Taape) with NATIVE FISHERY SPECIES
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Pacific Plate Biogeography, with Special Reference to Shorefishes
Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. -
Submerged Shorelines and Shelves in the Hawaiian Islands and a Revision of Some of the Eustatic Emerged Shorelines
HAROLD T. STEARNS Hawaii Institute of Geophysics, University of Hawaii, 2525 Correa Road, Honolulu, Hawaii 96822 Submerged Shorelines and Shelves in the Hawaiian Islands and a Revision of Some of the Eustatic Emerged Shorelines ABSTRACT IS8°| 00' KAHUKU POINT __ .Type locality of Kawelo low stand The paper presents new C14 and uran.um series dates on Oahu and their bearing on 0 A H U the dating of fluctuations of sea level dm: to glacioeustatism during the Wisconsinan. The — 60- and — 120-ft shorelines are shown to be Wisconsinan. Scuba and sub- mersible diving has made it possible to study the submerged shorelines. Some of the submerged shorelines are notches in vertical cliffs and were not previously found , KAPAPA ISLAND - by detailed soundings. The —350-ft shelf, \J /¡/ Jk .Konoohe -80ft.shore line previously thought to be a drowned wave- • /^^KEKEPA ISLAND cut platform, proved to be a drowned coral v ULUPAU CRATER reef. Shorelines and drowned reefs indicate r^w « stillstands below sea level at 15, 30, 60, 80, •POPOIA ISLAND 120, 150, 185, 205, 240±, 350, 1,200 to aimanalo shore 1,800, and 3,000 to 3,600 ft. Those above line and Bellows —450 ft are thought to be glacioeustatic. \ Field formation \ MANANA ISLANO Those below —450 ft are the result of sub- Ni«^MoKai Ronge sidence. Key words: Quaternary, -60 ft. and Makapuu -120ft dune limestone, geomorphology, geo- shore lines cbronology. Honaumo Bo/ Koko-l5ft. shelf SLACK PT. KOKO HEAD INTRODUCTION •Type locality of Leahi I shore line All submerged shorelines described Figure 1. -
Predator-Prey Relations at a Spawning Aggregation Site of Coral Reef Fishes
MARINE ECOLOGY PROGRESS SERIES Vol. 203: 275–288, 2000 Published September 18 Mar Ecol Prog Ser Predator-prey relations at a spawning aggregation site of coral reef fishes Gorka Sancho1,*, Christopher W. Petersen2, Phillip S. Lobel3 1Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA 2College of the Atlantic, 105 Eden St., Bar Harbor, Maine 04609, USA 3Boston University Marine Program, Woods Hole, Massachusetts 02543, USA ABSTRACT: Predation is a selective force hypothesized to influence the spawning behavior of coral reef fishes. This study describes and quantifies the predatory activities of 2 piscivorous (Caranx melampygus and Aphareus furca) and 2 planktivorous (Melichthys niger and M. vidua) fishes at a coral reef fish-spawning aggregation site in Johnston Atoll (Central Pacific). To characterize preda- tor-prey relations, the spawning behavior of prey species was quantified simultaneously with mea- surements of predatory activity, current speed and substrate topography. The activity patterns of pis- civores was typical of neritic, daylight-active fish. Measured both as abundance and attack rates, predatory activity was highest during the daytime, decreased during the late afternoon, and reached a minimum at dusk. The highest diversity of spawning prey species occurred at dusk, when pisci- vores were least abundant and overall abundance of prey fishes was lowest. The abundance and predatory activity of the jack C. melampygus were positively correlated with the abundance of spawning prey, and therefore this predator was considered to have a flexible prey-dependent activ- ity pattern. By contrast, the abundance and activity of the snapper A. furca were generally not corre- lated with changes in abundance of spawning fishes. -
Topographic History of the Maui Nui Complex, Hawai'i, and Its Implications for Biogeography1
Topographic History ofthe Maui Nui Complex, Hawai'i, and Its Implications for Biogeography 1 Jonathan Paul Price 2,4 and Deborah Elliott-Fisk3 Abstract: The Maui Nui complex of the Hawaiian Islands consists of the islands of Maui, Moloka'i, Lana'i, and Kaho'olawe, which were connected as a single landmass in the past. Aspects of volcanic landform construction, island subsi dence, and erosion were modeled to reconstruct the physical history of this complex. This model estimates the timing, duration, and topographic attributes of different island configurations by accounting for volcano growth and subsi dence, changes in sea level, and geomorphological processes. The model indi cates that Maui Nui was a single landmass that reached its maximum areal extent around 1.2 Ma, when it was larger than the current island of Hawai'i. As subsi dence ensued, the island divided during high sea stands of interglacial periods starting around 0.6 Ma; however during lower sea stands of glacial periods, islands reunited. The net effect is that the Maui Nui complex was a single large landmass for more than 75% of its history and included a high proportion of lowland area compared with the contemporary landscape. Because the Hawaiian Archipelago is an isolated system where most of the biota is a result of in situ evolution, landscape history is an important detertninant of biogeographic pat terns. Maui Nui's historical landscape contrasts sharply with the current land scape but is equally relevant to biogeographical analyses. THE HAWAIIAN ISLANDS present an ideal logic histories that can be reconstructed more setting in which to weigh the relative influ easily and accurately than in most regions. -
Hawaiian Volcanoes: from Source to Surface Site Waikolao, Hawaii 20 - 24 August 2012
AGU Chapman Conference on Hawaiian Volcanoes: From Source to Surface Site Waikolao, Hawaii 20 - 24 August 2012 Conveners Michael Poland, USGS – Hawaiian Volcano Observatory, USA Paul Okubo, USGS – Hawaiian Volcano Observatory, USA Ken Hon, University of Hawai'i at Hilo, USA Program Committee Rebecca Carey, University of California, Berkeley, USA Simon Carn, Michigan Technological University, USA Valerie Cayol, Obs. de Physique du Globe de Clermont-Ferrand Helge Gonnermann, Rice University, USA Scott Rowland, SOEST, University of Hawai'i at M noa, USA Financial Support 2 AGU Chapman Conference on Hawaiian Volcanoes: From Source to Surface Site Meeting At A Glance Sunday, 19 August 2012 1600h – 1700h Welcome Reception 1700h – 1800h Introduction and Highlights of Kilauea’s Recent Eruption Activity Monday, 20 August 2012 0830h – 0900h Welcome and Logistics 0900h – 0945h Introduction – Hawaiian Volcano Observatory: Its First 100 Years of Advancing Volcanism 0945h – 1215h Magma Origin and Ascent I 1030h – 1045h Coffee Break 1215h – 1330h Lunch on Your Own 1330h – 1430h Magma Origin and Ascent II 1430h – 1445h Coffee Break 1445h – 1600h Magma Origin and Ascent Breakout Sessions I, II, III, IV, and V 1600h – 1645h Magma Origin and Ascent III 1645h – 1900h Poster Session Tuesday, 21 August 2012 0900h – 1215h Magma Storage and Island Evolution I 1215h – 1330h Lunch on Your Own 1330h – 1445h Magma Storage and Island Evolution II 1445h – 1600h Magma Storage and Island Evolution Breakout Sessions I, II, III, IV, and V 1600h – 1645h Magma Storage -
FISHES of the FAMILY LUTJANIDAE of Taiwanl
Bull. Inst. Zool., Academia Sinica 26(4): 279-303 (1987) FISHES OF THE FAMILY LUTJANIDAE OF TAIWANl SIN-CHE LEE. Institute of Zoology, Academia Sinica, Nankang, Taipei, Taiwan 11529 Republic of China (Received July 3, 1987) (Revision received July 11, 1987) (Accepted July 31, 1987) Sin-Che Lee (1987) Fishes of the family Lutjanidae of Taiwan. Bull. Inst. Zoology, Academia Sinica 26 (4): 279-303. Up to date, a total of 44 lutjanid species are confirmed to occur around the waters of Taiwan. They include 4 subfamilies and .10 genera: Paradicichthyinae (Symphorus, 1 species); Lutjaninae (Lutjanus, 23 species; Macolor, 1 species; Pinjalo, 2 species): Apsilinae (Paracaesio, 3 species); Etelinae (Aprion, 1 species; Aphareus, 2 species; Etelis, 3 species; Pristipomoides, 6 species; Tropidinius, 2 species). Among 44 species, Lutjanus ehrenbergii and Pristipomoides typus are not yet available and are 'provisionally excluded from this report. The remaining 42 species are provided with their distinctive characters with color photos as well as the keys for specific identification. The following 12 species namely Aphareus furcatus, A. rutilans, Etelis carbunculus E. radiosus, Lutjanus bengalensis, L. carponotatus, L. doedecanthoides, Pristipomoides auricilla, P. multidens, Tropidinius amoenus, T. zona/us, are first records from Taiwan, and Pinjalo microphthalmus is the new species. and Richardson added 5 species namely Fishes of Lutjanidae or snappers have Lutjanus fuscescens (=L. russelli) , L. quinque the dorsal fin continuou·s or with a shallow lineatus (L. spilurus is the synonym of it), L. notch, with 10-12 spines and 10-17 soft rays; kasmira,. L. lineolatus (=L. lutjanus) , and L. anal fin wi th 3 s pi nes and 7-11 soft rays; rivulatus. -
THE HAWAIIAN-EMPEROR VOLCANIC CHAIN Part I Geologic Evolution
VOLCANISM IN HAWAII Chapter 1 - .-............,. THE HAWAIIAN-EMPEROR VOLCANIC CHAIN Part I Geologic Evolution By David A. Clague and G. Brent Dalrymple ABSTRACT chain, the near-fixity of the hot spot, the chemistry and timing of The Hawaiian-Emperor volcanic chain stretches nearly the eruptions from individual volcanoes, and the detailed geom 6,000 km across the North Pacific Ocean and consists of at least etry of volcanism. None of the geophysical hypotheses pro t 07 individual volcanoes with a total volume of about 1 million posed to date are fully satisfactory. However, the existence of km3• The chain is age progressive with still-active volcanoes at the Hawaiian ewell suggests that hot spots are indeed hot. In the southeast end and 80-75-Ma volcanoes at the northwest addition, both geophysical and geochemical hypotheses suggest end. The bend between the Hawaiian and .Emperor Chains that primitive undegassed mantle material ascends beneath reflects a major change in Pacific plate motion at 43.1 ± 1.4 Ma Hawaii. Petrologic models suggest that this primitive material and probably was caused by collision of the Indian subcontinent reacts with the ocean lithosphere to produce the compositional into Eurasia and the resulting reorganization of oceanic spread range of Hawaiian lava. ing centers and initiation of subduction zones in the western Pacific. The volcanoes of the chain were erupted onto the floor of the Pacific Ocean without regard for the age or preexisting INTRODUCTION structure of the ocean crust. Hawaiian volcanoes erupt lava of distinct chemical com The Hawaiian Islands; the seamounts, hanks, and islands of positions during four major stages in their evolution and the Hawaiian Ridge; and the chain of Emperor Seamounts form an growth. -
Appendices Appendices
APPENDICES APPENDICES APPENDIX 1 – PUBLICATIONS SCIENTIFIC PAPERS Aidoo EN, Ute Mueller U, Hyndes GA, and Ryan Braccini M. 2015. Is a global quantitative KL. 2016. The effects of measurement uncertainty assessment of shark populations warranted? on spatial characterisation of recreational fishing Fisheries, 40: 492–501. catch rates. Fisheries Research 181: 1–13. Braccini M. 2016. Experts have different Andrews KR, Williams AJ, Fernandez-Silva I, perceptions of the management and conservation Newman SJ, Copus JM, Wakefield CB, Randall JE, status of sharks. Annals of Marine Biology and and Bowen BW. 2016. Phylogeny of deepwater Research 3: 1012. snappers (Genus Etelis) reveals a cryptic species pair in the Indo-Pacific and Pleistocene invasion of Braccini M, Aires-da-Silva A, and Taylor I. 2016. the Atlantic. Molecular Phylogenetics and Incorporating movement in the modelling of shark Evolution 100: 361-371. and ray population dynamics: approaches and management implications. Reviews in Fish Biology Bellchambers LM, Gaughan D, Wise B, Jackson G, and Fisheries 26: 13–24. and Fletcher WJ. 2016. Adopting Marine Stewardship Council certification of Western Caputi N, de Lestang S, Reid C, Hesp A, and How J. Australian fisheries at a jurisdictional level: the 2015. Maximum economic yield of the western benefits and challenges. Fisheries Research 183: rock lobster fishery of Western Australia after 609-616. moving from effort to quota control. Marine Policy, 51: 452-464. Bellchambers LM, Fisher EA, Harry AV, and Travaille KL. 2016. Identifying potential risks for Charles A, Westlund L, Bartley DM, Fletcher WJ, Marine Stewardship Council assessment and Garcia S, Govan H, and Sanders J. -
Of Spermonde Archipelago, South Sulawesi
Jurnal Iktiologi Indonesia, 10(1): 83-92, 2010 THE SNAPPER (LUTJANIDAE) OF SPERMONDE ARCHIPELAGO, SOUTH SULAWESI Andi Iqbal Burhanuddin1 and Yukio Iwatsuki2 1 Laboratory of Marine Biology, Faculty of Marine Science and Fisheries, Hasanuddin University 2 Division of Fisheries Science, Faculty of Agriculture, Miyazaki University, Japan Faculty of Marine Science and Fisheries, Hasanuddin University Jl. Perintis Kemerdekaan Km 10 Makassar 90245 correspondence author e-mail: [email protected] Received: 12 Mei 2010, Accepted: 15 Juni 2010 ABSTRACT Fish diversity monitoring could be used as a basis for formulating management of the fisheries resources. This study was conducted to describe the snapper of the family Lutjanidae from the Spermonde Archipelago, South Sulawesi. Spe- cimens were collected in Rajawali and Paotere Fish Landing Port Makassar, South Sulawesi from November 2005 to August 2009. The result showed that there was 42 species representing eight genera of family Lutjanidae inhabiting the area were examined and identified: Aphareus furca, A. rutilans, Aprion virescens, Etelis carbunculus, E. radiosus, Lut- janus argentimaculatus, L. bengalensis, L. biguttatus, L. bohar, L. boutton, L. carponotatus, L. decussatus, L. fulvus, L. sebae, L. fulviflamma, L. fuscescens. L. johnii, L. kasmira, L. gibbus, L. lemniscatus, L. lunulatus, L. lutjanus, L. mala- baricus, L. monostigma, L. quinquelineatus, L. rivulatus, L. russelli, L. sebae, L. timorensis, L. vitta, Macolor macularis, M. niger, Paracaesio kusakarii, Pristipomoides argyrogrammicus, P. auricilla, P. filamentosus, P. flavipinnis, P. mul- tidens, P. typus, P. zonatus, Symphorichthys spilurus, S. nematophorus. The local name available of each species was given. Key words: Lutjanidae, Snapper, South Sulawesi, Spermonde. INTRODUCTION diversity monitoring and could hopefully be used Spermonde archipelago (Spermonde shelf) as a basic data for formulating management regu- located in the Southern Makassar Strait, south- lation of the fisheries resources for the Spermon- west coast of Sulawesi Island. -
Vanuatu National Deep-Bottom Fish Fishery Management Plan
Vanuatu National Deep-Bottom Fish Fishery Management Plan Vanuatu National Deep-Bottom Fish Fishery Management Plan Prepared by the Vanuatu Fisheries Department ISBN APPROVAL APPROVAL OF THE VANUATU NATIONAL DEEP-BOTTOM FISH FISHERY MANAGEMENT PLAN This Vanuatu National Deep-Bottom Fish Fishery Management Plan is made in accordance with Part 4, Section 11 of the Fisheries Act No. 10 of 2014, and is hereby approved on this date. COMMENCEMENT DATE By virtue of powers conferred upon the Minister responsible for Fisheries, under Section 6(1), 10(1) and 11(5) of the Fisheries Act No. 10 of 2014, notice on the implementation of the Vanuatu National Deep-Bottom Fish Fishery Management Plan is hereby given on ……… day of ………………2016. ……………………………………. Honorable Matai Nawalu SEREMAIAH (MP) Minister Responsible for Fisheries iii Local artisanal fishermen cleaning the catch of the day. Note, the separation of catch for the different intended markets (Source: VFD) Local fishermen in Mangaliliu village, Efate. The use of modified local canoes equipped with outboard motor and sail is being promoted by VFD through the Japan International Cooperation Agency funded “Grace of the Sea” project (Source: VFD). iv EXECUTIVE SUMMARY The Vanuatu Fisheries Act No. 10 of 2014 states that upon designation of a fishery by the Minister responsible for Fisheries, the Director of the Vanuatu Fisheries Department will prepare, and review where necessary, a plan for the management and development of each designated fishery. The deep-bottom fish fishery is a designated fishery. This document is the Vanuatu National Deep-Bottom Fish Fishery Management Plan (hereafter referred to as the Plan). -
Reef Fishes of the Bird's Head Peninsula, West Papua, Indonesia
Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT). -
Humpback Whale Tagging in Hawaii
Submitted in support of the U.S. Navy’s 2019 Annual Marine Species Monitoring Report for the Pacific Humpback Whale Tagging in Support of Marine Mammal Monitoring Across Multiple Navy Training Areas in the Pacific Ocean: Preliminary Summary of Field Tagging Effort in Hawaii in March 2019 Prepared for: Commander, U.S. Pacific Fleet, and Commander, Naval Sea Systems Command Submitted to: Naval Facilities Engineering Command, Southwest under Cooperative Ecosystem Studies Unit, Department of the Navy Cooperative Agreement No. N62473‐19‐2‐0002 Prepared by: Bruce R. Mate, Daniel M. Palacios, C. Scott Baker, Barbara A. Lagerquist, Ladd M. Irvine, Tomas M. Follett, Debbie Steel, and Craig E. Hayslip Oregon State University, Marine Mammal Institute Hatfield Marine Science Center 2030 SE Marine Science Drive Newport, OR 97365 15 August 2019 Submitted in support of the U.S. Navy’s 2019 Annual Marine Species Monitoring Report for the Pacific Suggested Citation: Mate, B.R., D.M. Palacios, C.S. Baker, B.A. Lagerquist, L.M. Irvine, T.M. Follett, D. Steel, and C.E. Hayslip. 2019. Humpback Whale Tagging in Support of Marine Mammal Monitoring Across Multiple Navy Training Areas in the Pacific Ocean: Preliminary Summary of Field Tagging Effort in Hawaii in March 2019. Prepared for Commander, U.S. Pacific Fleet, and Commander, Naval Sea Systems Command. Submitted to Naval Facilities Engineering Command, Southwest, under Cooperative Ecosystem Studies Unit, Department of the Navy Cooperative Agreement No. N62473‐19‐2‐0002. Oregon State University, Newport, Oregon, 15 August 2019. 14 pp. ii Submitted in support of the U.S. Navy’s 2019 Annual Marine Species Monitoring Report for the Pacific Form Approved REPORT DOCUMENTATION PAGE OMB No.