Origin of Limestone Nodules in the Lower Palaeozoic of the Oslo Region
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Crystalline Silica, Cristobalite (CAS No
Crystalline Silica, Quartz (CAS No. 14808-60-7) Crystalline Silica, Cristobalite (CAS No. 14464-46-1) Crystalline Silica, Tridymite (CAS No. 15468-32-3) Diatomaceous earth (CAS No. 61790-53-2) This dossier on crystalline silica, quartz, cristobalite and tridymite and diatomaceous earth presents the most critical studies pertinent to the risk assessment of these substances in their use in drilling muds and cement additives. This dossier does not represent an exhaustive or critical review of all available data. The majority of information presented in this dossier was obtained from the ECHA database that provides information on chemicals that have been registered under the EU REACH (ECHA). Where possible, study quality was evaluated using the Klimisch scoring system (Klimisch et al., 1997). For the purpose of this dossier, crystalline silica, quartz (CAS No. 14808-60-7) has been reviewed as representative of crystalline silica cristobalite and tridymite. Crystalline silica, quartz is also considered representative of diatomaceous earth, as they both consist mainly of silicon dioxide. Screening Assessment Conclusion – Crystalline silica, quartz, cristobalite and tridymite and diatomaceous earth are classified as tier 1 chemicals and require a hazard assessment only. 1 BACKGROUND Crystalline silica is a common mineral found in the earth's crust. Materials like sand, stone, concrete and mortar contain crystalline silica. It is also used to make products such as glass, pottery, ceramics, bricks and artificial stone. Silica, in the form of sand, is used as the main ingredient in sand casting for the manufacture of metallic components in engineering and other applications. The high melting point of silica enables it to be used in such applications. -
A New Occurrence of Terrestrial Native Iron in the Earth's Surface
geosciences Article A New Occurrence of Terrestrial Native Iron in the Earth’s Surface: The Ilia Thermogenic Travertine Case, Northwestern Euboea, Greece Christos Kanellopoulos 1,2,* ID , Eugenia Valsami-Jones 3,4, Panagiotis Voudouris 1, Christina Stouraiti 1 ID , Robert Moritz 2, Constantinos Mavrogonatos 1 ID and Panagiotis Mitropoulos 1,† 1 Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15784 Athens, Greece; [email protected] (P.V.); [email protected] (C.S.); [email protected] (C.M.); [email protected] (P.M.) 2 Section of Earth and Environmental Sciences, University of Geneva, Rue des Maraichers 13, 1205 Geneva, Switzerland; [email protected] 3 School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; [email protected] 4 Department of Earth Sciences, Natural History Museum London, Cromwell Road, London SW7 5BD, UK * Correspondence: [email protected] † Professor Panagiotis Mitropoulos has passed away in 2017. Received: 6 April 2018; Accepted: 23 July 2018; Published: 31 July 2018 Abstract: Native iron has been identified in an active thermogenic travertine deposit, located at Ilia area (Euboea Island, Greece). The deposit is forming around a hot spring, which is part of a large active metallogenetic hydrothermal system depositing ore-bearing travertines. The native iron occurs in two shapes: nodules with diameter 0.4 and 0.45 cm, and angular grains with length up to tens of µm. The travertine laminae around the spherical/ovoid nodules grow smoothly, and the angular grains are trapped inside the pores of the travertine. -
Lake Iron Nodules an “Index Mineral”
LAKE IRON NODULES AN “INDEX MINERAL” TO ASSESS THE IMPACT OF SULFATE/SULFIDE ON SURFACE WATER AND SEDIMENT QUALITY OVER TIME IN NEW ENGLAND LAKES, PONDS AND RIVERS (PRE-1800S TO TODAY) Where did they get their iron from? Reference: Saugus Iron Works National Park, website photographs • JONATHAN B. HIGGINS, CPG, LSP • PRINCIPAL EARTH SCIENTIST, HIGGINS ENVIRONMENTAL ASSOCIATES, INC. MARCH 1, 2020 WHAT ARE LAKE IRON NODULES? • AN IRON-ENRICHED CONCRETION, OFTEN CONTAINING MORE THAN 30 PERCENT IRON BY WEIGHT. THERE ARE BOTH OXIC AND ANOXIC FORMS. OXIC IRON NODULES FORM AT THE SEDIMENT/WATER INTERFACE (SWI). THEY ARE COMMONLY COMPOSED OF THE MINERALS GOETHITE AND HEMATITE. ANOXIC IRON NODULES FORM IN ANOXIC SEDIMENT PORE-SPACE. THESE ARE COMMONLY EITHER SIDERITE OR THE FERROUS PHOSPHATE HYDRATED MINERALS: VIVIANITE AND STRENGITE. • IRON NODULES ARE A NATURAL SINK FOR PHOSPHORUS (CAN TAKE UP TO 4 % BY WEIGHT) IN LAKES, PONDS AND RIVERS. • PICTURED HERE ARE OXIC LAKE IRON NODULES COLLECTED BY THE PRESENTER IN NOVA SCOTIA. WHERE ARE LAKE IRON NODULES FOUND IN LAKES? Surface Water Oxic Fe (P) Minerals: Oxic Fe (P) Minerals: Goethite, Hematite Goethite, Hematite Oxic Water Anoxic Water Anoxic Fe (P) Minerals: As pore-space concretions Strengite, Vivianite Simplified Figure for Illustrative Purposes Only © Higgins Environmental Associates, Inc., Amesbury, Massachusetts, 978 834-9000. All Rights Reserved. OXIC LAKE IRON NODULE = INDEX MINERAL? • INDEX MINERALS LIKE FOSSILS SHOULD BE DISTINCTIVE, WIDELY DISTRIBUTED, AND ABUNDANT OR ABSENT UNDER CERTAIN GEOLOGIC CONDITIONS. OXIC LAKE IRON NODULES ARE: - PLANAR AND CAN GROW TO LARGER THAN THE PALM OF YOUR HAND. - DISPLAY CONCENTRIC GROWTH RINGS LIKE A TREE’S CROSS-SECTION. -
Petrography and Origin of Illinois Nodular Cherts
View metadata, citation and similar papers at core.ac.ukG^tA S^svjlx-^ brought to you by CORE provided by Illinois Digital Environment for Access to Learning and Scholarship... STATE OF ILLINOIS c a WILLIAM G. STRATTON, Governor DEPARTMENT OF REGISTRATION AND EDUCATION VERA M. BINKS, Director PETROGRAPHY AND ORIGIN OF ILLINOIS NODULAR CHERTS Donald L. Biggs DIVISION OF THE ILLINOIS STATE GEOLOGICAL SURVEY JOHN C. FRYE, Chief URBANA CIRCULAR 245 1957 ILLINOIS GEOLOGICAL SURVEY LIBRARY JAN 9 1958 ILLINOIS STATE GEOLOGICAL SURVEY 3 3051 00004 4572 PETROGRAPHY AND ORIGIN OF ILLINOIS NODULAR CHERTS Donald L. Biggs ABSTRACT Seventy-eight samples of nodular chert from 18 Illinois lime- stone and dolomite formations, ranging from Cambrian through Mississippian age, were investigated todetermine the petrography and mode of origin of the nodules. Regardless of geologic age or type of host rock, the nodules were similar in mode of occurrence and in principal textural characteristics. The cherts are dominantly microcrystalline or cryptocrys- talline quartz with a lesser amount of fibrous quartz. No opal or hydrated silica was detected. Almost all the cherts contain re- sidual masses of their host rock. Field relationships and a varie- ty of evidence for replacement leads to the conclusion that the cherts are epigenetic concretions formed by metasomatic proc- esses operating during diagenesis and involving the aggregation of silica that originally had been deposited syngenetically with, and dispersed through, the host rocks. INTRODUCTION Chert is found in many limestones that crop out in Illinois and range in age from Cambrian to Mississippian. The chert may appear as nodules, len- ses, or beds, and some Devonian rocks in extreme southern Illinois are entire- ly chert. -
The Geology of Manganese Nodules
1.0 The Geology of Manganese Nodules James R. Hein1 and Sven Petersen2 1 U.S. Geological Survey, 400 Natural Bridges Dr., Santa Cruz, CA, 95060, USA 2 Helmholtz Centre for Ocean Research Kiel (GEOMAR), 24148 Kiel, Germany MANGANESE NODULES 7 1.1 The formation and occurrence of manganese nodules Manganese nodules are mineral concretions made up of manga- • diagenetically, in which minerals precipitate from sedi- nese and iron oxides. They can be as small as golf balls or as big ment pore waters – that is, seawater that has been modi- as large potatoes. The nodules occur over extensive areas of the fied by chemical reactions within the sediment. vast, sediment-covered, abyssal plains of the global ocean in water depths of 4 000 to 6 500 metres, where temperatures are just above The metal oxides that make up the precipitate attach to a freezing, pressures are high, and no sunlight reaches (Figure 2). nucleus – perhaps something as small and common as a bit of shell or a shark’s tooth – and very slowly build up around The manganese and iron minerals in these concretions precipi- the nucleus in layers. Their mineralogy is simple: vernadite tate (form a solid) from the ambient, or surrounding, water in two (a form of manganese oxide) precipitates from seawater; ways (Figure 3): todorokite (another manganese oxide) precipitates from pore • hydrogenetically, in which the minerals precipitate from cold waters; and birnessite (a third manganese oxide) forms from ambient seawater; and the todorokite. Depth region of potential nodule development Exclusive economic zone Seabed from 0 to 2 000 metres depth Seabed from 4 000 to 6 500 metres depth - the abyssal depth at which nodules are generally formed Land area Seabed from 2 000 to 4 000 metres depth Seabed below 6 500 metres depth Figure 2. -
Septarian Nodules from Jamaica: Comment
The Journal of the Geological Society of Jamaica ©1999 The Geological Society of Jamaica Vol. 33, pp. 17 to 19, 1999 Septarian nodules from Jamaica: Comment SIMON F. MITCHELL1 and STEPHEN CROWLEY2 1Department of Geography and Geology, University of the West Indies, Mona, Kingston, Jamaica 2Department of Earth Sciences, University of Liverpool, Brownlow Street, PO Box 147, Liverpool, L69 3BX, United Kingdom WOOD AND DONOVAN (1996) described a septarian we have found five levels within the Jamaican succession nodule from the geological record of Jamaica as an that yield in situ septarian concretions and these are listed example of poor curation of a museum specimen. They in age order below. commented that this was the first record of a septarian 1. Upper Cretaceous, Slippery Rock Formation, nodule from Jamaica, but that its provenance was only Clarendon. The upper part of the Slippery Rock recorded as “Parish of Clarendon” and that this was poor Formation (Robinson and Lewis in Robinson et al., 1972, documentation. Porter (1997) in a comment on the paper p. 13) consists of muds with variable proportions of by Wood and Donovan (1996) remarked on a septarian ripple cross-laminated fine-grained sands. Septarian nodule that he had figured in the Gleaner in 1984. Porter concretions are fairly common within the upper part of (1984, 1997) recorded septarian nodules in the bed of the Slippery Rock Formation. They occur in the Slippery Hectors River, downstream from Craig Head in Rock River near Smithville and in the Rio Minho near Manchester, and suggested that they might be derived Grantham. -
The Journal of Gemmology Editor: Dr R.R
he Journa TGemmolog Volume 25 No. 8 October 1997 The Gemmological Association and Gem Testing Laboratory of Great Britain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London Eel N SSU Tel: 0171 404 1134 Fax: 0171 404 8843 e-mail: [email protected] Website: www.gagtl.ac.uklgagtl President: Professor R.A. Howie Vice-Presidents: LM. Bruton, Af'. ram, D.C. Kent, R.K. Mitchell Honorary Fellows: R.A. Howie, R.T. Liddicoat Inr, K. Nassau Honorary Life Members: D.). Callaghan, LA. lobbins, H. Tillander Council of Management: C.R. Cavey, T.]. Davidson, N.W. Decks, R.R. Harding, I. Thomson, V.P. Watson Members' Council: Aj. Allnutt, P. Dwyer-Hickey, R. fuller, l. Greatwood. B. jackson, J. Kessler, j. Monnickendam, L. Music, l.B. Nelson, P.G. Read, R. Shepherd, C.H. VVinter Branch Chairmen: Midlands - C.M. Green, North West - I. Knight, Scottish - B. jackson Examiners: A.j. Allnutt, M.Sc., Ph.D., leA, S.M. Anderson, B.Se. (Hons), I-CA, L. Bartlett, 13.Se, .'vI.phil., I-G/\' DCi\, E.M. Bruton, FGA, DC/\, c.~. Cavey, FGA, S. Coelho, B.Se, I-G,\' DGt\, Prof. A.T. Collins, B.Sc, Ph.D, A.G. Good, FGA, f1GA, Cj.E. Halt B.Sc. (Hons), FGr\, G.M. Howe, FG,'\, oo-, G.H. jones, B.Se, PhD., FCA, M. Newton, B.Se, D.PhiL, H.L. Plumb, B.Sc., ICA, DCA, R.D. Ross, B.5e, I-GA, DGA, P..A.. Sadler, 13.5c., IGA, DCA, E. Stern, I'GA, DC/\, Prof. I. -
Formation of Iron-Rimmed Sandstone Nodules on Earth; Terrestrial Analogue for the Formation of Martian Blueberries?
Scholars' Mine Masters Theses Student Theses and Dissertations Fall 2009 Formation of iron-rimmed sandstone nodules on earth; terrestrial analogue for the formation of Martian blueberries? Katherine Charlotte Muller Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Geology Commons Department: Recommended Citation Muller, Katherine Charlotte, "Formation of iron-rimmed sandstone nodules on earth; terrestrial analogue for the formation of Martian blueberries?" (2009). Masters Theses. 4727. https://scholarsmine.mst.edu/masters_theses/4727 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. i FORMATION OF IRON-RIMMED SANDSTONE NODULES ON EARTH; TERRESTRIAL ANALOGUE FOR THE FORMATION OF MARTIAN BLUEBERRIES? by KATHERINE CHARLOTTE MULLER A THESIS Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN GEOLOGY 2009 Approved by David J. Wronkiewicz – Advisor John P. Hogan Melanie R. Mormile ii 2009 Katherine Charlotte Muller All Rights Reserved iii ABSTRACT NASA’s twin Mars Exploration Rovers, MER, Spirit and Opportunity, have identified numerous geologic features that hint at a watery past on Mars noted in Malik, 2004. Prominent among these features are the “Martian Blueberries” that occur as spherical hematite (Fe 2O3) nodules. Hematite formation is facilitated by the presence of water, although there are presently no known sources of free liquid water on Mars. -
32. Summary of Chert Occurrences from Line Islands
32. SUMMARY OF CHERT OCCURRENCES FROM LINE ISLANDS SITES 314, 315, 316 DSDP LEG 33 Kerry Kelts, Geological Institute ETH, Swiss Federal Institute of Technology, 8006 Zurich, Switzerland ABSTRACT This chapter summarizes cherts recovered in calcareous and clayey sediments at subbottom depths from 45 to 990 meters ranging from lowermost Miocene (NN1) to Santonian age. Gray nodules are most common in Oligocene chalks, bedded red-brown and brown cherts in Eocene chalks and limestones, and olive-green to brown nodules in Upper Cretaceous claystones and clayey limestones. Tertiary cherts contain both quartz and cristobalite phases, whereas Cretaceous varieties appear slightly more quartzitic. Progressive structural development was observed in alpha-cristobalite lepispheres. Numer- ous textural variations result from the chertification of different lithologic types, reflecting the influence of sediment redeposition and burrowing activity. Stratigraphic anomalies are puzzling, but the oc- currences best fit a model of biogenic-silica-derived solutions precipitating an initial cristobalite phase followed by the rapid or slow conversion to pure quartzose cherts depending on the host lithology. INTRODUCTION The scope of this chapter is limited to briefly sum- marizing the cherts recovered from Sites 314, 315, and Theories of chert formation have progressed con- 316 drilled along the Line Islands Seamount chain. siderably since the nostalgic days of ignorance about DSDP participants have been generally impressed by deep-sea sediments. At that time, some theories, which the wide variety of textural and lithological features now appear exotic, predicted that lumpy chert formed resulting from the silicification of deep-sea sediments. directly on the ocean floor by the coagulation of the Thus, some aspects are illustrated and discussed which silicic acid sol into a hydrogel which then contracted may be pertinent to the chert problem. -
Concretions, Nodules and Weathering Features of the Carmelo Formation
Concretions, nodules and weathering features of the Carmelo Formation The features that characterize a sedimentary rock can form at chemical origin and include nodules and concretions. diverse times and under very different conditions. Geologists Deformational features result from the bending, buckling, or divide these features into four classes. Depositional features breaking of sedimentary strata by external forces. Surficial form while the sediment is accumulating. They can tell a much (weathering) features develop in a rock at or near the about the ancient environment of deposition and include many surface where it is subject to groundwater percolation. These examples in the Carmelo Formation. Diagenetic features features can reflect both physical and chemical processes. a develop after the sediment has accumulated and can include number of examples exist in the rocks of Point Lobos. (See link the transition from sediment to rock. They typically have a to The Rocks of Point Lobos for further descriptions). Depositional Diagenetic Deformational Surficial Features that form as Features that form after Features that develop Features that form while the the sediment the sediment was anytime after deposition rock is exposed at or near accumulates deposited until it becomes and reflect the bending, the present-day land surface a rock swirling, or breaking of the stratification Examples: Examples: Examples: Examples: Bedding (layering, Nodules “Convolute lamination” Iron banding stratification) Concretions Slump structure Honeycomb Grain size Lithification (rock Tilting weathering Grain organization formation) Folds Color change (grading, pebble Faults orientation, imbrication) Ripple marks Ripple lamination Trace fossils Erosional scours Channels Features of a sedimentary rock sorted according to their origin. -
U.S. Department of the Interior U.S. Geological Survey
U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY BRECCIA-PIPE AND GEOLOGIC MAP OF THE SOUTHEASTERN PART OF THE HUALAPAI INDIAN RESERVATION AND VICINITY, ARIZONA By George H. Billingsley, Karen J. Wenrich, and Peter W. Huntoon 2000 Prepared in cooperation with the U.S. BUREAU OF INDIAN AFFAIRS AND THE HUALAPAI TRIBE Pamphlet to accompany GEOLOGIC INVESTIGATIONS SERIES I-2643 (I Printed on recycled paper CONTENTS Introduction ............................................................................................. , . 1 Geologic setting ........................................................................................ ;. .. .. .. .. .. .. .. .. .. .. .. 1 Structural geology ................................................................................... , . 3 Tectonic overview .............................................................................. , . 3 Cenozoic uplift and erosion .................................................................. ·..................................... 4 Deformation of the Paleozoic section .......................................· ............ ~.................................... 4 Laramide monoclines .......................................................................... , ................ ;. 5 Late Cenozoic faulting and extension . .. 5 Paleogeographic reconstructions ........................................................ , . 7 Breccia pipes . •. 8 Introduction ....................................................................................... , . 8 Structural control -
List of Swiss Cultural Goods: Archaeological Objects
List of Swiss cultural goods: archaeological objects A selection compiled by the Conference of Swiss Canton Archaeologists by order of the Federal Office of Culture FOC Konferenz schweizerischer Kantonsarchäologinnen und Kantonsarchäologen KSKA Conférence Suisse des Archéologues Cantonaux CSAC Conferenza Svizzera degli Archeologi Cantonali CSAC Categories of Swiss cultural goods I. Stone A. Architectural elements: made of granite, sandstone, marble and other types of stone. Capitals, window embrasures, mosaics etc. Approximate date: 50 BC – AD 1500. B. Inscriptions: on various types of stone. Altars, tombstones, honorary inscriptions etc. Approximate date: 50 BC – AD 800. C. Reliefs: on limestone and other types of stone. Stone reliefs, tomb- stone reliefs, decorative elements etc. Approximate date: mainly 50 BC – AD 800. D. Sculptures/statues: made of limestone, marble and other types of stone. Busts, statuettes, burial ornaments etc. Approximate date: mainly 50 BC – AD 800. E. Tools/implements: made of flint and other types of stone. Various tools such as knife and dagger blades, axes and implements for crafts etc. Approximate date: 130 000 BC – AD 800. F. Weapons: made of shale, flint, limestone, sandstone and other types of stone. Arrowheads, armguards, cannonballs etc. Approxi- mate date: 10 000 BC – AD 1500. G. Jewellery/accessories: made of various types of stone. Pendants, beads, finger ring inlays etc. Approximate date: mainly 2800 BC – AD 800. II. Metal A. Statues /statuettes / made of non-ferrous metal, rarely from precious metal. busts: Depictions of animals, humans and deities, portrait busts etc. Approximate date: 50 BC – AD 800. B. Vessels: made of non-ferrous metal, rarely from precious metal and iron.