in American marine science and occupies a unique niche within the ocean sciences, with a rich tradition and distinguished history as part of the Sears Foundation for Marine Research at Yale University. Past and current issues are available at journalofmarineresearch.org. Yale University provides access to these materials for educational and research purposes only. Copyright or other proprietary rights to content contained in this document may be held by individuals or entities other than, or in addition to, Yale University. You are solely responsible for determining the ownership of the copyright, and for obtaining permission for your intended use. Yale University makes no warranty that your distribution, reproduction, or other use of these materials will not infringe the rights of third parties. This work is licensed under the Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Journal of Marine Research, Sears Foundation for Marine Research, Yale University PO Box 208118, New Haven, CT 06520-8118 USA (203) 432-3154 fax (203) 432-5872 [email protected] www.journalofmarineresearch.org Bioerosion by two rock boring echinoids (Echinometra mathaei and Echinostrephus aciculatus) on Enewetak Atoll, Marshall Islands 1 2 by Anthony R. -
Echinoidea: Echinometridae) Alimentadas Con Las Microalgas Chaetoceros Gracilis E Isochrysis Galbana Revista De Biología Tropical, Vol
Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Astudillo, David; Rosas, Jesús; Velásquez, Aidé; Cabrera, Tomas; Maneiro, Carlos Crecimiento y supervivencia de larvas de Echinometra lucunter (Echinoidea: Echinometridae) alimentadas con las microalgas Chaetoceros gracilis e Isochrysis galbana Revista de Biología Tropical, vol. 53, núm. 3, -diciembre, 2005, pp. 337-344 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Disponible en: http://www.redalyc.org/articulo.oa?id=44919815025 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Crecimiento y supervivencia de larvas de Echinometra lucunter (Echinoidea: Echinometridae) alimentadas con las microalgas Chaetoceros gracilis e Isochrysis galbana David Astudillo1, Jesús Rosas2, Aidé Velásquez1, Tomas Cabrera1 & Carlos Maneiro1 1 Escuela de Ciencias Aplicadas del Mar, Universidad de Oriente Núcleo de Nueva Esparta, Boca del Río, Estado Nueva Esparta, Venezuela. 2 Instituto de Investigaciones Científicas. Universidad de Oriente Núcleo de Nueva Esparta, Boca del Río, Estado Nueva Esparta, Venezuela. Telefax 02952911350; [email protected], [email protected], tom3171@ telcel.net.ve Recibido 14-VI-2004. Corregido 09-XII-2004. Aceptado 17-V-2005. Abstract: Larval growth and survival of Echinometra lucunter (Echinoidea: Echinometridae) fed with microalgae Chaetoceros gracilis and Isochrysis galbana. Thirty sexually mature sea urchins (Echinometra lucunter; diameter 45.8 ± 17.5 mm) were collected at Macanao, Margarita Island, Venezuela (11°48’29” N / 64°13’10” W). -
Sea Urchin Aquaculture
American Fisheries Society Symposium 46:179–208, 2005 © 2005 by the American Fisheries Society Sea Urchin Aquaculture SUSAN C. MCBRIDE1 University of California Sea Grant Extension Program, 2 Commercial Street, Suite 4, Eureka, California 95501, USA Introduction and History South America. The correct color, texture, size, and taste are factors essential for successful sea The demand for fish and other aquatic prod- urchin aquaculture. There are many reasons to ucts has increased worldwide. In many cases, develop sea urchin aquaculture. Primary natural fisheries are overexploited and unable among these is broadening the base of aquac- to satisfy the expanding market. Considerable ulture, supplying new products to growing efforts to develop marine aquaculture, particu- markets, and providing employment opportu- larly for high value products, are encouraged nities. Development of sea urchin aquaculture and supported by many countries. Sea urchins, has been characterized by enhancement of wild found throughout all oceans and latitudes, are populations followed by research on their such a group. After World War II, the value of growth, nutrition, reproduction, and suitable sea urchin products increased in Japan. When culture systems. Japan’s sea urchin supply did not meet domes- Sea urchin aquaculture first began in Ja- tic needs, fisheries developed in North America, pan in 1968 and continues to be an important where sea urchins had previously been eradi- part of an integrated national program to de- cated to protect large kelp beds and lobster fish- velop food resources from the sea (Mottet 1980; eries (Kato and Schroeter 1985; Hart and Takagi 1986; Saito 1992b). Democratic, institu- Sheibling 1988). -
Echinometra Viridis (Reef Urchin)
UWI The Online Guide to the Animals of Trinidad and Tobago Ecology Echinometra viridis (Reef Urchin) Order: Camarodonta (Globular Sea Urchins) Class: Echinoidea (Sea Urchins) Phylum: Echinodermata (Starfish, Sea Urchins and Sea Cucumbers) Fig. 1. Reef urchin, Echinometra viridis. [https://commons.wikimedia.org/w/index.php?curid=11448993, downloaded 24 February 2016] TRAITS. Echinometra viridis is elliptical in shape with approximately 100-150 spines (Blevins and Johnsen, 2004). Each spine has a violet tip, rarely seen in other species, and a thin white ring at the base (McPherson, 1969). The spines of E. viridis are short and thick, with sharp points (Kluijver et al., 2016). The colour of this species ranges from reddish to maroon, with green spines. The approximate size is a body of 5cm and spines of up to 3cm (Kluijver et al., 2016). Echinometra species are known to reproduce sexually however they reveal no clear external sexual dimorphism (Lawrence, 2013). DISTRIBUTION. This species is geographically located in the Caribbean Sea, from southern Florida and Mexico to Venezuela (Kroh and Mooi, 2013) (Fig. 2). UWI The Online Guide to the Animals of Trinidad and Tobago Ecology HABITAT AND ACTIVITY. Located along the shoreline to the outer edge of the reef, at depths ranging from 1-20m (McPherson, 1969) and temperatures from 26-28°C (Lawrence, 2013). They are found in the intertidal zone (McPherson, 1969), in small dark crevices of rocks where they are protected from predators and turbulence (Blevins and Johnsen, 2004). McPherson (1969) collected E. viridis from shallow coral reef “patches” off the Florida coast; a reef patch is located between the fringe and barrier of the reef, it is usually separated by algae and coral, and rarely reaches the surface of the water. -
Syndisyrinx Evelinae (Marcus, 1968) N
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 8-1991 Syndisyrinx evelinae (Marcus, 1968) n. comb., from the Rock- Boring Urchin, Echinometra lucunter, from St. Barthélemy Lynn Ann Hertel University of New Mexico Donald W. Duszynski University of New Mexico, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Hertel, Lynn Ann and Duszynski, Donald W., "Syndisyrinx evelinae (Marcus, 1968) n. comb., from the Rock- Boring Urchin, Echinometra lucunter, from St. Barthélemy" (1991). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 171. https://digitalcommons.unl.edu/parasitologyfacpubs/171 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 638 THEJOURNAL OF PARASITOLOGY, VOL. 77, NO.4, AUGUST1991 J. Parasitol., 77(4), 1991, p. 638-639 ? American Society of Parasitologists 1991 Syndisyrinx evelinae (Marcus, 1968) N. Comb., from the Rock-boring Urchin, Echinometra lucunter, from St. Barthelemy Lynn A. Hertel and Donald W. Duszynski, Department of Biology, The University of New Mexico, Albuquerque, New Mexico 87131 ABSTRACr: The umagillidturbellarian Syndesmis eve- Bay of St. Jean were found to contain 1-4 (x = linae, originally described from unnamed Caribbean 2.4) S. evelinae. In 6 of the 8 E. lucunter, a second sea is redescribedand in the urchins, placed genus worm species was present, Syndisyrinx collon- Syndisyrinx.Syndisyrinx evelinae n. -
Differences in Morphology and Life History Traits of the Echinoid Echinometra Lucunter from Different Habitats
MARINE ECOLOGY PROGRESS SERIES Vol. 15: 207-211, 1984 - Published January 3 Mar. Ecol. hog. Ser. NOTE Differences in morphology and life history traits of the echinoid Echinometra lucunter from different habitats John B. Lewisl and Gail S. Storey2 ' The Redpath Museum and The Institute of Oceanography, McGill University. Montreal, Quebec H3A 2K6, Canada 3010 West Fifth Ave.. Vancouver. B. C. V6K ITS. Canada ABSTRACT: Populations of the echinoid Echinometra luc- of Barbados. At Little Bav on the east coast the urchins unter (Linnaeus) were sampled every month for 1 yr from a live in the intertidal zone on a ledge which fronts a habitat subjected to heavy wave action and from a low wave- vertical cliff between 5 and 15 m in height. The site is energy habitat at Barbados, West Indies. Differences in mor- phology and life history traits between the 2 sites were com- subjected to heavy wave action (Lewis, 1960) as is the pared. Urchins from the high wave-energy habitat had whole of the east (windward) coast (Lawrence and thicker tests, were smaller, flatter and narrower, and differed Kafri, 1979).The Graves End location is situated on the in their pattern of ocular insertion from urchins at the low low wave-energy south coast of Barbados. The sub- wave-energy site. Urchins from the high wave-energy habitat spawned once a year whereas those from the low wave- stratum at this site is composed of sand and coral energy habitat spawned twice a year. rubble and supports a flourishing Thalassia tes- tudinurn Konig seagrass community.