Mountain Pine Beetle, Dendroctonus Ponderosae (Coleoptera: Curculionidae, Scolytinae) M 2495 Forests of Western North America

Total Page:16

File Type:pdf, Size:1020Kb

Mountain Pine Beetle, Dendroctonus Ponderosae (Coleoptera: Curculionidae, Scolytinae) M 2495 Forests of Western North America 2494 M Motile References collected extensively from Russia, including Sibe- ria and Russia’s (at the time) possessions of Alaska Barlow HS (1982) An introduction to the moths of South and California. As a colonel in the military, he had East Asia. Malayan Naturalist Society, Kuala Lumpur, unusual access to travel, and took full advantage of Malaysia, 305 pp, 50 pl his journeys, collecting and studying Coleoptera in Common IFB (1990) Moths of Australia. Melbourne Univer- sity Press, Carlton, Australia, 535 pp, 32 pl Europe, North Africa, and much of North America Covell CV Jr, (1984) A field guide to the moths of eastern in addition to the locations previously mentioned. North America. Houghton Mifflin, Boston, MA, 496 pp, Indeed, it is sometimes stated that his collecting 64 pl trips were a cover for military intelligence. He also Dominick RB, Hodges RW, Dominick T, Edwards CR, Hodges ER (eds) (1971) – The moths of America north of Mex- processed enormous amounts of material collected ico, including Greenland. Wedge Entomological Foun- by others. Motschulsky was a strong-illed, inde- dation, Washington, DC, 27 fasc pendent, and controversial individual. He was pos- Hering EM (1951) Biology of the leaf miners. W. Junk, The sessive, superficial with his descriptions, rough on Hague, The Netherlands, 420 pp, 2 pl Holloway JD, Kibby G, Peggie D (2001) The families of Male- specimens, and unconventional with his mounting sian moths and butterflies. E. J. Brill, Leiden, The Neth- techniques. This led him to clash with other coleop- erlands, 455 pp, 8 pl terists of the time, particularly Kraatz. He died June Inoue H, Sugi S, Kuroko H, Moriuti S, Kawabe A (1982) Moths of Japan. Kodansha, Tokyo, Japan, 2 vol, 392 pl 5, 1871, at Simferopol, Crimea, Russia. Krenek V (2000) Small moths of Europe. Cesky Tesín, Czech Rep, 174 pp Pinhey EGC (1975) Moths of Southern Africa. Tafelberg, References Capetown, South Africa, 273 pp, 63 pl Robinson GS, Tuck KR, Shaffer M (1994) A field guide to the smaller moths of south-east Asia. Malaysian Naturalist Essig EO (1931) A history of entomology. The Macmillan Society, Kuala Lumpur, Malaysia, 309 pp, 32 pl Company, New York, 1029 pp Watson A, Whalley PES (1975) The dictionary of butterflies Herman LH (2001) Motschulsky, Victor Ivanovich. Bull Am and moths in color. McGraw Hill, New York, NY, 296 pp, Mus Nat Hist 265:110–112 144 pl Young M (1997) The natural history of moths. T. & A.D. Poyser, London, United Kingdom, 271 pp, 16 pl Mountain Midges Motile Members of the family Deuterophlebiidae (order Diptera). Active. Able to move freely. Flies Motor Neurons Mountain Pine Beetle, Neurons associated with the central nervous sys- Dendroctonus ponderosae tem that transmit information to muscles and (Coleoptera: Curculionidae, glands. Scolytinae) barbara bentz Motschulsky, Victor Ivanovich USDA Forest Service, Logan, UT, USA Victor Motschulsky was born in 1810 in Russia, The mountain pine beetle, Dendroctonus pondero- and became one of the most famous Russian ento- sae Hopkins, is considered one of the most eco- mologists and greatest coleopterists of his time. He nomically important insect species in coniferous Mountain Pine Beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae) M 2495 forests of western North America. Adult beetles other mountain pine beetles on the tree. Aggrega- are capable of successfully reproducing in at least tion pheromones enable mountain pine beetles to 12 North American species of Pinus (Pineacea) overcome the defenses of large, vigorous host trees from southern British Columbia to northern Baja by rapid and highly concentrated attacks. In this Mexico. Mountain pine beetle adults attack live manner, mountain pine beetles are functionally trees, and typically must kill the host for success- able to expand their own food supply. Larger trees ful reproduction. Population outbreaks are most require more adults to overcome the tree resin common in a few selected host species, such as defensives, but also produce a larger number of lodgepole pine (P. contorta), ponderosa pine brood the following generation for continued tree (P. ponderosa), western white pine (P. monticola), attack. Because a single tree is a finite resource, whitebark pine (P. albicaulis), and sugar pine pheromones are also produced which interrupt (P. lambertiana), which often grow in relatively the aggregation of adults on a tree. The interrup- homogeneous groups over large acreages. Moun- tive aggregation pheromones direct incoming tain pine beetles typically attack older lodgepole adults to unoccupied portions of the tree under and whitebark pine (e.g., greater than 80 years), attack, and also to nearby host trees, thereby reduc- while younger ponderosa, western white, and ing competition for resources within a single tree. sugar pine can also be attacked. Trees that are In this manner, during an outbreak, thousands of stressed by factors such as overcrowding, water, trees can be attacked and killed in a single year. and pathogens are especially vulnerable. Once inside a new host tree, adults mate and The lifecycle of the mountain pine beetle is eggs are laid individually on each side of galleries highly dependent upon temperature. Commonly, excavated vertically in the phloem. Phloem is the populations are univoltine, although at higher ele- inner tissue layer just below the outer bark which vations where average temperatures are colder, 2 translocates carbohydrates up and down the tree. and sometimes 3 years are required to complete a Mountain pine beetle larvae feed horizontally in generation. Adult beetles emerge from host trees the phloem, cutting off nutrient translocation, and disperse to new hosts in the warm summer thereby killing the host tree. Larval development months when temperatures are above 15.5°C. rate, which is highly dependent on temperature, Although timing of emergence will vary from dictates the life stages present during the winter. year to year depending on beetle development Available evidence indicates that the mountain and temperature, peak adult emergence typically pine beetle does not diapause, and all larval life occurs within a 2–3 week time span. Rapid and stages may be found overwintering under the bark synchronous emergence of the population is of host trees. The larvae, which are intolerant of essential for mountain pine beetle success in over- freezing temperatures, survive low temperatures coming the resinous defenses of healthy host trees. by supercooling. Populations in Idaho have been Adult dispersal involves movement within an found to survive temperatures as low as −35°C. infested patch of trees, movement between infested Mortality due to cold temperatures is usually patches of trees, and movement out of the imme- greatest during the spring and fall months when diate area for initiation of new patches. Long range larvae may not be appropriately acclimated to dra- dispersal to new areas is often aided by wind cur- matic swings in temperature. Woodpeckers, clerid rents, whereas local dispersal is directed by aggre- beetles (Enoclerus spp., Thanasimus spp.), and par- gation pheromones, compounds released when asitic wasps are also the cause of a small amount of adult beetles attack and feed on new host trees. mountain pine beetle mortality, mostly at endemic Monoterpenes, which are major constituents of population levels. pine resin, are converted by adult beetles to com- Pupation occurs in the early summer followed pounds which, when released, act to aggregate by a teneral adult stage during which the new 2496 M Mountain Pine Beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae) adults feed on a diverse flora of microbial symbi- growth. A mosaic of vegetation types across a onts including fungi (Ophiostoma spp.) and yeasts landscape, partitioned by age and host and non- found within the pupal chamber. During this feed- host species, may also help to reduce large scale, ing period, the microorganisms are acquired in widespread mortality. the mycangia, a specialized structure of the integ- Options for management of mountain pine ument. When the adult beetle emerges from the beetle populations depend on the specific land use host tree for dispersal to a new tree, the fungi and objectives. Forested areas targeted for timber pro- yeasts are carried inside the mycangia and inocu- duction can be silviculturally treated to facilitate lated into the phloem of the new host. Although reduced susceptibility to mountain pine beetle the role of Ophiostoma spp. in mountain pine outbreaks. Many areas designated as wilderness, beetle population dynamics are not fully under- however, are managed as natural areas and timber stood, at least one species appears to be beneficial harvest is not a major objective. Within these areas to population success, while detrimental effects the historical role of the mountain pine beetle in are attributed to another species. Following matu- forest ecosystems may be emphasized. Mountain ration feeding in the teneral adult stage, new adults pine beetle populations, which are native to western emerge from the dead trees to disperse, attack new North America, have evolved with their pine hosts live host trees, and begin the cycle again. and are significant components of healthy, func- Given appropriate weather and stand condi- tioning ecosystems. In particular, the mountain tions, populations of mountain pine beetles are pine beetle and fire are considered important dis- capable of attacking and killing hundreds of thou- turbance agents favoring the regeneration of lodge- sands of trees in a few years. This magnitude of pole pine. While tree death is a difficult concept for mortality can disrupt forest management plans, humans, it is a normal step in the rejuvenation and recreation, watershed, wildlife, and timber pro- succession of forest ecosystems, and the mountain duction. In areas of high value, such as forest pine beetle is an important part of this process. campgrounds and ski areas, direct control tactics Bark Beetles in the Genus Dendroctonus such as insecticides are often used to temporarily reduce mountain pine beetle caused mortality.
Recommended publications
  • Mountain Pine Beetle Host Selection Behavior Confirms High Resistance in Great Basin Bristlecone Pine
    Forest Ecology and Management 402 (2017) 12–20 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Mountain pine beetle host selection behavior confirms high resistance in Great Basin bristlecone pine ⇑ Erika L. Eidson a, Karen E. Mock a,b, Barbara J. Bentz c, a Wildland Resources Department, Utah State University, Logan, UT 84321, USA b Ecology Center, Utah State University, Logan, UT 84321, USA c USDA Forest Service Rocky Mountain Research Station, Logan, UT 84321, USA article info abstract Article history: Over the last two decades, mountain pine beetle (Dendroctonus ponderosae) populations reached epi- Received 9 February 2017 demic levels across much of western North America, including high elevations where cool temperatures Received in revised form 12 May 2017 previously limited mountain pine beetle persistence. Many high-elevation pine species are susceptible Accepted 8 June 2017 hosts and experienced high levels of mortality in recent outbreaks, but co-occurring Great Basin bristle- cone pines (Pinus longaeva) were not attacked. Using no-choice attack box experiments, we compared Great Basin bristlecone pine resistance to mountain pine beetle with that of limber pine (P. flexilis), a Keywords: well-documented mountain pine beetle host. We confined sets of mountain pine beetles onto 36 pairs Mountain pine beetle of living Great Basin bristlecone and limber pines and recorded beetle status after 48 h. To test the role Great Basin bristlecone pine Host selection of induced defenses in Great Basin bristlecone pine resistance, we then repeated the tests on 20 paired Tree resistance sections of Great Basin bristlecone and limber pines that had been recently cut, thereby removing their capacity for induced defensive reactions to an attack.
    [Show full text]
  • 2017 Idaho Forest Health Highlights
    Idaho’s Forest Resources Idaho has over 21 million acres of forest land, from the Canadian border in the north, to the Great Basin in the south. Elevations range from less than 1,000 feet along the Clearwater River valley to over 12,000 feet in the Lost River Range of southern Idaho. The mixed conifer forests in the Panhandle area can be moist forest types that include tree species found on the Pacific Coast such as western hemlock, Pacific yew, and western redcedar. Southern Idaho forests are generally drier, and ponderosa pine and Douglas-fir are most common. Lodgepole pine, Engelmann spruce, whitebark pine and subalpine fir occur at higher elevations throughout the state. A Diverse State The Salmon River Valley generally divides the moister mixed conifer forests of the Panhandle region from the drier forests of southern Idaho. Much of southern Idaho is rangeland with scattered juniper- dominated woodlands typical of the Great Basin. The highest mountain peaks also occur in southern Idaho. Most of the com- mercial forest land is found in the north, and Douglas-fir, grand fir, western larch, lodgepole pine and western redcedar are valuable timber species. Idaho’s forests are important for many reasons. Forests are home to wildlife, provide watersheds for drinking water, and protect streams that are habitat for many species of fish, including salmon, steelhead and bull trout. Forests are also important for recreation, and Idaho has over 4.5 million acres of wilderness. Idaho’s forests are renewable, and are an important resource for the forest products industry. Maintaining healthy for- ests is crucial to protect all the things that they provide.
    [Show full text]
  • Characteristics of Mountain Pine Beetles Reared in Four Pine Hostsl
    Characteristics of Mountain Pine Beetles Reared in Four Pine Hostsl GENE D. AMMAN Intermountain Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture, Ogden, Utah 84401 ABSTRACT Environ. Entomo!. ]]: 590-593 (1982) Mountain pine beetles, Dendroctonus ponderosae Hopkins(Coleoptera: Scolytidae),obtained from naturally infested lodgepole pine, Pinus contorta var. latifo/ia Engelmann, were reared in four common hosts: ponderosa pine, P. ponderosa Lawson; western white pine, P. monticola Douglas; whitebark pine, P. albicaulis Engelmann; and lodgepole pine. Emerging beetles were collected daily, counted, and sexed, and pronotal,width was measured. Significantdifferencesin brood production, sizeoffemale beetles, and developmentalrate, but not sex ratio, occurred among hosts. Differenceswere not all associatedwith the same speciesof tree. However, the results indicate that, overall, lodgepole pine is the poorest, and ponderosa pine is the best, of the four hosts for mountain pine beetles. The mountain pine beetle, Dendroctonus pon- ditions, any acceptable host and sometimes any derosae Hopkins (Coleoptera: Sco]ytidae), infests conifer may be attacked. 13 species of pine native to North America (Wood Another interesting aspect of host switching by 1963) and several exotics (Furniss and Schenk 1969, the mountain pine beetle, and one which this study McCambridge 1975). In addition, it infests severa] addresses, is the effect on the first-generation pro- nonpine hosts from which little or no brood is pro- geny when parents from lodgepole pine are intro- duced (BeaI1939, Evenden et at. 1943, Furniss and duced into other pine hosts. Host effects were Schenk 1969). The phenomenon of mountain pine evaluated by using four mountain pine beetle char- beetles infesting one host species and their brood acteristics-brood production, female size, sex ratio, then infesting a different host species is of interest to and developmental rate.
    [Show full text]
  • The Mountain Pine Beetle
    The Mountain Pine Beetle A Synthesis of Biology, Management, and Impacts on Lodgepole Pine edited by Les Safranyik and Bill Wilson The Mountain Pine Beetle A Synthesis of Biology, Management, and Impacts on Lodgepole Pine edited by Les Safranyik and Bill Wilson Sponsored by the Government of Canada through the Mountain Pine Beetle Initiative, a program administered by Natural Resources Canada, Canadian Forest Service. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre Victoria, BC Canada 2006 Pacific Forestry Centre 506 West Burnside Road Victoria, British Columbia V8Z 1M5 Phone: (250) 363-0600 www.pfc.cfs.nrcan.gc.ca © Her Majesty the Queen in Right of Canada, 2006 Printed in Canada Library and Archives Canada Cataloguing in Publication Safranyik, L., 1938- The mountain pine beetle : a synthesis of biology, management, and impacts on lodgepole pine / by Les Safranyik and Bill Wilson. Includes bibliographical references. Available also on the Internet and on CD-ROM. ISBN 0-662-42623-1 Cat. no.: Fo144-4/2006E 1. Mountain pine beetle. 2. Lodgepole pine--Diseases and pests--Control--Canada, Western. 3. Lodgepole pine--Diseases and pests--Economic aspects--Canada, Western. 4. Lodgepole pine—Diseases and pests--Control. 5. Forest management--Canada, Western. I. Wilson, Bill, 1950- II. Pacific Forestry Centre III. Title. SB945.M78S33 2006 634.9’7516768 C2006-980019-7 This book presents a synthesis of published information on mountain pine beetle (Dendroctonus ponderosae Hopkins [Coleoptera: Scolytidae]) biology and management with an emphasis on lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests of western Canada. Intended as a reference for researchers as well as forest managers, the book covers three main subject areas: mountain pine beetle biology, management, and socioeconomic concerns.
    [Show full text]
  • Bark Beetles Integrated Pest Management for Home Gardeners and Landscape Professionals
    BARK BEETLES Integrated Pest Management for Home Gardeners and Landscape Professionals Bark beetles, family Scolytidae, are California now has 20 invasive spe- common pests of conifers (such as cies of bark beetles, of which 10 spe- pines) and some attack broadleaf trees. cies have been discovered since 2002. Over 600 species occur in the United The biology of these new invaders is States and Canada with approximately poorly understood. For more informa- 200 in California alone. The most com- tion on these new species, including mon species infesting pines in urban illustrations to help you identify them, (actual size) landscapes and at the wildland-urban see the USDA Forest Service pamphlet, interface in California are the engraver Invasive Bark Beetles, in References. beetles, the red turpentine beetle, and the western pine beetle (See Table 1 Other common wood-boring pests in Figure 1. Adult western pine beetle. for scientific names). In high elevation landscape trees and shrubs include landscapes, such as the Tahoe Basin clearwing moths, roundheaded area or the San Bernardino Mountains, borers, and flatheaded borers. Cer- the Jeffrey pine beetle and mountain tain wood borers survive the milling Identifying Bark Beetles by their Damage pine beetle are also frequent pests process and may emerge from wood and Signs. The species of tree attacked of pines. Two recently invasive spe- in structures or furniture including and the location of damage on the tree cies, the Mediterranean pine engraver some roundheaded and flatheaded help in identifying the bark beetle spe- and the redhaired pine bark beetle, borers and woodwasps. Others colo- cies present (Table 1).
    [Show full text]
  • 2002 Forest Health Highlight, Wyoming 2002
    The Forest Resource Wyoming contains 9.8 million acres of forested lands. These forests provide many valuable resources including wood fiber, recreation, tourism, wildlife and fish habitat, cattle/sheep grazing, mineral resources, and water production. Approximately 4.3 million acres are used commercially for wood fiber production. Over 17,000 forested acres were harvested in 2002. Water from forested lands provides 19,437 miles of streams and 427,219 surface acres of lakes in Wyoming. Special Issues Wildfires - Four years of extensive, severe drought promoted a busy wildfire season in 2002 for Wyoming. Over 270 wildfires started in Wyoming during the year and burned over 56,000 acres of forest and range lands. Largest Wildfires Location Dates # of - (nearby Started - acres Wyoming towns) Ended burned 2002 Daley June 28 - Gillette 37,000 Complex July 16 Reese June 29 - Wheatland 19,334 Mountain July 11 South Fork June 30 - Lander 15,000 II July 20 June 7 - Hensel Wheatland 14,730 Aug.5 Aug.24 - Pass Creek Lander 13,433 Sept.9 Forest Health - "It's not a good time to be a conifer in WY," said an observer who was extensively traveling Wyoming's forests in 2002. In recent years, many bark beetle populations increased to outbreak and epidemic levels in these forests. The various bark beetle infestations are dramatically killing thousands of conifers throughout the forests in Wyoming. Adding to the beetle problems are disease problems affecting limber and whitebark pines, and subalpine firs. Mountain pine beetle, Dendroctonus ponderosae, attacks lodgepole, ponderosa, limber, and whitebark pines in Wyoming. This beetle is killing an estimated 200,000 pines in Wyoming.
    [Show full text]
  • The Mountain Pine Beetle on the Shoshone Forest
    Volume 9, Issue 1 A forest stewardship and wildfire mitigation newsletter for the rural land- Spring 2011 owner, provided by Fremont County Firewise The Mountain Pine Beetle on the Shoshone Forest is currently planned. fire suppression costs and in- Addressing forest creased public health has been an and firefighter emphasis area on the safety. Shoshone since 2002. The Shoshone’s timber The 2010 aerial sur- and fuels programs vey indicated that 1.1 plan complementary million acres of the work to mitigate im- Shoshone’s 2.4 million pacts from insect in- acres are impacted by festations, with more insects. Mortality in importance placed mature trees in af- It is no surprise, but the the public as long as it around high value ar- fected areas ranges mountain pine beetles is safe to do so. eas such as communi- from 25 to 100 per- are killing trees at epi- Work on assessments ties, private property, cent. Additional mor- demic levels and will and hazard tree re- recreation facilities, tality is expected, affect the landscape of moval in camp- and infrastructure. most notably on the forest for years to grounds, resort areas, southern portions of come. On the Shoshone The goal of vegetation and other developed the Shoshone in areas National Forest, and management in re- sites is a high priority. such as the Wind surrounding lands, sponse to the insect Work has been per- River drainage. spruce bark beetles, infestation is to create formed in the past Douglas fir beetles, and a healthier, stronger, Project areas to com- years, and will con- mountain pine beetles sustainable forest that bat this mortality are tinue through fiscal are all present.
    [Show full text]
  • Managing Mountain Pine Beetle (MPB) Attacking Urban and Shelterbelt Trees in Montana
    Managing Mountain Pine Beetle (MPB) Attacking Urban And Shelterbelt Trees In Montana 1) Learn to recognize the signs and symptoms of MPB attack. Evaluate the degree of risk to pine trees on your property. Is the property close to an infested forest? Are there infested trees on your property or in the general area? 2) Practice prevention. Remove and destroy infested trees by June 1 before beetles emerge to attack nearby trees. Do not bring infested firewood onto your property. If the pine trees are at risk of attack keep them well watered. 3) If your pine trees are at risk, consider protecting them. Trees can be protected by spraying the trunks with an insecticide or by applying a repellent pheromone prior to July 1. 4) During the fall season evaluate MPB damage to your pine trees and develop a management plan that utilizes prevention and protection if necessary. The current infestation in Montana will likely last for at least another 3 to 5 more years. Signs And Symptoms Of Mountain Pine Beetle Attack In Montana beetles typically fly during July and August when they attack pine trees. All species of pine can be attacked, but native lodgepole and ponderosa pine, and introduced ornamental Scots pine are preferred hosts. Hundreds of the tiny beetles bore through the tree bark and lay eggs within the inner bark. The white grub-like larvae feed on the inside of the bark. Pitch tubes produced at beetle entry points, and boring dust that accumulates at the base of the tree, are some of the first signs of attack that become visible in August and September.
    [Show full text]
  • Monitoring Mountain Pine Beetle-Caused Mortality of Lodgepole Pine in the Sawtooth and Bear Valleys of South Central Idaho, 2004
    Monitoring Mountain Pine Beetle-Caused Mortality of Lodgepole Pine in the Sawtooth and Bear Valleys of South Central Idaho, 2004 Report: BFO-PR-05-01 Prepared by: Carl Jorgensen Entomologist and Philip Mocettini Biological Technician Forest Health Protection-Boise Field Office Intermountain Region 1249 Vinnell Way, Suite 200 Boise, ID 83709 INTRODUCTION Mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins, is a native insect that plays a major ecological role in mature and overmature pine forests of western United States and Canada. Having killed millions of pine trees in the past, MPB has a rich history in the Intermountain West. MPB outbreaks can cause dramatic tree mortality over extensive areas in only a few years often killing the largest host trees (>8 inch diameter) in high density stands (>100 sq. ft./acre basal area). These MPB outbreaks reduce average stand density, diameter and age of live trees. They also influence such things as canopy closure, stand structure, species composition, forage production, wildlife habitat, fuel loading, water yields, and aesthetics. Downfall and woody debris following outbreaks can also hamper access and use of land by livestock, big game and humans (McGregor and Cole 1985). Mountain pine beetle populations have been building to epidemic levels in the Stanley Basin of the Sawtooth National Recreation Area (SNRA) since 1996 (Thier 1997). In 1998, the SNRA staff began spraying individual lodgepole pines in campgrounds with insecticides to protect them from attack by MPB. Other MPB management methods, such as verbenone and silvicultural treatments, have also been used on the SNRA to protect trees in some areas.
    [Show full text]
  • Symbiotic Fungi and the Mountain Pine Beetle: Beetle Mycophagy and Fungal Interactions with Parasitoids and Microorganisms
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2006 Symbiotic fungi and the mountain pine beetle: Beetle mycophagy and fungal interactions with parasitoids and microorganisms Aaron S. Adams The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Adams, Aaron S., "Symbiotic fungi and the mountain pine beetle: Beetle mycophagy and fungal interactions with parasitoids and microorganisms" (2006). Graduate Student Theses, Dissertations, & Professional Papers. 9596. https://scholarworks.umt.edu/etd/9596 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Maureen and Mike MANSFIELD LIBRARY The University of Montana Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. **Please check "Yes" or "No" and provide signature** Yes, I grant permission No, I do not grant permission Author's Signature: Date: S Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent. 8/98 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. SYMBIOTIC FUNGI AND THE MOUNTAIN PINE BEETLE: BEETLE MYCOPHAGY AND FUNGAL INTERACTIONS WITH PARASITOIDS AND MICROORGANISMS by Aaron S.
    [Show full text]
  • Whitebark Pine in The
    A DENDROECOLOGICAL ASSESSMENT OF WHITEBARK PINE IN THE SAWTOOTH SALMON RIVER REGION IDAHO by Dana Lee Perkins A Thesis Submitted to the Faculty of the SCHOOL OF RENE\VABLE NATURAL RESOURCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE WITH A MAJOR IN RENEWABLE NATURAL RESOURCES STUDIES In the Graduate College THE UNIVERSITY OF ARIZONA 1 9 9 5 2 STATEMENT BY AUTHOR This thesis has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgement the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author. SIGNED: _________________________ APPROVAL BY THESIS DIRECTORS This thesis has been approved on the date shown below: ~,~·~- Date Associate Professor of Dendrochronology and vVatershed Jv ~na I I Date Dr. Ma CQlm K. Hugl~s Date Professor ofDem:lmelironology and Watershed Management 3 ACKNOWLEDGEMENTS I thank Denis Norton, Tom Harlan, Tony Caprio, Bob Lofgren, Henri Grissino­ Mayer, Chris Baisin, Ed Wright and Hal Fritts for assistance, expertise and discus­ sion throughout the project. I am grateful to Sandy Gebhards, Carolyn Perkins, Sandy Craig, and Andrea Hernandez for mountain field assistance.
    [Show full text]
  • The Mountain Pine Beetle a Synthesis of Biology, Management, and Impacts on Lodgepole Pine
    The Mountain Pine Beetle A Synthesis of Biology, Management, and Impacts on Lodgepole Pine edited by Les Safranyik and Bill Wilson The Mountain Pine Beetle A Synthesis of Biology, Management, and Impacts on Lodgepole Pine edited by Les Safranyik and Bill Wilson Sponsored by the Government of Canada through the Mountain Pine Beetle Initiative, a program administered by Natural Resources Canada, Canadian Forest Service. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre Victoria, BC Canada 2006 Pacific Forestry Centre 506 West Burnside Road Victoria, British Columbia V8Z 1M5 Phone: (250) 363-0600 www.pfc.cfs.nrcan.gc.ca © Her Majesty the Queen in Right of Canada, 2006 Printed in Canada Library and Archives Canada Cataloguing in Publication Safranyik, L., 1938- The mountain pine beetle : a synthesis of biology, management, and impacts on lodgepole pine / by Les Safranyik and Bill Wilson. Includes bibliographical references. Available also on the Internet and on CD-ROM. ISBN 0-662-42623-1 Cat. no.: Fo144-4/2006E 1. Mountain pine beetle. 2. Lodgepole pine--Diseases and pests--Control--Canada, Western. 3. Lodgepole pine--Diseases and pests--Economic aspects--Canada, Western. 4. Lodgepole pine—Diseases and pests--Control. 5. Forest management--Canada, Western. I. Wilson, Bill, 1950- II. Pacific Forestry Centre III. Title. SB945.M78S33 2006 634.9’7516768 C2006-980019-7 This book presents a synthesis of published information on mountain pine beetle (Dendroctonus ponderosae Hopkins [Coleoptera: Scolytidae]) biology and management with an emphasis on lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests of western Canada. Intended as a reference for researchers as well as forest managers, the book covers three main subject areas: mountain pine beetle biology, management, and socioeconomic concerns.
    [Show full text]