The Sea-Level Fingerprints of Ice-Sheet Collapse During Interglacial Periods
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Eustatic Curve for the Middle Jurassic–Cretaceous Based on Russian Platform and Siberian Stratigraphy: Zonal Resolution1
Eustatic Curve for the Middle Jurassic–Cretaceous Based on Russian Platform and Siberian Stratigraphy: Zonal Resolution1 D. Sahagian,2 O. Pinous,2 A. Olferiev,3 and V. Zakharov4 ABSTRACT sediment gaps left by unconformities in the cen- tral part of the Russian platform with data from We have used the stratigraphy of the central part stratigraphic information from the more continu- of the Russian platform and surrounding regions to ous stratigraphy of the neighboring subsiding construct a calibrated eustatic curve for the regions, such as northern Siberia. Although these Bajocian through the Santonian. The study area is sections reflect subsidence, the time scale of vari- centrally located in the large Eurasian continental ations in subsidence rate is probably long relative craton, and was covered by shallow seas during to the duration of the stratigraphic gaps to be much of the Jurassic and Cretaceous. The geo- filled, so the subsidence rate can be calculated graphic setting was a very low-gradient ramp that and filtered from the stratigraphic data. We thus was repeatedly flooded and exposed. Analysis of have compiled a more complete eustatic curve stratal geometry of the region suggests tectonic sta- than would be possible on the basis of Russian bility throughout most of Mesozoic marine deposi- platform stratigraphy alone. tion. The paleogeography of the region led to Relative sea level curves were generated by back- extremely low rates of sediment influx. As a result, stripping stratigraphic data from well and outcrop accommodation potential was limited and is inter- sections distributed throughout the central part of preted to have been determined primarily by the Russian platform. -
Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene
Sea level and global ice volumes from the Last Glacial Maximum to the Holocene Kurt Lambecka,b,1, Hélène Roubya,b, Anthony Purcella, Yiying Sunc, and Malcolm Sambridgea aResearch School of Earth Sciences, The Australian National University, Canberra, ACT 0200, Australia; bLaboratoire de Géologie de l’École Normale Supérieure, UMR 8538 du CNRS, 75231 Paris, France; and cDepartment of Earth Sciences, University of Hong Kong, Hong Kong, China This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2009. Contributed by Kurt Lambeck, September 12, 2014 (sent for review July 1, 2014; reviewed by Edouard Bard, Jerry X. Mitrovica, and Peter U. Clark) The major cause of sea-level change during ice ages is the exchange for the Holocene for which the direct measures of past sea level are of water between ice and ocean and the planet’s dynamic response relatively abundant, for example, exhibit differences both in phase to the changing surface load. Inversion of ∼1,000 observations for and in noise characteristics between the two data [compare, for the past 35,000 y from localities far from former ice margins has example, the Holocene parts of oxygen isotope records from the provided new constraints on the fluctuation of ice volume in this Pacific (9) and from two Red Sea cores (10)]. interval. Key results are: (i) a rapid final fall in global sea level of Past sea level is measured with respect to its present position ∼40 m in <2,000 y at the onset of the glacial maximum ∼30,000 y and contains information on both land movement and changes in before present (30 ka BP); (ii) a slow fall to −134 m from 29 to 21 ka ocean volume. -
Sea Level and Climate Introduction
Sea Level and Climate Introduction Global sea level and the Earth’s climate are closely linked. The Earth’s climate has warmed about 1°C (1.8°F) during the last 100 years. As the climate has warmed following the end of a recent cold period known as the “Little Ice Age” in the 19th century, sea level has been rising about 1 to 2 millimeters per year due to the reduction in volume of ice caps, ice fields, and mountain glaciers in addition to the thermal expansion of ocean water. If present trends continue, including an increase in global temperatures caused by increased greenhouse-gas emissions, many of the world’s mountain glaciers will disap- pear. For example, at the current rate of melting, most glaciers will be gone from Glacier National Park, Montana, by the middle of the next century (fig. 1). In Iceland, about 11 percent of the island is covered by glaciers (mostly ice caps). If warm- ing continues, Iceland’s glaciers will decrease by 40 percent by 2100 and virtually disappear by 2200. Most of the current global land ice mass is located in the Antarctic and Greenland ice sheets (table 1). Complete melt- ing of these ice sheets could lead to a sea-level rise of about 80 meters, whereas melting of all other glaciers could lead to a Figure 1. Grinnell Glacier in Glacier National Park, Montana; sea-level rise of only one-half meter. photograph by Carl H. Key, USGS, in 1981. The glacier has been retreating rapidly since the early 1900’s. -
Quaternary Stratigraphy of the Northwind Ridge, Arctic Ocean
Quaternary Stratigraphy of the Northwind Ridge, Arctic Ocean THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Kevin Allen Crawford B.S. Graduate Program in Geological Sciences The Ohio State University 2010 Master's Examination Committee: Peter-Noel Webb, Advisor Leonid Polyak Lawrence A. Krissek Copyright by Kevin A Crawford 2010 Abstract The Arctic Ocean plays an important role in modulating the world‘s climate. Changes in sea-ice albedo and the export of freshwater into the North Atlantic could have serious repercussions to the climate patterns far beyond the Arctic. To understand fully the impacts of the retreating sea-ice cover and the warming Arctic Ocean we need to look into the past for clues. Paleoenvironments of the Arctic Ocean can be reconstructed by using sea-floor sediment constituents, such as paleobiological and mineral components as well as chemical and paleomagnetic parameters. Three cores raised from the Northwind Ridge, north of the Alaskan continental margin, were chosen to investigate sedimentary patterns and related paleoenvironments in the western Arctic Ocean across a time frame from the Holocene to estimated early Pleistocene. These cores show a range of sedimentation rates decreasing from south to north, thus allowing a development of a relatively high-resolution Upper Quaternary stratigraphy at the southern part of the ridge and a lower-resolution, yet longer stratigraphy for its northern part. In addition to this long stratigraphic coverage, the northern core has well-preserved calcareous microfauna, which provides new insights into paleoceanographic environments. -
Sea Level: a Review of Present-Day and Recent-Past Changes and Variability
Journal of Geodynamics 58 (2012) 96–109 Contents lists available at SciVerse ScienceDirect Journal of Geodynamics jo urnal homepage: http://www.elsevier.com/locate/jog Review Sea level: A review of present-day and recent-past changes and variability ∗ Benoit Meyssignac , Anny Cazenave LEGOS-CNES, Toulouse, France a r t i c l e i n f o a b s t r a c t Article history: In this review article, we summarize observations of sea level variations, globally and regionally, during Received 12 December 2011 the 20th century and the last 2 decades. Over these periods, the global mean sea level rose at rates of Received in revised form 9 March 2012 1.7 mm/yr and 3.2 mm/yr respectively, as a result of both increase of ocean thermal expansion and land Accepted 10 March 2012 ice loss. The regional sea level variations, however, have been dominated by the thermal expansion factor Available online 19 March 2012 over the last decades even though other factors like ocean salinity or the solid Earth’s response to the last deglaciation can have played a role. We also present examples of total local sea level variations Keywords: that include the global mean rise, the regional variability and vertical crustal motions, focusing on the Sea level Altimetry tropical Pacific islands. Finally we address the future evolution of the global mean sea level under on- going warming climate and the associated regional variability. Expected impacts of future sea level rise Global mean sea level Regional sea level are briefly presented. Sea level reconstruction © 2012 Elsevier Ltd. -
Variations of Okhotsk Sea Oxygen Minimum Zone: Comparison of Foraminiferal and Sedimentological Records for Latest MIS 12–11C and Latest MIS 2–1
Marine Micropaleontology 121 (2015) 52–69 Contents lists available at ScienceDirect Marine Micropaleontology journal homepage: www.elsevier.com/locate/marmicro Variations of Okhotsk Sea oxygen minimum zone: Comparison of foraminiferal and sedimentological records for latest MIS 12–11c and latest MIS 2–1 Natalia Bubenshchikova a,⁎,DirkNürnbergb,RalfTiedemannc a P.P. Shirshov Institute of Oceanology, Nakhimovski pr. 36, Moscow 117997, Russia b GEOMAR, Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstr. 1–3, D-24148 Kiel, Germany c Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Alten Hafen 26, D-27568, Bremerhaven, Germany article info abstract Article history: Benthic foraminiferal assemblage compositions, foraminiferal and sedimentological proxies were analyzed in Received 9 October 2014 core MD01-2415 from the northern slope of the Okhotsk Sea to compare variations of productivity and oxygen Received in revised form 21 September 2015 minimum zone (OMZ) intensity during the latest marine isotope stage (MIS) 12–11c and latest MIS 2–1. The ben- Accepted 30 September 2015 thic assemblages reveal close similarity between the two climatic cycles. The absence of benthic assemblages Available online 8 October 2015 during the latest MIS 12 and the presence of the low-productivity Angulogerina angulosa assemblage during the latest MIS 2 suggest the disappearance of the OMZ. This regime was related to almost perennial ice cover Keywords: Benthic foraminifera with periods of active ice rafting during the latest MIS 12, while it was attributed to prolonged seasonal ice Organic matter flux cover, low surface productivity and enhanced formation of well-oxygenated water masses in the Okhotsk Sea Oxygen minimum zone during the latest MIS 2. -
Sea Level Rise
A joint special edition on Sea Level Rise Image credit: US National Park Service CLIVAR Exchanges US CLIVAR Variations No. 74 • February 2018 Winter 2018 • Vol. 16, No. 1 ISSN No: 1026-0471 DOI: 10.5065/D6445K82 Table of Contents Sea Level Rise Guest editor: Highlights from the WCRP/IOC Sea Level Conference John Church July 2017, New York | Pg. 2 University of New South Wales, Australia A reconciled estimate of In June 2006, the World Climate Research Programme (WCRP) convened its first sea level 20th century global mean workshop at the Intergovernmental Oceanographic Commission (IOC) headquarters in sea level rise | Pg. 6 Paris. The workshop recognized the interdisciplinary nature of sea level change, and together with the conference statement and subsequent book, outlined progress, Evaluating climate model observational requirements, and challenges and helped stimulate further work. simulations of 20th century sea level rise | Pg. 13 Since then, there has been great progress across the full range of disciplines. This Changes in extreme is perhaps best exemplified in closing the sea level budget over multiple timescales sea levels | Pg. 20 (requiring progress in all elements of sea level science), developing the methodology for providing regional projections (see IPCC report chapter 13), and the improved ENSO teleconnections ability to simulate global and regional sea level change. Sea level change and the across the Pacific | Pg. 25 closely related Earth’s energy budget are now recognized as central elements in New York City’s evolving understanding climate change and its impacts. flood risk from hurricanes and sea level rise | Pg. 30 This joint publication between International and US CLIVAR begins with highlights of recent scientific progress on sea level rise research from the 2017 WCRP/IOC Sea Level Global distribution of Conference, and includes new estimates of historical change, evaluation of our ability to projected dynamic ocean sea level changes using simulate it, analysis of extreme events and surface waves, and examples of the impacts. -
Reconstruction of Sea-Surface Temperatures in the Canary Islands During Marine Isotope Stage 11
Reconstruction of sea-surface temperatures in the Canary Islands during Marine Isotope Stage 11 Thibault Clauzel, Chloé Maréchal, François Fourel, Abel Barral, Romain Amiot, Juan-Francisco Betancort, Alejandro Lomoschitz, Joaquín Meco, Christophe Lécuyer To cite this version: Thibault Clauzel, Chloé Maréchal, François Fourel, Abel Barral, Romain Amiot, et al.. Reconstruc- tion of sea-surface temperatures in the Canary Islands during Marine Isotope Stage 11. Quaternary Research, Elsevier, 2020, 94, pp.195-209. 10.1017/qua.2019.65. hal-02991824 HAL Id: hal-02991824 https://hal.archives-ouvertes.fr/hal-02991824 Submitted on 17 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Proof Delivery Form Quaternary Research Date of delivery:23-10-2019 Journal and vol/article ref: qua qua1900065 Number of pages (not including this page): 15 This proof is sent to you on behalf of Cambridge University Press. Please print out the file and check the proofs carefully. Please ensure you answer all queries. Please EMAIL your corrections within 2 days of receipt to: Aleeya Rahman, [email protected] Authors are strongly advised to read these proofs thoroughly because any errors missed may appear in the final published paper. -
MIS 11 Across the Northeast Atlantic
Clim. Past Discuss., 4, 433–457, 2008 www.clim-past-discuss.net/4/433/2008/ Climate of the Past CPD © Author(s) 2008. This work is distributed under Discussions 4, 433–457, 2008 the Creative Commons Attribution 3.0 License. Climate of the Past Discussions is the access reviewed discussion forum of Climate of the Past MIS 11 across the Northeast Atlantic J. P. Helmke et al. Uniform climate development between the Title Page subtropical and subpolar Northeast Abstract Introduction Atlantic across marine isotope stage 11 Conclusions References Tables Figures J. P. Helmke1, H. A. Bauch1,2, U. Rohl¨ 3, and E. S. Kandiano1 J I 1Leibniz Institute of Marine Sciences, Wischhofstr. 1–3, 24148 Kiel, Germany 2 Academy of Sciences, Humanities and Literature, Geschwister-Scholl-Str. 2, 55131 Mainz, J I Germany Back Close 3University of Bremen, Postfach 330440, 28334 Bremen, Germany Received: 12 March – Accepted: 18 March – Published: 9 April 2008 Full Screen / Esc Correspondence to: J. P. Helmke ([email protected]) Printer-friendly Version Published by Copernicus Publications on behalf of the European Geosciences Union. Interactive Discussion 433 Abstract CPD Proxy records from a core site off Northwest Africa were generated and compared with data from the subpolar Northeast Atlantic to unravel some main climatic features of in- 4, 433–457, 2008 terglacial marine isotope stage (MIS) 11 (423–362 ka). The records point to an almost 5 25 kyr lasting full interglacial period during stage 11 that was preceded by a consid- MIS 11 across the erably long glacial-interglacial transition (Termination V). Off NW Africa, a strong re- Northeast Atlantic duction of terrestrially derived iron input is noted after 420 ka suggesting a pronounced increase in continental humidity and vegetation cover over Northwest Africa. -
Pre-Quaternary Sea-Level Changes: Records and Processes Craig S
Basin Research (2008) 20, 161–162, doi: 10.1111/j.1365-2117.2008.00365.x Pre-Quaternary sea-level changes: records and processes Craig S. Fulthorpe,n Gilbert Camoin,w Kenneth G. Millerz and Andre´ Droxler‰ nThe University of Texas at Austin Institute for Geophysics, John A. and Katherine G. Jackson School of Geosciences, J.J. Pickle Research Campus, Austin,TX wCEREGE,UMR 6635 CNRS, Aix-en-Provence cedex, France zDepartment of Geological Sciences,Wright Labs, Rutgers,The State University of NewJersey, Piscataway,NJ ‰Department of Earth Sciences, Rice University,Keith-Wiess Geological Labs, Houston,TX INTRODUCTION Droxler, Fulthorpe and Miller, Eds, 2006. Sea-level records, processes and modeling, A.S.F. Spec. Publ.). This Special Issue of Basin Research focuses on the long- term record of sea-level change from the Jurassic to the Miocene.The papers arose from a multidisciplinary inter- national symposium SEALAIX’06: Sea Level Changes: Records, Processes and Modeling held in Presqu’Ile de Giens, SPECIAL ISSUE France from 25 to 29 September 2006 and convened by Short-term global sea-level (eustatic) changes have the Gilbert Camoin, Andre¤Droxler, Craig Fulthorpe and most direct human impact, but the present and the recent Ken Miller.The symposium was sponsored by the Inter- past provide only a ‘snapshot’ of the constantly varying national Association of Sedimentologists (IAS), the climatic and tectonic states that have existed during Society for Sedimentary Geology (SEPM), TOTAL, the the history of the Earth. In order to understand the envir- Centre National de la Recherche Scienti¢que (CNRS), onmental and societal impact of potential future eustatic the Provence-Alpes-Co“ te d’Azur Region, and the French trends, it is vital to document how the Earth system has Association of Sedimentologists (Association des Se¤di- operated under di¡erent past conditions. -
Interglacial Paleoclimate in the Arctic 10.1029/2019PA003708 Thomas M
RESEARCH ARTICLE Interglacial Paleoclimate in the Arctic 10.1029/2019PA003708 Thomas M. Cronin1 , Katherine J. Keller1,2, Jesse R. Farmer3,4, Morgan F. Schaller5 , Matt O'Regan6 , Robert Poirier7 , Helen Coxall6, Gary S. Dwyer8, Henning Bauch9 , Special Section: 1,10 6 7 11 Special Collection to Honor Ingalise G. Kindstedt , Martin Jakobsson , Rachel Marzen , and Emiliano Santin the Career of Robert C. Thunell 1Florence Bascom Geoscience Center, U.S. Geological Survey, Reston, VA, USA, 2Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA, 3Department of Geosciences, Princeton University, Princeton, NJ, USA, 4Department of Climate Geochemistry, Max‐Planck Institute for Chemistry, Mainz, Germany, 5Earth and Key Points: 6 • The Arctic Ocean experienced warm Environmental Science, Rensselaer Polytechnic Institute, Troy, NY, USA, Department of Geological Sciences, Stockholm 7 sea‐surface temperatures and University, Stockholm, Sweden, Lamont‐Doherty Earth Observatory, Columbia University, Palisades, NY, USA, seasonally sea ice‐free conditions 8Nicholas School of the Environment, Duke University, Durham, NC, USA, 9GEOMAR Helmholtz‐Zentrum für during interglacial Marine Isotope Ozeanforschung Kiel, Kiel, Germany, 10University of Maine Climate Change Institute, University of Maine, Orono, ME, Stage 11 USA, 11Atmospheric, Oceanic, and Earth Sciences, George Mason University, Fairfax, VA, USA • Peak warmth and minimal sea ice occurred during the middle to late part of the interglacial followed by increased land ice and ice shelves Abstract Marine Isotope Stage 11 from ~424 to 374 ka experienced peak interglacial warmth and highest • Heinrich‐like events occurred in the global sea level ~410–400 ka. MIS 11 has received extensive study on the causes of its long duration and ‐ Arctic during the MIS 12 MIS 11 warmer than Holocene climate, which is anomalous in the last half million years. -
Paleozoic–Mesozoic Eustatic Changes and Mass Extinctions: New Insights from Event Interpretation
life Article Paleozoic–Mesozoic Eustatic Changes and Mass Extinctions: New Insights from Event Interpretation Dmitry A. Ruban K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), Zemlyanoy Val Street 73, 109004 Moscow, Russia; [email protected] Received: 2 November 2020; Accepted: 13 November 2020; Published: 14 November 2020 Abstract: Recent eustatic reconstructions allow for reconsidering the relationships between the fifteen Paleozoic–Mesozoic mass extinctions (mid-Cambrian, end-Ordovician, Llandovery/Wenlock, Late Devonian, Devonian/Carboniferous, mid-Carboniferous, end-Guadalupian, end-Permian, two mid-Triassic, end-Triassic, Early Jurassic, Jurassic/Cretaceous, Late Cretaceous, and end-Cretaceous extinctions) and global sea-level changes. The relationships between eustatic rises/falls and period-long eustatic trends are examined. Many eustatic events at the mass extinction intervals were not anomalous. Nonetheless, the majority of the considered mass extinctions coincided with either interruptions or changes in the ongoing eustatic trends. It cannot be excluded that such interruptions and changes could have facilitated or even triggered biodiversity losses in the marine realm. Keywords: biotic crisis; global sea level; life evolution 1. Introduction During the whole Phanerozoic, mass extinctions stressed the marine biota many times. They triggered disappearances of numerous species, genera, families, and even high-order groups of marine organisms, and they were often associated with outstanding environmental catastrophes such as global events of anoxia and euxinia, unusual warming and planetary-scale glaciations, massive volcanism, and extraterrestrial impacts. Mass extinctions were highly complex events, with the intensity amplified by the interplay among atmosphere, oceans, geologic activity, and extraterrestrial influences. The relevant knowledge is huge, and it continues to grow.