Worrall199 1Media.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Worrall199 1Media.Pdf Mycologia,83(3), 1991, pp. 296-302. ? 1991, by The New York BotanicalGarden, Bronx, NY 10458-5126 MEDIA FOR SELECTIVE ISOLATION OF HYMENOMYCETES JAMESJ. WORRALL College of EnvironmentalScience and Forestry, State Universityof New York,Syracuse, New York13210 ABSTRACT The growth rates of 32 hymenomycetesand non-hymenomyceteswere compared on five media that have been devised for isolation of hymenomycetes.A medium with 2 mg/L benomyl permitted virtuallyuninhibited growth of hymenomyceteswhile stronglyinhibiting many non-hymenomycetes, but membersof the Mucoralesand severalother species still grewwell. Testingof variouscombinations and concentrationsof ingredientsled to the use of 2 mg/L benomyl and 2 mg/L dichloranas antifungal ingredients.This was tested in isolations from various field materialsand in every case performedas well as or better than other commonly used media. Key Words: hymenomycetes,selective media, benomyl, orthophenylphenol Partly because of their unique ability to rap- mg/L (10) and, along with dichloran and phenol, idly degrade wood, hymenomycetes are an eco- at 8 mg/L (2). Maloy (5) showed that at 5 mg/L nomically and ecologically important group of and above, benomyl was inhibitory to some hy- fungi. They are among the most damaging patho- menomycetes, but at 1 mg/L it inhibited several gens of woody plants, cause losses of wood prod- deuteromycetes and had little or no effect on a ucts in service, and probably decompose the ma- large number of hymenomycetes. It has been ef- jority of the fixed carbon in terrestrial ecosystems. fectively used at 2 mg/L (8). There is also a growing interest in biotechnologi- The objective of this study was to determine cal application of these fungi in the wood-using which is the best isolation medium for hymeno- industries. mycetes. Combinations and concentrations of Although many media have been devised for selective ingredients were explored in an effort the semi-selective isolation of hymenomycetes to improve described media. (1-12), no comparisons have been reported that would allow one to rationally choose among them. MATERIALS AND METHODS o-Phenylphenol was recommended for gen- Cultures. -Wood-decay hymenomycetes were eral isolation ofbasidiomycetes (9), and has been chosen for testing based on their economic im- used more recently for isolating Armillaria spe- portance and taxonomic diversity (TABLEI). Non- cies (7, 13). Kuhlman and Hendrix (4) felt that hymenomycetes were chosen to represent im- it was too inhibitory to Heterobasidion annosum portant wood-inhabiting groups and in particular (Fr.) Bref. and devised a medium using peptone those that commonly interfere with isolation of as a carbon source with pentachloronitrobenzene hymenomycetes on selective media. (PCNB) as the main antifungal ingredient. Vaar- taja (12), apparently independently, combined Media. -In some original formulae for media, PCNB and o-phenylphenol along with the anti- the chemicals used or methods of sterilization fungal antibiotic nystatin in a medium that was are ambiguous. For clarity and convenience, the used for isolating a variety of basidiomycetes. formulae that I used are described together here. An acidified medium containing o-phenylphenol Media were autoclaved for 30 min and cooled along with copper-chrome-arsenate (a wood pre- to about 50 C before any post-autoclave ingre- servative) was devised for isolation of Phaeolus dients were added. Twenty-five ml of medium schweinitzii (Fr.) Pat. from soil (11). However, was dispensed in 90-mm-diam Petri plates. it was intentionally inhibitory to other hymeno- BDP (2): One liter of potato dextrose agar mycetes. (Difco) prepared according to label directions, Benomyl has been used at 15 mg/L for iso- plus (added after autoclaving) 5 ml of a stock lating Armillaria species (6). For general isola- solution containing 1 g phenol, 0.32 g Benlate tion of basidiomycetes, it has been used at 5 50% W.P. (50% benomyl), and 0.16 g dichloran 296 WORRALL:HYMENOMYCETE SELECTION MEDIA 297 TABLE I ISOLATESUSED, THEIR TAXONOMICAFFINITIES, AND THEIRGROWTH RATES ON MEA Growth on MEA, Fungus Isolate No. mm/wk Mucorales Mortierellaceae Mortierellaisabellina Oud. & Koning P62a 25 M. spinosa Linn. N11 53 Mucoraceae Gongronellasp. P123a 24 Mucorhiemalis Wehmer 158a 82 M. ramannianusbMoller N10 31 Rhizopusarrhizusb Fischer N12 175 Ascomycetes Daldinia concentrica(Bolt.:Fr.) Ces. & DeNot. N7c 70 Ophiostomaminus (Hedgc.)Syd. & P. Syd. N4d 19 Xylariapolymorpha (Pers. ex Mer.) Grev. N5 22 Deuteromycetes Alternariaalternata (Fr.) Keissler CAR27Aa 40 Aspergillusniger v. Tiegh. CAR32a 31 Fusarium negundiSherb. N6 32 Penicilliumdiversum Raper & Fennell D16a 13 Phialocephaladimorphospora Kendrick P109a 12 Trichodermaharzianum Rifai EP22a 105 T. koningii Oud. P947a 137 Agaricales Armillariacalvescens Berube & Dessureault 80 3 A. gemina Berube& Dessureault 64 5 A. gallica Marxm. & Romagn. 97 9 A. mellea (Vahl.:Fr.)Kummer 312 4.5 A. ostoyae (Romagn.)Herink 29 3.5 Lentinusedodes (Burk.) Sing. 301e 22 Aphyllophorales Corticiaceaes.l. Coniophoraputeana (Schum.:Fr.)Karst. 61 34 Meruliustremellosus Fr. 63f 41 Serpula lacrymans(Wulf.:Fr.) Schroet. 28 2.5 Stereaceae Stereumsubtomentosum Pouzar 5 24 Polyporaceaes.l. Ganodermatsugae Murr. 58 11 Heterobasidionannosum (Fr.) Bref. 31 47 H. annosum 41 33 Perenniporiasubacida (Pk.) Donk 2 32 Phellinuspini (Thore.:Fr.)A. Ames 4 11 Trametesversicolor (L.:Fr.) Pilit 1 45 a Provided by C. J. K. Wang;her numbersused. b Sensu Zycha and Siepmann(14). c Provided by K. E. Hammell. d Provided by T. C. Harrington;his no. C189. e Purchasedfrom the culturecollection of PennsylvaniaState University;their no. WC 305. fProvided by R. A. Blanchette;his no. 23. (2,6-dichloro-4-nitroaniline) per 100 ml 50% 2.5 N (18.7%) lactic acid and 4 ml 1% Na-OPP ethanol. The stock solution was refrigerated for (2-phenylphenol, sodium salt tetrahydrate). up to two weeks. PPP (3, 4): 5 g Bacto peptone, (Difco) 20 g MEA: 15 g dried malt extract (Difco) and 15 agar, 0.25 g MgS04-7H20, 0.5 g KH2PO4, 0.2 g g agar per L of water. pentachloronitrobenzene (PCNB) and 0.13 g so- BSMA (8): MEA plus 10 ml Benlate stock (40 dium deoxycholate per L of water, plus (added mg/100 ml H20) and (added after autoclaving) after autoclaving), 50 mg penicillin G, 1.3 ml 100 mg streptomycin sulfate. The Benlate did 85% lactic acid, and 20 ml 95% ethanol. not completely dissolve in the stock solution or PON (12): 2 g sucrose, 10 mg PCNB, 10 mg medium. Na-OPP, and 12 g agar per L of water, plus (add- OPP (7): 30 g malt extract and 15 g agar per ed after autoclaving) 50 mg streptomycin sulfate L of water, plus (added after autoclaving) 6.6 ml and 8 mg nystatin (mycostatin). 298 MYCOLOGIA TABLEII used to calculate radial growth in mm/wk. Thus, COMPARISONOF ANTIFUNGALINGREDIENTS AND for very fast fungi, which covered the plate in 4 CONCENTRATIONSIN THE MEDIA TESTED da, growth rate was calculated from 3 da growth; Media for the slowest fungi it was calculated from 2 wk growth. Concentration (mg/L) Ingre-~Ingre- dients BDP BSMA OPPa PON PPPa BDS Isolations from field material. -To further dis- criminate among media that performed reason- 8 2 - - - benomyl 2 ably well in tests, several series of dichloran 8 - - - - 2 laboratory isolations were made. Several phenol 50 - parallel samples Na-OPP - - 40 10 - - of white and brown rots, mycelial cords of an PCNB - - - 10 200 - unknown basidiomycete, and rhizomorphs of - - - - - nystatin 8 Tricholomopsis platyphylla (Pers.: Fr.) Sing. were a Acidified. used. The decayed wood was split to expose a clean surface before chips were removed. Cords and rhizomorphs were soaked for 1 min in an Concentrations of the antifungal ingredients aqueous solution of 10% bleach/10% ethanol be- are summarized in TABLEII. pH was measured fore isolation. Chips of wood or segments of cords on solidified media using a flat-surface pH elec- or rhizomorphs were subdivided and one portion trode. Results were: MEA, 5.7; BSMA, 5.5; BDP, put on each medium. 5.5; PPP, 4.2; OPP, 3.8; PON, 6.2. Based on results with those published media, RESULTS several new combinations and concentrations of Relative to growth on MEA, PON greatly antifungal ingredients were tested. In one exper- inhibited almost all the fungi tested (FIG. 1). PPP iment, MEA was amended with 2 mg/L benomyl moderately inhibited most fungi, with no ap- (added as in BSMA, above), 4 mg/L dichloran parent selectivity for hymenomycetes. Several (added as a stock solution of 10 mg in 50 ml of Armillaria species grew well on PPP because rhi- 50% ethanol), 2 mg/L benomyl plus 4 mg/L dich- zomorph growth was stimulated. However, fast- loran, or 2 mg/L benomyl plus 2 mg/L dichloran. growing non-hymenomycetes were only partially It is known that benomyl retains activity after inhibited on PPP. OPP strongly inhibited most autoclaving (5). A preliminary experiment fungi, but several Armillaria spp. and a few other showed that autoclaving also had no effect on species grew fairly well. OPP inhibited the Mu- the antifungal activity of dichloran (data not corales, but some deuteromycetes were only par- shown). In another experiment, MEA plus 2 mg/ tially inhibited. BSMA permitted excellent growth L benomyl plus 2 mg/L dichloran was amended of hymenomycetes and more or less completely with 0, 10 or 50 mg/L PCNB before autoclaving. inhibited some non-hymenomycetes, including Finally, BDS (see Results and Discussion) was the fast-growing and ubiquitous Trichoderma spp. amended with 0, 1, 10 or 50 mg/L cyclohexi- However, it was not effective against the Mu- mide, added as an aqueous stock solution after corales and several deuteromycetes. BDP was autoclaving. additionally effective against Fusarium negundi Growth tests. -Media were inoculated with Sherb., but strongly inhibited a few hymeno- 4-mm-diam plugs of mycelium taken from the mycetes. edge of 3- to 4-wk-old colonies.
Recommended publications
  • Evolution of Gilled Mushrooms and Puffballs Inferred from Ribosomal DNA Sequences
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 12002–12006, October 1997 Evolution Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences DAVID S. HIBBETT*†,ELIZABETH M. PINE*, EWALD LANGER‡,GITTA LANGER‡, AND MICHAEL J. DONOGHUE* *Harvard University Herbaria, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; and ‡Eberhard–Karls–Universita¨t Tu¨bingen, Spezielle BotanikyMykologie, Auf der Morgenstelle 1, D-72076 Tu¨bingen, Germany Communicated by Andrew H. Knoll, Harvard University, Cambridge, MA, August 11, 1997 (received for review May 12, 1997) ABSTRACT Homobasidiomycete fungi display many bearing structures (the hymenophore). All fungi that produce complex fruiting body morphologies, including mushrooms spores on an exposed hymenophore were grouped in the class and puffballs, but their anatomical simplicity has confounded Hymenomycetes, which contained two orders: Agaricales, for efforts to understand the evolution of these forms. We per- gilled mushrooms, and Aphyllophorales, for polypores, formed a comprehensive phylogenetic analysis of homobasi- toothed fungi, coral fungi, and resupinate, crust-like forms. diomycetes, using sequences from nuclear and mitochondrial Puffballs, and all other fungi with enclosed hymenophores, ribosomal DNA, with an emphasis on understanding evolu- were placed in the class Gasteromycetes. Anatomical studies tionary relationships of gilled mushrooms and puffballs. since the late 19th century have suggested that this traditional Parsimony-based
    [Show full text]
  • Isolation and Characterization of Phanerochaete Chrysosporium Mutants Resistant to Antifungal Compounds Duy Vuong Nguyen
    Isolation and characterization of Phanerochaete chrysosporium mutants resistant to antifungal compounds Duy Vuong Nguyen To cite this version: Duy Vuong Nguyen. Isolation and characterization of Phanerochaete chrysosporium mutants resistant to antifungal compounds. Mycology. Université de Lorraine, 2020. English. NNT : 2020LORR0045. tel-02940144 HAL Id: tel-02940144 https://hal.univ-lorraine.fr/tel-02940144 Submitted on 16 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2-
    [Show full text]
  • The Good, the Bad and the Tasty: the Many Roles of Mushrooms
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 85: 125–157. The good, the bad and the tasty: The many roles of mushrooms K.M.J. de Mattos-Shipley1,2, K.L. Ford1, F. Alberti1,3, A.M. Banks1,4, A.M. Bailey1, and G.D. Foster1* 1School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK; 2School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK; 3School of Life Sciences and Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK; 4School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK *Correspondence: G.D. Foster, [email protected] Abstract: Fungi are often inconspicuous in nature and this means it is all too easy to overlook their importance. Often referred to as the “Forgotten Kingdom”, fungi are key components of life on this planet. The phylum Basidiomycota, considered to contain the most complex and evolutionarily advanced members of this Kingdom, includes some of the most iconic fungal species such as the gilled mushrooms, puffballs and bracket fungi. Basidiomycetes inhabit a wide range of ecological niches, carrying out vital ecosystem roles, particularly in carbon cycling and as symbiotic partners with a range of other organisms. Specifically in the context of human use, the basidiomycetes are a highly valuable food source and are increasingly medicinally important. In this review, seven main categories, or ‘roles’, for basidiomycetes have been suggested by the authors: as model species, edible species, toxic species, medicinal basidiomycetes, symbionts, decomposers and pathogens, and two species have been chosen as representatives of each category.
    [Show full text]
  • SC/BIOL 2010.040 Plant Biology Second Term Test
    SC/BIOL 2010 (Plant Biology) 2nd Term Test (5 March 2012) page 1 of 5 SC/BIOL 2010.040 Plant Biology Second Term Test NAME:______KEY______ [01] Which one of the following terms does not describe a common trait, structure or characteristic of either the Ascomycota or the Basidiomycota? A. hymenium B. mycorrhizae C. dolipore D. zygotic meiosis E. conidia F. septate G. haustoria H. all describe a common trait, structure or characteristic All of the traits and structures are found in either of the two fungal groups, including zygotic meiosis: H. [02] Amongst the Ascomycota and Basidiomycota, which of the following characteristics are unique to only one of the two phyla (choose the best answer)? A. crozier B. haustoria C. mycelia D. clamp connections E. persistent dikaryotic stage F. A and B G. A and D H. A, D and E Crozier is specific to ascomycota, clamp connections play a role in the persistent dikaryotic state of basidiomycota, all others are found in both. The answer is H. Match the following terms with the most appropriate definition (Choose the best answer)? [03] conidium pl. conidia H [04] haustorium pl. haustoria F [05] appressorium C A. None of the below B. A small mass of vegetative tissue; an outgrowth of the thallus, for example in liverworts or certain fungi. C. A flattened, hyphal organ, from which a minute infection peg grows and enters the host. D. The strips of tissue on the underside of the cap of many hymenomycetes. E. A single tubular filament of a fungus, oomycete, or chytrid.
    [Show full text]
  • Evolution of Gilled Mushrooms and Puffballs Inferred from Ribosomal DNA Sequences
    Proc. Natl. Acad. Sci. USA Vol. 94, pp. 12002–12006, October 1997 Evolution Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences DAVID S. HIBBETT*†,ELIZABETH M. PINE*, EWALD LANGER‡,GITTA LANGER‡, AND MICHAEL J. DONOGHUE* *Harvard University Herbaria, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; and ‡Eberhard–Karls–Universita¨t Tu¨bingen, Spezielle BotanikyMykologie, Auf der Morgenstelle 1, D-72076 Tu¨bingen, Germany Communicated by Andrew H. Knoll, Harvard University, Cambridge, MA, August 11, 1997 (received for review May 12, 1997) ABSTRACT Homobasidiomycete fungi display many bearing structures (the hymenophore). All fungi that produce complex fruiting body morphologies, including mushrooms spores on an exposed hymenophore were grouped in the class and puffballs, but their anatomical simplicity has confounded Hymenomycetes, which contained two orders: Agaricales, for efforts to understand the evolution of these forms. We per- gilled mushrooms, and Aphyllophorales, for polypores, formed a comprehensive phylogenetic analysis of homobasi- toothed fungi, coral fungi, and resupinate, crust-like forms. diomycetes, using sequences from nuclear and mitochondrial Puffballs, and all other fungi with enclosed hymenophores, ribosomal DNA, with an emphasis on understanding evolu- were placed in the class Gasteromycetes. Anatomical studies tionary relationships of gilled mushrooms and puffballs. since the late 19th century have suggested that this traditional Parsimony-based
    [Show full text]
  • SC/BIOL Plant Biology Second Term Test (27 February 2015) Annotated Page 1 of 5
    SC/BIOL Plant Biology Second Term Test (27 February 2015) annotated page 1 of 5 [01] Although Chytridiomycota is now grouped with the major fungal groups (Zygomycota, Ascomycota and Basidiomycota), it has many traits which are different from any of the other groups, but, which of the following trait(s) does it share with the other major groups? A. dikaryotic vegetative colonies B. asexual spore production from conidiophores C. coenocytic D. chitinous cell walls E. glycogen stores F. A, B and D G. C, D and E H. C and D Shared traits include multi-nucleate cell units (coenocytic), chitin, and glycogen stores. The answer is G. [02] Glomus is an example of a genus (member of the glomermycete) of extraordinary importance for which of the following reasons? A. It forms a Hartig net, especially on the roots of conifers and other trees. B. It is the cause of the Glomus blight, affecting cereal crops such as wheat, barley and corn. C. Many members of the Glomus genus (and other genera) form an intimate symbiotic relation with the roots of plants (commonly vesicular and/or arbuscular mycorrhizae). D. Glomus (a member of the Entomophthorales) is often a pathogen of insects, used for biocontrol of common insect pests E. Glomus is the major fungal group forming an intimate symbiotic relation with algae (usually Chlorophytes, but rarely the prokaryotic cyanobacteria) to create the remarkable lichens. F. Glomus is a common spoilage mold (growing on bread and cheese, for example, making them inedible). G. Glomus is a common smut pathogen, a member of the Basidiomycota.
    [Show full text]
  • Fungal Oxidoreductases and Humification in Forest Soils
    Chapter 11 Fungal Oxidoreductases and Humification in Forest Soils A.G. Zavarzina, A.A. Lisov, A.A. Zavarzin, and A.A. Leontievsky 11.1 Introduction Humic substances (HS) are ubiquitous and recalcitrant by-products of dead matter hydrolysis and oxidative biotransformation (humification). Their resistance to biodegradation is both a result of structural complexity due to selective preservation of most stable chemical forms during microbial decay (Orlov 1990) and a result of physicochemical protection by interactions with soil minerals (Mikutta et al. 2006). The residence time of HS in soils is 102–103 years; they comprise up to 90% of soil organic matter (humus), which is the largest carbon reservoir in the biosphere estimated at 1,462–1,548 Pg of Corg in the 0–1 m layer excluding litter and charcoal (Batjes 1996). Humification can be thus considered as a key process in Netto Biome production leading to a long-time sink of atmospheric CO2. About 1/3 (470 Pg) of world soil organic carbon reserves is captured in boreal forests soils and almost half of this amount (224 Pg C) is accumulated in the soils of Russia (Stolbovoi 2006). A better knowledge of humus turnover processes in forests of cold humid climate will allow better predictions of the global carbon dynamics under changing envi- ronment. Synthesis, transformation, and mineralization of HS are largely oxidative processes with wood- and soil-inhabiting fungi being a major driving force due to extracellular production of non-specific oxidative enzymes. In this chapter, we provide an over view of the occurrence of oxidoreductases in wood-decomposing, A.G.
    [Show full text]
  • New and Bemarkable Hymenomycetes from Tropical Forests in Indonesia (Java) and Australasia E
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 1980 Band/Volume: 33 Autor(en)/Author(s): Horak Egon Artikel/Article: New and Remarkable Hymenomycetes from Tropical Forests in Indonesia (Java) and Australasia. 39-63 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at New and Bemarkable Hymenomycetes from Tropical Forests in Indonesia (Java) and Australasia E. HORAK Geobotanical Institute, BTHZ, CH-8092 Zürich, Switzerland Zusammenfassung. Aus Neuseeland, Neu Kaledonien, Neu Guinea und Java werden neue Arten von Boletales (Boletus perroseus sp. n. (1), B. phytolaccae sp. n. (2)) und Agaricales (Microcollybia conidiophora sp. n. (8), Macrocystidia reducta HK. & CAPELLANO sp. n. (11), Copelandia affinis sp. n. (14), Cuphocybe ferruginea sp. n. (17)) abgebildet und beschrieben. Anhand von frischem topo- typischem Material konnten Xerocomus junghuhnii (v. HOEHNEL) SINGER (3), Vanromburghia silvestris HOLTERMANN (5) und Camarophyllus lactarioides HENNINGS (7) — alle aus Java — nachuntersucht und deren systematische Stellung diskutiert werden. Neue Standorte werden für Mycenoporella lutea v. OVEREEM (6) in Neu Guinea und Afrika (Gabon) und für Pulveroboletus frians CORNER (4) in Neu Guinea mitgeteilt. Folgende Agaricales (deren Vorkommen nach bisheriger Kenntnis auf die temperierte Zone der Nord- und Südhemisphäre beschränkt war) sind jetzt auch in tropisch-montanen Wäldern des Fernen Ostens nachgewiesen: Asterophora parasitica (FB.) SINGER (9), A. lycoperdoides S. F. GRAY (10), Crueispora naucorioides HORAK (12), C. rhombisperma (HONGO) comb. iiov. (13), Descolea pretiosa HORAK (15) und D. gunnii (BERKELEY) HOEAK (16). Acknowledgements My thanks are duo to tho authorities of the Department of Forest both in New Zealand and Papua New Guinea for the opportunity to study tho fungi in these countries.
    [Show full text]
  • A Sequence Database for the Identification of Ectomycorrhizal Basidiomycetes by Phylogenetic Analysis
    Molecular Ecology (1998) 7, 257–272 A sequence database for the identification of ectomycorrhizal basidiomycetes by phylogenetic analysis T. D. BRUNS,* T. M. SZARO,* M. GARDES,† K. W. CULLINGS,‡ J. J. PAN,§ D. L. TAYLOR,** T. R. HORTON,†† A. KRETZER,‡‡ M. GARBELOTTO,* and Y. LI§§ *Department of Plant and Microbial Biology, University of California, Berkeley, 94720–3102, USA, †CESAC/CNRS, Université Paul Sabatier/Toulouse III, 29 rue Jeanne Marvig, 31055 Toulouse Cedex 4, France, ‡NASA-Ames Research Center, MS-239-4, Moffett Field, CA 94035-1000, §Department of Biology, Indiana University, Bloomington IN 47405, USA, **Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA, ††USDA Forest Service, Forest Science Laboratory, Corvallis, OR 97331, USA, ‡‡Dept of Botany and Plant Pathology, Corvallis, OR 97331, USA, §§Fox Chase Cancer Center, 7701 Burholme Ave, Philadelphia, PA19911, USA Abstract We have assembled a sequence database for 80 genera of Basidiomycota from the Hymenomycete lineage (sensu Swann & Taylor 1993) for a small region of the mitochon- drial large subunit rRNA gene. Our taxonomic sample is highly biased toward known ectomycorrhizal (EM) taxa, but also includes some related saprobic species. This gene fragment can be amplified directly from mycorrhizae, sequenced, and used to determine the family or subfamily of many unknown mycorrhizal basidiomycetes. The method is robust to minor sequencing errors, minor misalignments, and method of phylogenetic analysis. Evolutionary inferences are limited by the small size and conservative nature of the gene fragment. Nevertheless two interesting patterns emerge: (i) the switch between ectomycorrhizae and saprobic lifestyles appears to have happened convergently several and perhaps many times; and (ii) at least five independent lineages of ectomycorrhizal fungi are characterized by very short branch lengths.
    [Show full text]
  • Phylogenetic Relationships of the Gomphales Based on Nuc-25S-Rdna, Mit-12S-Rdna, and Mit-Atp6-DNA Combined Sequences
    Phylogenetic relationships of the Gomphales based on nuc-25S-rDNA, mit-12S-rDNA, and mit-atp6-DNA combined sequences a b Admir J. GIACHINl ,*, Kentaro HOSAKA , Eduardo NOUHRAc, d A Joseph SPATAFORA , James M. TRAPPE ARTICLE INFO ABSTRACT Phylogenetic relationships among Geastrales, Gomphales, Hysterangiales, and Phallales were estimated via combined sequences: nuclear large subunit ribosomal DNA (nuc-25S- rDNA), mitochondrial small subunit ribosomal DNA (mit-12S-rDNA), and mitochondrial atp6 DNA (mit-atp6-DNA). Eighty-one taxa comprising 19 genera and 58 species were inves- tigated, including members of the Clathraceae, Gautieriaceae, Geastraceae, Gomphaceae, Hysterangiaceae, Phallaceae, Protophallaceae, and Sphaerobolaceae. Although some nodes Keywords: deep in the tree could not be fully resolved, some well-supported lineages were recovered, atp6 and the interrelationships among Gloeocantharellus, Gomphus, Phaeoclavulina, and Turbinel- Gomphales Ius, and the placement of Ramaria are better understood. Both Gomphus sensu lato and Rama- Homobasidiomycetes ria sensu lato comprise paraphyletic lineages within the Gomphaceae. Relationships of the rDNA subgenera of Ramaria sensu lato to each other and to other members of the Gomphales were Systematics clarified. Within Gomphus sensu lato, Gomphus sensu stricto, Turbinellus, Gloeocantharellus and Phaeoclavulina are separated by the presence/absence of clamp connections, spore orna- mentation (echinulate, verrucose, subreticulate or reticulate), and basidiomal morphology (fan-shaped, funnel-shaped or ramarioid). Gautieria, a sequestrate genus in theGautieria- ceae, was recovered as monophyletic and nested with members of Ramaria subgenus Ramaria. This agrees with previous observations of traits shared by these two ectomycor- rhizal taxa, such as the presence of fungal mats in the soil. Clavariadelphus was recovered as a sister group to Beenakia, Kavinia, and Lentaria.
    [Show full text]
  • 3 Major Clades - Subphyla - of the Basidiomycota
    3 Major Clades - Subphyla - of the Basidiomycota Agaricomycotina mushrooms, polypores, jelly fungi, corals, chanterelles, crusts, puffballs, stinkhorns Ustilaginomycotina smuts, Exobasidium, Malassezia Pucciniomycotina rusts, Septobasidium Ustilaginomycotina (Ustilaginomycetes) Ustilaginomycetes Urocystales Ustilaginales Exobasidiomycetes Exobasidiales Malasseziales Tilletiales Entorrhizomycetes simple septum with septal pore cap, not like the dolipore septum with parenthosome of Agaricomycotina Subphylum Ustilaginomycotina- smuts and relatives Ustilaginomycetes About 1500 species, 50 genera Parasitic on about 4000 spp of angiosperms, 75 families Economically important pathogens of cereals Corn smut Ustilago maydis Oat smut U. avenae Tilletia spp. “smuts and bunts” General life cycle of Ustilaginomycetes Alternate between saprobic, monokaryotic yeast and phytoparasitic, dikaryotic filamentous phases Ustilaginales-smuts • mating between monokaryotic spores • no specialized mating structures • unifactorial and bifactorial mating systems • monokaryons nonparasitic, saprobic • dikaryon phytoparasitic • heterothallic- mating of compatible spores • dimorphic- yeast and filamentous phases • teliospores teliospores germinate, give rise to a short germ tube of determinate growth called the promycelium. Promycelium: site of meiosis formation of sporidia Corn smut, Ustilago maydis Life cycle of Ustilago maydis Yeast stage, monokaryon persists in soil as saprobe Teliospores germinate to produce monokaryotic sporidia, equivalent to basidiospores Monokaryotic
    [Show full text]
  • Diversity and Evolution of Ectomycorrhizal Host Associations in the Sclerodermatineae (Boletales, Basidiomycota)
    May 2012 Vol. 194 No. 4 ISSN 0028-646X www.newphytologist.com • New grass phylogeny • Local adaptation in reveals deep evolutionary plant-herbivore interactions relationships & C4 • New method: fast & origins quantitative analysis of • Evolution of stomatal gene expression traits on the road to C4 • Transgenomics tool for photosynthesis identifying genes Research Diversity and evolution of ectomycorrhizal host associations in the Sclerodermatineae (Boletales, Basidiomycota) Andrew W. Wilson, Manfred Binder and David S. Hibbett Department of Biology, Clark University, 950 Main St., Worcester, MA 01610, USA Summary Author for correspondence: • This study uses phylogenetic analysis of the Sclerodermatineae to reconstruct the evolution Andrew W. Wilson of ectomycorrhizal host associations in the group using divergence dating, ancestral range Tel: +1 847 835 6986 and ancestral state reconstructions. Email: [email protected] • Supermatrix and supertree analysis were used to create the most inclusive phylogeny for Received: 15 December 2011 the Sclerodermatineae. Divergence dates were estimated in BEAST. Lagrange was used to Accepted: 5 February 2012 reconstruct ancestral ranges. BAYESTRAITS was used to reconstruct ectomycorrhizal host associ- ations using extant host associations with data derived from literature sources. New Phytologist (2012) • The supermatrix data set was combined with internal transcribed spacer (ITS) data sets for doi: 10.1111/j.1469-8137.2012.04109.x Astraeus, Calostoma, and Pisolithus to produce a 168 operational taxonomic unit (OTU) supertree. The ensuing analysis estimated that basal Sclerodermatineae originated in the late Cretaceous while major genera diversified near the mid Cenozoic. Asia and North America are Key words: ancestral reconstruction, biogeography, boreotropical hypothesis, the most probable ancestral areas for all Sclerodermatineae, and angiosperms, primarily divergence times, ectomycorrhizal evolution, rosids, are the most probable ancestral hosts.
    [Show full text]