Negative Regulation of Cytokine Signaling in Immunity

Total Page:16

File Type:pdf, Size:1020Kb

Negative Regulation of Cytokine Signaling in Immunity Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Negative Regulation of Cytokine Signaling in Immunity Akihiko Yoshimura, Minako Ito, Shunsuke Chikuma, Takashi Akanuma, and Hiroko Nakatsukasa Department of Microbiology and Immunology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan Correspondence: [email protected] Cytokines are key modulators of immunity. Most cytokines use the Janus kinase and signal transducers and activators of transcription (JAK-STAT) pathway to promote gene tran- scriptional regulation, but their signals must be attenuated by multiple mechanisms. These include the suppressors of cytokine signaling (SOCS) family of proteins, which represent a main negative regulation mechanism for the JAK-STAT pathway. Cytokine-inducible Src homology 2 (SH2)-containing protein (CIS), SOCS1, and SOCS3 proteins regulate cytokine signals that control the polarization of CD4þ T cells and the maturation of CD8þ T cells. SOCS proteins also regulate innate immune cells and are involved in tumorigenesis. This review summarizes recent progress on CIS, SOCS1, and SOCS3 in T cells and tumor immunity. here are four types of the cytokine receptors: (ERK) pathway (see Fig. 1). Any receptor that T(1) receptors that activate nuclear factor activates intracellular signaling pathways has (NF)-kB and mitogen-activated protein (MAP) multiple negative feedback systems, which en- kinases (mainly p38 and c-Jun amino-terminal sures transient activation of the pathway and kinase [JNK]), such as receptors for the tumor downstream transcription factors. Typical neg- necrosis factor (TNF)-a family, the interleukin ative regulators are shown in Figure 1. Lack of (IL)-1 family, including IL-1b, IL-18, and IL- such negative regulators results in autoimmune 33, and the IL-17 family; (2) receptors that diseases, autoinflammatory diseases, and some- activate the Janus kinase and signal transducers times-fatal disorders, including cancer. Thus, and activators of transcription (JAK-STAT) negative feedback is essential for homeostasis. pathway—most cytokines belong to this family; Cytokine receptor signal regulators can (3) transforming growth factor (TGF)-b recep- be classified into three types: (1) proteins that tors carrying a serine/threonine kinase that physically suppress signal generation, (2) pro- activates Smad-family transcription factors; tein phosphatases, and (3) proteins recruiting and (4) growth factor receptors in which cyto- degradation systems or processes such as pro- plasmic domain contains the tyrosine kinase teasomes, autophagy, and endocytosis. All are domain. This latter family typically signals via multidomain proteins that bind to the receptors the Ras extracellular signal-regulated kinase and/or signaling molecules through an Src ho- Editors: Warren J. Leonard and Robert D. Schreiber Additional Perspectives on Cytokines available at www.cshperspectives.org Copyright # 2018 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a028571 Cite this article as Cold Spring Harb Perspect Biol 2018;10:a028571 1 Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press A. Yoshimura et al. IL-6 TGF-β TNF IL6R/gp130 FGF JAK1 JAK1 TRADD FGFR TRADD TNFR TRAF2 FADD R-Smad Ras P STAT I-Smad Raf P A-20 Spred SOCS/CIS IKK complex Co-Smad MAP kinase κ I B IκB NF-κB P P Figure 1. The cytokine signaling and their major negative regulators. There are four types of cytokine receptors: (1) receptors that activate nuclear factor (NF)-kB and mitogen-activated protein (MAP) kinases; (2) receptors that activate the Janus kinase and signal transducers and activators of transcription (JAK-STAT) pathway; (3) transforming growth factor (TGF)-b receptors; and (4) growth factor receptor family. Typical negative regulators are also shown. TNF, Tumor necrosis factor; TNFR, TNF receptor; FGF, fibroblast growth factor; FGFR, FGF receptor; IKK, IkB kinase; SOCS/CIS, suppressor of cytokine signaling/cytokine-inducible Src homology 2 (SH2)-containing protein; Spred, Sprouty-related protein with an EVH1 domain. mology 2 (SH2) domain or other binding minal SOCS-box that recruits the ubiquitin- motifs and then suppress the signaling via other transferase complex. Because of space limita- domains. For example, A20/TNFAIP3 is an tions in this review, we focus on proteins, espe- important negative regulatory protein for the cially SOCS proteins, which regulate signal NF-kB pathway that interacts with NF-kB es- transduction, but not on molecules interacting sential modulator (NEMO)/IkB kinase (IKK)g with the extracellular domain of the receptors or and functions as a deubiquitinase (Shembade on transcription factors. and Harhaj 2012). Sprouty-related protein with an EVH1 domain (Spred) family proteins THE JAK-STAT PATHWAY suppress the Ras-ERK pathway by bridging the growth factor/cytokine receptors and NF-1, a Cytokines play several essential roles in the Ras-GTPase-activating protein (Wakioka et al. development, differentiation, and function of 2001; Nonami et al. 2003; Yoshida et al. 2006; myeloid and lymphoid cells. Some of them, Hirata et al. 2016). Some negative-regulator including ILs, interferons (IFNs), and hemato- proteins have two or more inhibitory domains; poietic growth factors, activate the JAK-STAT for example, suppressor of cytokine signaling pathway (O’Shea et al. 2002). In this pathway, (SOCS)1 and SOCS3 have an amino-terminal cytokine binding results in receptor oligomeri- kinase-inhibitory region (KIR) that inhibits zation, which initiates the activation of JAK JAK tyrosine kinase activity and a carboxy-ter- kinases (JAK1, JAK2, JAK3, and TYK2). JAK3 2 Cite this article as Cold Spring Harb Perspect Biol 2018;10:a028571 Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Negative Regulation of Cytokine Signaling in Immunity is associated with IL-2 receptor g (common for Th1, Th2, and Th17 differentiation, respec- cytokine receptor g chain), and is activated tively. IL-4 in combination with TGF-b has by IL-2-related cytokines. The activated JAKs been shown to induce Th9 in vitro (Tamiya phosphorylate the receptor cytoplasmic do- et al. 2013). IL-2/STAT5 is essential for regula- mains, which creates docking sites for SH2-con- tory T-cell (Treg) development, and IL-21/ taining signaling proteins. The STAT proteins STAT3 is essential for follicular helper T (Tfh) are the major substrates for JAKs. A large num- cell differentiation (Vogelzang et al. 2008). IL- ber of cytokines, growth factors, and hormonal 21 also regulates CD8þ T cells (Gagnon et al. factors activate the JAK-STAT pathway. For 2007) and Th17 cell differentiation (Bettelli example, IFN-g receptors activate JAK1 and et al. 2007). JAK2, which then mainly phosphorylate and activate STAT1, whereas IL-6 binds to the IL-6 THE CIS/SOCS FAMILY: MOLECULAR receptor a (IL-6Ra) chain and to gp130, both MECHANISMS of which mainly activate JAK1 and STAT3 (Gu- schin et al. 1995). The anti-inflammatory cyto- SOCS proteins and cytokine-inducible SH2- kine IL-10 also activates STAT3 (Weber-Nordt containing protein ([CIS] also known as CISH) et al. 1996). T helper (Th)1, Th2, and Th17 are molecules comprise a family of intracellular induced by IL-12, IL-4, and IL-6/IL-23, and proteins (Fig. 2) (Yoshimura et al. 1995, 2007; thus STAT4, STAT6, and STAT3 are essential Endo et al. 1997; Matsumoto et al. 1997; Tamiya CIS/SOCS family genes Cytokine Cytokine Name Structure Receptor SH2 SOCS-box CIS1 JAB/SSI1/SOCS1 JAK JAK JAK JAK P P P CIS2/SSI2/SOCS2 P P SOCS3 P SOCS1 CIS3/SSI3/SOCS3 P P P STAT STAT CIS1 CIS4/SOCS6 STAT5 CIS6/NAP4/SOCS7 CIS6/SOCS5 P P CIS7/SOCS4 SOCS3/CIS3 CIS1 SOCS-box-containing genes SOCS/JAB ASB WSB Rar P Transcription VHL P Figure 2. Structure and function of the suppressor of cytokine signaling (SOCS) family. The SOCS family consists of eight family members. All eight members share a central Src homology 2 (SH2) domain and a carboxy-terminal SOCS box. In addition, SOCS1 and SOCS3 possess a kinase inhibitory region (KIR) that inhibits Janus kinase (JAK) activity. (Right) The general mechanism of the action of cytokine-inducible SH2- containing protein (CIS), SOCS1, and SOCS3. STAT, Signal transducers and activators of transcription; JAB, Janus kinase-binding protein. Cite this article as Cold Spring Harb Perspect Biol 2018;10:a028571 3 Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press A. Yoshimura et al. et al. 2011). There are eight CIS/SOCS family their KIR. KIR has been proposed to function proteins: CIS, SOCS1, SOCS2, SOCS3, SOCS4, as a pseudosubstrate, and it is essential for SOCS5, SOCS6, and SOCS7, each of which the suppression of cytokine signals (Fig. 2) has a central SH2 domain, an amino-terminal (Yasukawa et al. 1999; Kershaw et al. 2013). domain of variable length and sequence, and Recent study of the ternary cocrystal structure a carboxy-terminal 40-amino-acid module between mouse SOCS3, JAK2 kinase domain, known as the SOCS box (Fig. 2) (Hilton et al. and a fragment of gp130 supported this hypoth- 1998; Kamizono et al. 2001; Kamura et al. esis (Fig. 3). The kinase-inhibitory region of 2004). The SOCS box interacts with elongin SOCS3 occludes the substrate-binding groove B/C, Cullins, and the Really Interesting New on JAK2, and biochemical studies show that it Gene (RING)-finger domain-only protein blocks substrate association. SOCS3, and prob- RBX2, which recruits E2 ubiquitin transferase ably SOCS1, inhibits the catalytic activity of (Kamura et al. 2004). CIS/SOCS family pro- JAK1, JAK2, and TYK2, but not JAK3, because teins, as well as other SOCS-box-containing the SH2-KIR domain interacts with an evolu- molecules, function as E3 ubiquitin ligases tionarily conserved “GQM” sequence that is and mediate the degradation of proteins that present in all vertebrate forms of JAK1, JAK2, are associated with these family members and TYK2, but not JAK3, where it lines one edge through their amino-terminal regions (Fig.
Recommended publications
  • Transcriptional Control of Tissue-Resident Memory T Cell Generation
    Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2019 © 2019 Filip Cvetkovski All rights reserved ABSTRACT Transcriptional control of tissue-resident memory T cell generation Filip Cvetkovski Tissue-resident memory T cells (TRM) are a non-circulating subset of memory that are maintained at sites of pathogen entry and mediate optimal protection against reinfection. Lung TRM can be generated in response to respiratory infection or vaccination, however, the molecular pathways involved in CD4+TRM establishment have not been defined. Here, we performed transcriptional profiling of influenza-specific lung CD4+TRM following influenza infection to identify pathways implicated in CD4+TRM generation and homeostasis. Lung CD4+TRM displayed a unique transcriptional profile distinct from spleen memory, including up-regulation of a gene network induced by the transcription factor IRF4, a known regulator of effector T cell differentiation. In addition, the gene expression profile of lung CD4+TRM was enriched in gene sets previously described in tissue-resident regulatory T cells. Up-regulation of immunomodulatory molecules such as CTLA-4, PD-1, and ICOS, suggested a potential regulatory role for CD4+TRM in tissues. Using loss-of-function genetic experiments in mice, we demonstrate that IRF4 is required for the generation of lung-localized pathogen-specific effector CD4+T cells during acute influenza infection. Influenza-specific IRF4−/− T cells failed to fully express CD44, and maintained high levels of CD62L compared to wild type, suggesting a defect in complete differentiation into lung-tropic effector T cells.
    [Show full text]
  • Suppression of Cytokine Signaling by SOCS3: Characterization of the Mode of Inhibition and the Basis of Its Specificity
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Immunity Article Suppression of Cytokine Signaling by SOCS3: Characterization of the Mode of Inhibition and the Basis of Its Specificity Jeffrey J. Babon,1,2,5,* Nadia J. Kershaw,1,3,5 James M. Murphy,1,2,5 Leila N. Varghese,1,2 Artem Laktyushin,1 Samuel N. Young,1 Isabelle S. Lucet,4 Raymond S. Norton,1,2,6 and Nicos A. Nicola1,2,* 1Walter and Eliza Hall Institute of Medical Research, 1G Royal Pde, Parkville, 3052, VIC, Australia 2The University of Melbourne, Royal Parade, Parkville, 3050, VIC, Australia 3Ludwig Institute for Cancer Research, Royal Pde, Parkville, 3050, VIC, Australia 4Monash University, Wellington Rd, Clayton, 3800, VIC, Australia 5These authors contributed equally to this work 6Present address: Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia *Correspondence: [email protected] (J.J.B.), [email protected] (N.A.N.) DOI 10.1016/j.immuni.2011.12.015 SUMMARY Genetic deletion of each individual JAK leads to various immunological and hematopoietic defects; however, aberrant Janus kinases (JAKs) are key effectors in controlling activation of JAKs can be likewise pathological. Three myelopro- immune responses and maintaining hematopoiesis. liferative disorders (polycythemia vera, essential thrombocythe- SOCS3 (suppressor of cytokine signaling-3) is a mia, and primary myelofibrosis) are caused by a single point major regulator of JAK signaling and here we investi- mutation in JAK2 (JAK2V617F)(James et al., 2005; Levine et al., gate the molecular basis of its mechanism of action.
    [Show full text]
  • Suppressor of Cytokine Signaling (SOCS) 5 Utilises Distinct Domains for Regulation of JAK1 and Interaction with the Adaptor Protein Shc-1
    Suppressor of Cytokine Signaling (SOCS) 5 Utilises Distinct Domains for Regulation of JAK1 and Interaction with the Adaptor Protein Shc-1 Edmond M. Linossi1,2, Indu R. Chandrashekaran3, Tatiana B. Kolesnik1,2, James M. Murphy1,2, Andrew I. Webb1,2, Tracy A. Willson1,2, Lukasz Kedzierski1,2, Alex N. Bullock4, Jeffrey J. Babon1,2, Raymond S. Norton3, Nicos A. Nicola1,2, Sandra E. Nicholson1,2* 1 Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia, 2 The University of Melbourne, Parkville, Victoria, Australia, 3 Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia, 4 Structural Genomics Consortium, University of Oxford, Oxford, United Kingdom Abstract Suppressor of Cytokine Signaling (SOCS)5 is thought to act as a tumour suppressor through negative regulation of JAK/ STAT and epidermal growth factor (EGF) signaling. However, the mechanism/s by which SOCS5 acts on these two distinct pathways is unclear. We show for the first time that SOCS5 can interact directly with JAK via a unique, conserved region in its N-terminus, which we have termed the JAK interaction region (JIR). Co-expression of SOCS5 was able to specifically reduce JAK1 and JAK2 (but not JAK3 or TYK2) autophosphorylation and this function required both the conserved JIR and additional sequences within the long SOCS5 N-terminal region. We further demonstrate that SOCS5 can directly inhibit JAK1 kinase activity, although its mechanism of action appears distinct from that of SOCS1 and SOCS3. In addition, we identify phosphoTyr317 in Shc-1 as a high-affinity substrate for the SOCS5-SH2 domain and suggest that SOCS5 may negatively regulate EGF and growth factor-driven Shc-1 signaling by binding to this site.
    [Show full text]
  • Original Article Identification of SOCS Family Members with Prognostic Values in Human Ovarian Cancer
    Am J Transl Res 2020;12(5):1824-1838 www.ajtr.org /ISSN:1943-8141/AJTR0102959 Original Article Identification of SOCS family members with prognostic values in human ovarian cancer Mengqi Yang1,2, Huanting Chen6, Lin Zhou3, Xiaobo Huang1,2,4, Fengxi Su1,2, Peng Wang1,5 1Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; 2Breast Tumor Center, Departments of 3Critical Care Medicine, 4Radiation Oncology, 5Emergency Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; 6Department of General Surgery, People’s Hospital of Shenzhen Baoan District, Affiliated Shenzhen Baoan Hospital of Southern Medical University, Shenzhen, China Received September 28, 2019; Accepted April 24, 2020; Epub May 15, 2020; Published May 30, 2020 Abstract: Background: Suppressor of cytokine signaling (SOCS) family proteins regulate cytokine responses through inhibition of multiple signaling pathways. The expression profiles and prognostic significance of SOCS members in ovarian cancer (OC) patients still remains unclear. Here, we aimed to provide a comprehensive understanding of the prognostic values of SOCS family members in OC and to discover promising therapeutic targets for OC. Methods: We firstly analyzed the KEGG pathway enrichment to reveal the possible pathways associated with SOCS family. Next, we used public databases including cBioPortal, Human Protein Atlas and Oncomine to investigate genetic altera- tions and mRNA expression of SOCS family in OC patients. More importantly, we explored the prognostic value of each individual SOCS members in OC patients using Kaplan Meier plotter database. Results: SOCS family was mark- edly enriched in JAK-STAT signaling pathway.
    [Show full text]
  • Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
    Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int.
    [Show full text]
  • The Genomics of Oral Poliovirus Vaccine
    THE GENOMICS OF ORAL POLIOVIRUS VACCINE RESPONSE IN BANGLADESHI INFANTS by Genevieve L. Wojcik, MHS A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland, USA October 2013 © Genevieve L. Wojcik All Rights Reserved Abstract The success of Oral Poliovirus Vaccine (OPV) in eradicating poliovirus has set an example for the immense potential of oral vaccines in preventing enteric infections. It is widely considered the standard for oral vaccines aiming to elicit a mucosal immune response. Despite being validated in diverse populations worldwide, there still remain some individuals that fail to mount an adequate response to vaccination with OPV. It has been hypothesized that this may be due to host genetics, as the heritability is estimated to be high (60%) and there have been ethnic differences in response. To address this question we conducted a genome-wide association study (GWAS) in 357 Bangladeshi children comparing individuals that fail to mount an immune response to high responders of OPV. Four different approaches were conducted to elucidate genetic risk loci: (1) a traditional GWAS analysis, (2) a correlation of the GWAS results with signatures of positive selection, (3) an application of gene-level methods to the GWAS results, and (4) an application of pathway-level methods to the GWAS results. Because there is no consensus as to the best gene- and pathway-level methods, a simulation experiment was conducted to systematically evaluate their relative performance. The traditional GWAS assessed the association of 6.6 million single nucleotide polymorphisms (SNPs) across the human genome, adjusted for stunting (height-for-age Z-score (HAZ) < -2).
    [Show full text]
  • SOCS4 Expressed by Recombinant HSV Protects Against Cytokine Storm in a Mouse Model
    ONCOLOGY REPORTS 41: 1509-1520, 2019 SOCS4 expressed by recombinant HSV protects against cytokine storm in a mouse model SHUQI REN1, XIAOQING CHEN2, RONGQUAN HUANG3, GRACE GUOYING ZHOU2,4 and ZHUQING YUAN1 1Department of Microbiology and Immunology, Guangzhou Medical University, Guangzhou, Guangdong 510182; 2Immvira Co., Ltd., Shenzhen International Institute for Biomedical Research, Shenzhen, Guangdong 518116; 3Department of Pathology; 4School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 510182, P.R. China Received June 20, 2018; Accepted November 30, 2018 DOI: 10.3892/or.2018.6935 Abstract. Oncolytic viruses are genetically engineered viruses be a useful regulator to inhibit cytokine overproduction, and designed for the treatment of solid tumors, and are often coupled that HSV-SOCS4 may provide a possible solution to control with the antitumor immunity of the host. The challenge of cytokine storm and its consequences following induction by using oncolytic herpes simplex virus (oHSV) as an efficacious oncolytic virus treatment. oncolytic agent is the potential host tissue damage caused by the production of a range of cytokines following intratumoral Introduction oHSV injection. An HSV-suppressor of cytokine signaling 4 (SOCS4) recombinant virus was created to investigate whether Oncolytic viruses (OVs) are genetically engineered viruses it inhibits cytokine storm. Recombinant HSV-SOCS4 and that selectively replicate in and kill cancer cells, and represent HSV-1(F) were used to infect mice, and levels of several a novel type of antitumor therapy (1-4). This approach has representative cytokines, including monocyte chemoattractant numerous advantages as a cancer therapeutic agent due to its protein-1, interleukin (IL)-1β, tumor necrosis factor-α, IL-6 mechanism-based selectivity, potential for mediating tumor and interferon γ, in serum and bronchoalveolar lavage fluid cell death and possibility of expressing additional therapeutic (BALF) of infected mice were determined, and immune cells transgenes at the tumor site (5,6).
    [Show full text]
  • (SOCS) Genes Are Downregulated in Breast Cancer Soudeh Ghafouri-Fard1, Vahid Kholghi Oskooei1, Iman Azari1 and Mohammad Taheri2,3*
    Ghafouri-Fard et al. World Journal of Surgical Oncology (2018) 16:226 https://doi.org/10.1186/s12957-018-1529-9 RESEARCH Open Access Suppressor of cytokine signaling (SOCS) genes are downregulated in breast cancer Soudeh Ghafouri-Fard1, Vahid Kholghi Oskooei1, Iman Azari1 and Mohammad Taheri2,3* Abstract Background: The suppressor of cytokine signaling (SOCS) family of proteins are inhibitors of the cytokine-activated Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling pathway. We aimed at evaluation of expression of SOCS genes in breast cancer. Methods: We evaluated expression of SOCS1–3 and SOCS5 genes in breast cancer samples compared with the corresponding adjacent non-cancerous tissues (ANCTs). Results: All assessed SOCS genes were significantly downregulated in tumoral tissues compared with ANCTs. SOCS1 and SOCS2 genes were significantly overexpressed in higher grade samples, but SOCS3 had the opposite trend. Significant correlations were found between expression levels of SOCS genes. The SOCS1 and SOCS2 expression levels had the best specificity and sensitivity values respectively for breast cancer diagnosis. Conclusion: The current study provides further evidence for contribution of SOCS genes in breast cancer. Keywords: Suppressor of cytokine signaling, Breast cancer, Expression Introduction MCF-7 and HCC1937, two cell lines that are regarded The suppressor of cytokine signaling (SOCS) family of as prototypic breast cancer cell types. Moreover, they proteins have been recognized as potent inhibitors of have demonstrated responsiveness of SOCS1 and the cytokine-activated Janus kinase/signal transducers SOCS3 promoters to regulation by cytokine or growth and activators of transcription (JAK/STAT) signaling factor signals in spite of hypermethylation state of pathway through which they also suppress cytokine these promoters in these two cell lines [6].
    [Show full text]
  • Expression of SOCS1 and SOCS3 Genes Is Differentially Regulated in Breast Cancer Cells in Response to Proinflammatory Cytokine and Growth Factor Signals
    Oncogene (2007) 26, 1941–1948 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc ORIGINAL ARTICLE Expression of SOCS1 and SOCS3 genes is differentially regulated in breast cancer cells in response to proinflammatory cytokine and growth factor signals MK Evans1, C-R Yu2, A Lohani1, RM Mahdi2, X Liu2, AR Trzeciak1 and CE Egwuagu2 1Laboratory of Cellular and Molecular Biology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA and 2Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA DNA-hypermethylation of SOCS genes in breast, ova- Keywords: breast-cancer cells; SOCS; breast cancer; STAT; rian, squamous cell and hepatocellular carcinoma has led BRCA1; DNA hypermethylation; interferon to speculation that silencing of SOCS1 and SOCS3 genes might promote oncogenic transformation of epithelial tissues. To examine whether transcriptional silencing of SOCS genes is a common feature of human carcinoma, we have investigated regulation of SOCS genes expression by Introduction IFNc, IGF-1 and ionizing radiation, in a normal human mammary epithelial cell line (AG11134), two breast- Development of the mammary gland is regulated by cancer cell lines (MCF-7, HCC1937) and three prostate factors that coordinate proliferation, differentiation, cancer cell lines. Compared to normal breast cells, we maturation and apoptosis of mammary epithelial cells. observe a high level constitutive expression of SOCS2, Exquisite control of the initiation, strength and duration SOCS3, SOCS5, SOCS6, SOCS7, CIS and/or SOCS1 of signals from the diverse array of cytokines and genes in the human cancer cells. In MCF-7 and HCC1937 growth factors in mammalian breast is essential to the breast-cancer cells, transcription of SOCS1 is dramati- timely initiation of the menstrual cycle, lactation or cally up-regulated by IFNc and/or ionizing-radiation breast lobule involution (Medina, 2005).
    [Show full text]
  • Bioinformatics Analysis for the Identification of Differentially Expressed Genes and Related Signaling Pathways in H
    Bioinformatics analysis for the identification of differentially expressed genes and related signaling pathways in H. pylori-CagA transfected gastric cancer cells Dingyu Chen*, Chao Li, Yan Zhao, Jianjiang Zhou, Qinrong Wang and Yuan Xie* Key Laboratory of Endemic and Ethnic Diseases , Ministry of Education, Guizhou Medical University, Guiyang, China * These authors contributed equally to this work. ABSTRACT Aim. Helicobacter pylori cytotoxin-associated protein A (CagA) is an important vir- ulence factor known to induce gastric cancer development. However, the cause and the underlying molecular events of CagA induction remain unclear. Here, we applied integrated bioinformatics to identify the key genes involved in the process of CagA- induced gastric epithelial cell inflammation and can ceration to comprehend the potential molecular mechanisms involved. Materials and Methods. AGS cells were transected with pcDNA3.1 and pcDNA3.1::CagA for 24 h. The transfected cells were subjected to transcriptome sequencing to obtain the expressed genes. Differentially expressed genes (DEG) with adjusted P value < 0.05, | logFC |> 2 were screened, and the R package was applied for gene ontology (GO) enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The differential gene protein–protein interaction (PPI) network was constructed using the STRING Cytoscape application, which conducted visual analysis to create the key function networks and identify the key genes. Next, the Submitted 20 August 2020 Kaplan–Meier plotter survival analysis tool was employed to analyze the survival of the Accepted 11 March 2021 key genes derived from the PPI network. Further analysis of the key gene expressions Published 15 April 2021 in gastric cancer and normal tissues were performed based on The Cancer Genome Corresponding author Atlas (TCGA) database and RT-qPCR verification.
    [Show full text]
  • The Role of SOCS Proteins in the Development of Virus
    Xie et al. Virol J (2021) 18:74 https://doi.org/10.1186/s12985-021-01544-w REVIEW Open Access The role of SOCS proteins in the development of virus- induced hepatocellular carcinoma Jinyan Xie1,2†, Mingshu Wang1,2,3†, Anchun Cheng1,2,3* , Renyong Jia1,2,3, Dekang Zhu2,3, Mafeng Liu1,2,3, Shun Chen1,2,3, XinXin Zhao1,2,3, Qiao Yang1,2,3, Ying Wu1,2,3, Shaqiu Zhang1,2,3, Qihui Luo2, Yin Wang2, Zhiwen Xu2, Zhengli Chen2, Ling Zhu2, Yunya Liu1,2,3, Yanling Yu1,2,3, Ling Zhang1,2,3 and Xiaoyue Chen1,2,3 Abstract Background: Liver cancer has become one of the most common cancers and has a high mortality rate. Hepatocel- lular carcinoma is one of the most common liver cancers, and its occurrence and development process are associated with chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. Main body The serious consequences of chronic hepatitis virus infections are related to the viral invasion strategy. Furthermore, the viral escape mechanism has evolved during long-term struggles with the host. Studies have increasingly shown that suppressor of cytokine signaling (SOCS) proteins participate in the viral escape process. SOCS proteins play an important role in regulating cytokine signaling, particularly the Janus kinase-signal transducer and activator of tran- scription (JAK-STAT) signaling pathway. Cytokines stimulate the expression of SOCS proteins, in turn, SOCS proteins inhibit cytokine signaling by blocking the JAK-STAT signaling pathway, thereby achieving homeostasis. By utiliz- ing SOCS proteins, chronic hepatitis virus infection may destroy the host’s antiviral responses to achieve persistent infection.
    [Show full text]
  • Identification of Common Gene Networks Responsive To
    Cancer Gene Therapy (2014) 21, 542–548 © 2014 Nature America, Inc. All rights reserved 0929-1903/14 www.nature.com/cgt ORIGINAL ARTICLE Identification of common gene networks responsive to radiotherapy in human cancer cells D-L Hou1, L Chen2, B Liu1, L-N Song1 and T Fang1 Identification of the genes that are differentially expressed between radiosensitive and radioresistant cancers by global gene analysis may help to elucidate the mechanisms underlying tumor radioresistance and improve the efficacy of radiotherapy. An integrated analysis was conducted using publicly available GEO datasets to detect differentially expressed genes (DEGs) between cancer cells exhibiting radioresistance and cancer cells exhibiting radiosensitivity. Gene Ontology (GO) enrichment analyses, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and protein–protein interaction (PPI) networks analysis were also performed. Five GEO datasets including 16 samples of radiosensitive cancers and radioresistant cancers were obtained. A total of 688 DEGs across these studies were identified, of which 374 were upregulated and 314 were downregulated in radioresistant cancer cell. The most significantly enriched GO terms were regulation of transcription, DNA-dependent (GO: 0006355, P = 7.00E-09) for biological processes, while those for molecular functions was protein binding (GO: 0005515, P = 1.01E-28), and those for cellular component was cytoplasm (GO: 0005737, P = 2.81E-26). The most significantly enriched pathway in our KEGG analysis was Pathways in cancer (P = 4.20E-07). PPI network analysis showed that IFIH1 (Degree = 33) was selected as the most significant hub protein. This integrated analysis may help to predict responses to radiotherapy and may also provide insights into the development of individualized therapies and novel therapeutic targets.
    [Show full text]