Development of Mast Cells and Inflammation In

Total Page:16

File Type:pdf, Size:1020Kb

Development of Mast Cells and Inflammation In Development of Mast Cells and Importance of Their Tryptase and Chymase Serine Proteases in Inflammation and Wound Healing The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Douaiher, Jeffrey, Julien Succar, Luca Lancerotto, Michael F. Gurish, Dennis P. Orgill, Matthew J. Hamilton, Steven A. Krilis, and Richard L. Stevens. 2014. “Development of Mast Cells and Importance of Their Tryptase and Chymase Serine Proteases in Inflammation and Wound Healing.” Advances in Immunology: 211–252. doi:10.1016/ b978-0-12-800267-4.00006-7. Published Version doi:10.1016/B978-0-12-800267-4.00006-7 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:32659595 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NIH Public Access Author Manuscript Adv Immunol. Author manuscript; available in PMC 2014 July 29. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Adv Immunol. 2014 ; 122: 211–252. doi:10.1016/B978-0-12-800267-4.00006-7. Development of Mast Cells and Importance of Their Tryptase and Chymase Serine Proteases in Inflammation and Wound Healing Jeffrey Douaiher*, Julien Succar†, Luca Lancerotto*, Michael F. Gurish‡, Dennis P. Orgill*, Matthew J. Hamilton§, Steven A. Krilis¶, and Richard L. Stevens‡,1 *Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA †Division of General Surgery, Department of Surgery, University of Kentucky, Lexington, Kentucky, USA ‡Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA §Division of Gastroenterology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA ¶Department of Infectious Disease, Immunology, and Sexual Health, The St. George Hospital, University of New South Wales, Kogarah, New South Wales, Australia Abstract Mast cells (MCs) are active participants in blood coagulation and innate and acquired immunity. This review focuses on the development of mouse and human MCs, as well as the involvement of their granule serine proteases in inflammation and the connective tissue remodeling that occurs during the different phases of the healing process of wounded skin and other organs. The accumulated data suggest that MCs, their tryptases, and their chymases play important roles in tissue repair. While MCs initially promote healing, they can be detrimental if they are chronically stimulated or if too many MCs become activated at the same time. The possibility that MCs and their granule serine proteases contribute to the formation of keloid and hypertrophic scars makes them potential targets for therapeutic intervention in the repair of damaged skin. 1. INTRODUCTION Although mast cells (MCs) were discovered more than a century ago by Nobel Laureate Paul Ehrlich (Ehrlich, 1878), the importance of these immune cells in homeostasis and pathogen defense was appreciated only recently. MCs are not abundant in any tissue (Metcalfe, Baram, & Mekori, 1997), and they complete their development only after their poorly granulated progenitors home to tissues (Fig. 6.1). Thus, the inability to obtain sufficient numbers of in vivo-differentiated mature MCs for study greatly hindered our © 2014 Elsevier Inc. All rights reserved. 1Corresponding author: [email protected]. Douaiher et al. Page 2 understanding of the importance of these cells and why they had been conserved for more than 500 million years of evolution. A contributing factor that prevented the identification of NIH-PA Author Manuscript NIH-PA Author ManuscriptMC-restricted NIH-PA Author Manuscript genes and transcripts was the observation that mature, in vivo-differentiated MCs contained very little mRNA relative to the contaminating cells in varied tissue preparations. The discovery in the 1980s that the T-cell-derived factor interleukin (IL)-3 selectively promoted the viability, proliferation, and differentiation of a pluripotent population of mouse MCs from their hematopoietic progenitors that were free of contaminating cells finally facilitated the generation of large numbers of MCs for study (Razin, Cordon-Cardo, & Good, 1981; Razin, Ihle, et al., 1984; Schrader, Lewis, Clark-Lewis, & Culvenor, 1981). These in vitro-generated mouse bone marrow-derived MCs (mBMMCs) were less mature than those in the jejunum, skin, and other connective tissues. Nevertheless, the ability to generate nontransformed MCs in vitro from wild-type (WT) and transgenic mice on different genetic backgrounds allowed detailed studies on the developmental control and functions of these cells at the molecular level. The resulting data led to a better understanding of the importance of mouse MCs and their human equivalents in acquired and innate immunity, inflammation, and blood coagulation. The observation that IL-3-developed mBMMCs contained more mRNA on a per cell basis than mature in vivo-differentiated MCs enabled the identification and cloning of many of the MC’s mediators (e.g., mouse MC protease (mMCP)-5 (McNeil, Austen, Somerville, Gurish, & Stevens, 1991)), receptors (e.g., gp49B1/Lilrb4; Katz et al., 1996), and intracellular signaling proteins (e.g., RasGRP4; Yang et al., 2002). IL-3-developed mBMMCs have been used in nearly 1000 peer-reviewed publications. Since it was subsequently found that similar populations of MCs could be generated from fetal liver (Razin, Stevens, et al., 1984) and even embryonic stem cells (Tsai, Tam, Wedemeyer, & Galli, 2002), IL-3-dependent mouse MCs were particularly valuable for evaluating at the molecular level the functions of ubiquitously expressed proteins like Rac2 (Gu et al., 2002) and other intracellular signaling proteins that are critical for embryonic development. Thus, the in vitro method developed by Razin, Ihle, et al. (1984) for generating IL-3-dependent mouse MCs was a major technological advance. The identification of “reaginic” immunoglobulin by the Ishizakas in the 1960s (Ishizaka, Ishizaka, & Hornbrook, 1966) led to the discovery that the IgE-dependent activation of MCs can result in life-threatening systemic anaphylaxis. The generation of mBMMCs and numerous variants (McGivney, Crews, Hirata, Axelrod, & Siraganian, 1981) of the transformed RBL-1 rat MC line (Eccleston, Leonard, Lowe, & Welford, 1973) allowed investigators to deduce the mechanisms at the molecular level by which these cells participate in IgE-dependent reactions. More recent studies revealed that MCs are involved in many non-IgE-dependent processes. In that regard, some populations of mouse and human MCs can be induced to degranulate by thrombin via protease-activated receptor-1 (Par-1) (Razin & Marx, 1984; Vliagoftis, 2002), by IgG complexes via FcγRIIa or FcγRIIIa (Malbec & Daeron, 2007), by ATP via P2X, P2Y, and adenosine receptors (Forsythe & Ennis, 1999; Kurashima et al., 2012; Sudo et al., 1996), and by complement-derived anaphylatoxins via the C3a and C5a receptors (el Lati, Dahinden, & Church, 1994; Erdei & Pecht, 1996) (Fig. 6.2). MCs express numerous Toll-like receptors (TLRs). While some Adv Immunol. Author manuscript; available in PMC 2014 July 29. Douaiher et al. Page 3 populations of mouse and human MCs that have been examined so far do not degranulate when exposed to the TLR ligand lipopolysaccharide (LPS), the treated cells release NIH-PA Author Manuscript NIH-PA Author Manuscriptnumerous NIH-PA Author Manuscript proinflammatory cytokines and chemokines (Matsushima, Yamada, Matsue, & Shimada, 2004; McCurdy, Olynych, Maher, & Marshall, 2003). Whether or not MCs are active participants in the inflammation, proliferation, and/or remodeling stages of wound healing remains an area of investigation. In this review, we present recent literature that details the diverse functions of MCs and their protease mediators that help orchestrate this complex process. 2. DEVELOPMENT OF MCs MCs originate from the CD34+ pluripotent stem cells in the bone marrow and fetal liver (Arinobu et al., 2005; Kirshenbaum, Kessler, Goff, & Metcalfe, 1991; Kitamura, Shimada, & Go, 1979; Kitamura, Shimada, Hatanaka, & Miyano, 1977) (Fig. 6.1A). After exiting those compartments, the committed progenitors home to virtually every organ in the body (Fig. 6.1B). The number of MC-committed progenitors in the mouse is highest in the gut mucosa (Crapper & Schrader, 1983), presumably so that the mouse can quickly expand the number of MCs in the jejunum to combat helminth and bacterial infections. In support of this conclusion, the ability to expel the nematode Trichinella spiralis from the jejunum is delayed in infected mice lacking the chymase mMCP-1 (Knight, Wright, Lawrence, Paterson, & Miller, 2000). In vivo-differentiated MCs are heterogeneous, and several polarized subsets have been identified in rodents and humans. These subsets were initially distinguished in rats histochemically (Enerback, 1966), ultrastructurally (Enerback & Lundin, 1974; Friend et al., 1996), and biochemically, based on their expression of different protease–serglycin proteoglycan (SGPG) complexes in their granules (Le Trong, Parmelee, Walsh, Neurath, & Woodbury, 1987; Stevens et al., 1986; Woodbury et al., 1978; Yurt, Leid, & Austen, 1977), as well as by their ability to generate varied
Recommended publications
  • Ige-Mediated Mast Cell Activation Promotes Inflammation And
    RESEARCH COMMUNICATION IgE-mediated mast cell activation promotes inflammation and cartilage destruction in osteoarthritis Qian Wang1,2†, Christin M Lepus1,2†, Harini Raghu1,2†, Laurent L Reber3‡, Mindy M Tsai3, Heidi H Wong1,2, Ericka von Kaeppler1,2, Nithya Lingampalli1,2, Michelle S Bloom1,2, Nick Hu1,2, Eileen E Elliott1,2, Francesca Oliviero4, Leonardo Punzi4, Nicholas J Giori1,5, Stuart B Goodman5, Constance R Chu1,5, Jeremy Sokolove1,2, Yoshihiro Fukuoka6, Lawrence B Schwartz6, Stephen J Galli3,7, William H Robinson1,2* 1GRECC, VA Palo Alto Health Care System, Palo Alto, United States; 2Division of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, United States; 3Department of Pathology, Stanford University School of Medicine, Stanford, United States; 4Rheumatology Unit, Department of Medicine, University of Padova, Padova, Italy; 5Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, United States; 6Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, United States; 7Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, United States *For correspondence: [email protected] Abstract Osteoarthritis is characterized by articular cartilage breakdown, and emerging †These authors contributed evidence suggests that dysregulated innate immunity is likely involved. Here, we performed equally to this work proteomic, transcriptomic, and electron microscopic analyses to demonstrate that mast cells are Present address: ‡Center for aberrantly activated in human and murine osteoarthritic joint tissues. Using genetic models of mast Physiopathology of Toulouse- cell deficiency, we demonstrate that lack of mast cells attenuates osteoarthritis in mice. Using Purpan (CPTP), UMR 1043, genetic and pharmacologic approaches, we show that the IgE/FceRI/Syk signaling axis is critical for University of Toulouse, INSERM, the development of osteoarthritis.
    [Show full text]
  • Biological Function of Mast Cell Chymase
    Biological Function of Mast Cell Chymase In vitro and in vivo studies: a thorny pathway Elena Chugunova Department of Molecular Biosciences Uppsala Doctoral thesis Swedish University of Agricultural Sciences Uppsala 2004 Acta Universitatis Agriculturae Sueciae Veterinaria 181 ISSN 1401-6257 ISBN 91-576-6680-6 © 2004 Elena Chugunova, Uppsala Tryck: SLU Service/Repro, Uppsala 2004 Abstract Chugunova, E., 2004. Biological function of mast cell chymase mMCP-4. In vitro and in vivo studies: a thorny pathway. Doctor's dissertation. ISSN 1401-6257, ISBN 91-576-6680-6 Mast cells (MCs) are key effector cells in various types of inflammatory conditions. The MC secretory granules contain inflammatory mediators such as histamine, heparin proteoglycan (PG), cytokines and various heparin-binding proteases, including tryptases, chymases and carboxypeptidase A. Previously, a mouse strain with a defect in its heparin biosynthesis was produced by targeting the gene for NDST-2 (N-deacetylase/N-sulfotransferase-2). These mice showed reduced levels of MC inflammatory mediators such as histamine and various heparin- binding proteases, including chymases, tryptases, and carboxypeptidase A. By using this mouse strain, we found that chymase in complex with heparin PG degraded fibronectin, suggesting a role for chymase in the regulation of connective tissue composition. Further, we found that chymase/heparin PG complexes degraded and thereby inactivated both thrombin and plasmin, suggesting an additional role for chymase in regulation of extravascular coagulation and fibrinolysis. However, although our findings implicated chymase in these processes, it was not possible to exclude the contribution to the observed activities by other MC components that are influenced by the knockout of NDST-2.
    [Show full text]
  • Extended Cleavage Specificities of Two Mast Cell Chymase-Related
    International Journal of Molecular Sciences Article Extended Cleavage Specificities of Two Mast Cell Chymase-Related Proteases and One Granzyme B-Like Protease from the Platypus, a Monotreme Zhirong Fu, Srinivas Akula , Michael Thorpe and Lars Hellman * Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; [email protected] (Z.F.); [email protected] (S.A.); [email protected] (M.T.) * Correspondence: [email protected]; Tel.: +46-(0)18-471-4532; Fax: +46-(0)18-471-4862 Received: 20 November 2019; Accepted: 31 December 2019; Published: 2 January 2020 Abstract: Mast cells (MCs) are inflammatory cells primarily found in tissues in close contact with the external environment, such as the skin and the intestinal mucosa. They store large amounts of active components in cytoplasmic granules, ready for rapid release. The major protein content of these granules is proteases, which can account for up to 35 % of the total cellular protein. Depending on their primary cleavage specificity, they can generally be subdivided into chymases and tryptases. Here we present the extended cleavage specificities of two such proteases from the platypus. Both of them show an extended chymotrypsin-like specificity almost identical to other mammalian MC chymases. This suggests that MC chymotryptic enzymes have been conserved, both in structure and extended cleavage specificity, for more than 200 million years, indicating major functions in MC-dependent physiological processes. We have also studied a third closely related protease, originating from the same chymase locus whose cleavage specificity is closely related to the apoptosis-inducing protease from cytotoxic T cells, granzyme B.
    [Show full text]
  • Like Transmembrane Γ Evolved From
    Mast Cell α and β Tryptases Changed Rapidly during Primate Speciation and Evolved from γ-Like Transmembrane Peptidases in Ancestral Vertebrates This information is current as of September 25, 2021. Neil N. Trivedi, Qiao Tong, Kavita Raman, Vikash J. Bhagwandin and George H. Caughey J Immunol 2007; 179:6072-6079; ; doi: 10.4049/jimmunol.179.9.6072 http://www.jimmunol.org/content/179/9/6072 Downloaded from References This article cites 34 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/179/9/6072.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Mast Cell ␣ and ␤ Tryptases Changed Rapidly during Primate Speciation and Evolved from ␥-Like Transmembrane Peptidases in Ancestral Vertebrates1 Neil N. Trivedi, Qiao Tong, Kavita Raman, Vikash J. Bhagwandin, and George H.
    [Show full text]
  • Mast Cell Chymase and Kidney Disease
    International Journal of Molecular Sciences Review Mast Cell Chymase and Kidney Disease Shamila Vibhushan 1,2, Manuela Bratti 1,2 , Juan Eduardo Montero-Hernández 1,2 , Alaa El Ghoneimi 1,2,3, Marc Benhamou 1,2, Nicolas Charles 1,2 , Eric Daugas 1,2,4 and Ulrich Blank 1,2,* 1 Centre de Recherche sur l’inflammation, CNRS ERL8252, Faculté de Médecine site Bichat, Université de Paris, Inserm UMR1149, 16 rue Henri Huchard, F-75018 Paris, France; [email protected] (S.V.); [email protected] (M.B.); [email protected] (J.E.M.-H.); [email protected] (A.E.G.); [email protected] (M.B.); [email protected] (N.C.); [email protected] (E.D.) 2 Laboratoire d’Excellence Inflamex, Université de Paris, F-75018 Paris, France 3 Department of Pediatric Surgery and Urology, Hôpital Universitaire Robert Debré, Assistance Publique—Hôpitaux de Paris (APHP), F-75019 Paris, France 4 Service de Néphrologie, Groupe Hospitalier Universitaire Bichat-Claude Bernard, Assistance Publique—Hôpitaux de Paris (APHP), F-75019 Paris, France * Correspondence: [email protected] Abstract: A sizable part (~2%) of the human genome encodes for proteases. They are involved in many physiological processes, such as development, reproduction and inflammation, but also play a role in pathology. Mast cells (MC) contain a variety of MC specific proteases, the expression of which may differ between various MC subtypes. Amongst these proteases, chymase represents up to 25% of the total proteins in the MC and is released from cytoplasmic granules upon activation.
    [Show full text]
  • Correlation of Serpin–Protease Expression by Comparative Analysis of Real-Time PCR Profiling Data
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 88 (2006) 173–184 www.elsevier.com/locate/ygeno Correlation of serpin–protease expression by comparative analysis of real-time PCR profiling data Sunita Badola a, Heidi Spurling a, Keith Robison a, Eric R. Fedyk a, Gary A. Silverman b, ⁎ Jochen Strayle c, Rosana Kapeller a,1, Christopher A. Tsu a, a Millennium Pharmaceuticals, Inc., 40 Landsdowne Street, Cambridge, MA 02139, USA b Department of Pediatrics, University of Pittsburgh School of Medicine, Magee-Women’s Hospital, 300 Halket Street, Pittsburgh, PA 15213, USA c Bayer HealthCare AG, 42096 Wuppertal, Germany Received 2 December 2005; accepted 27 March 2006 Available online 18 May 2006 Abstract Imbalanced protease activity has long been recognized in the progression of disease states such as cancer and inflammation. Serpins, the largest family of endogenous protease inhibitors, target a wide variety of serine and cysteine proteases and play a role in a number of physiological and pathological states. The expression profiles of 20 serpins and 105 serine and cysteine proteases were determined across a panel of normal and diseased human tissues. In general, expression of serpins was highly restricted in both normal and diseased tissues, suggesting defined physiological roles for these protease inhibitors. A high correlation in expression for a particular serpin–protease pair in healthy tissues was often predictive of a biological interaction. The most striking finding was the dramatic change observed in the regulation of expression between proteases and their cognate inhibitors in diseased tissues.
    [Show full text]
  • TPSAB1 Monoclonal Antibody (AA1)
    Website: thermofisher.com Lot Number: SB2348992 Customer Service(US): 1 800 955 6288 ext. 1 Technical Support (US): 1 800 955 6288 ext. 441 thermofisher.com/contactus TPSAB1 Monoclonal Antibody (AA1) Catalog Number:MA5-11711 Product Data Sheet Details Species Reactivity Size 500 µL Canine, Feline, Human, Tested species reactivity Non-human primate Host / Isotype Mouse / IgG1 Published Species Reactivity Human, Mouse, Rat Class Monoclonal Type Antibody Tested Applications Dilution * Clone AA1 Western Blot (WB) 1:50 Human mast cell tryptase Immunohistochemistry (Paraffin) Immunogen 1:2000 purified from human lung tissues (IHC (P)) Form Liquid Published Applications Concentration 50µg/ml Immunocytochemistry (ICC) See 1 publications below Purification Protein G Immunohistochemistry (IHC) See 16 publications below Storage Buffer PBS, pH 7.4, with 0.2% BSA * Suggested working dilutions are given as a guide only. It is recommended that the user titrate the product for use in their own experiment using appropriate negative and positive controls. Contains 0.09% sodium azide Storage Conditions 4° C Product Specific Information MA5-11711 targets Mast Cell Tryptase in IHC (P) and WB applications and shows reactivity with Canine, Feline, Human, and Non-human primate samples. The MA5-11711 immunogen is human mast cell tryptase purified from human lung tissues. Background/Target Information Mast cells contain a number of preformed chemical mediators such as histamine, chymase, carboxypeptidase and proteolytic tryptase. A substantial quantity of tryptase is estimated to be found in mast cells of skin and lung and suggestes this enzyme plays a major role in mast cell mediated events. In vitro studies indicate tryptase can cleave C3 to form C3a anaphylatoxin, inactivate fibrinogen as a coaguable substrate for thrombin and activate latent collagenase.
    [Show full text]
  • Gene Expression Profiling of Human Mast Cell Subtypes
    Allergology International. 2006;55:173-179 ORIGINAL ARTICLE Gene Expression Profiling of Human Mast Cell Subtypes: An In Silico Study Hirohisa Saito1,2, Kenji Matsumoto1, Shigeru Okumura2, Jun-ichi Kashiwakura2, Keisuke Oboki2, Hidenori Yokoi2, Naotomo Kambe3, Ken Ohta4 and Yoshimichi Okayama2 ABSTRACT Background: Human mast cells (MCs) were classified into at least two subtypes, i.e., tryptase- and chymase- positive MCs (MCTC) and tryptase-only-positive MCs (MCT). However, differences in global molecular expres- sion between these subtypes are unknown. Methods: We analyzed public microarray data of MC subtypes derived from various tissues and those of pe- ripheral blood granulocytes by using hierarchical clustering methods to understand the global gene expression profiles. Results: All the transcripts subjected to this clustering analysis were classified into two large clusters, i.e., MC- preferential or granulocyte-preferential. In the original works, MCs from tonsil, lung and skin had been cultured for more than several weeks to obtain highly viable and pure cell populations, and these MCs retained their typical profiles such as intensities of chymase protein expression. Most of the transcripts were commonly ex- pressed by these MC subtypes. However, tonsil-derived MCs and skin-derived MCs but not lung-derived MCs expressed high levels of chymase (CMA1) as expected for the properties of MCTC and MCT. These CMA1-high MCs and CMA1-low MCs respectively expressed distinct sets of transcripts as small gene clusters as well as CMA-1 even after being cultured in the absence of a tissue environment. Conclusions: The MC lineage seems to be far from the granulocyte lineages including basophils.
    [Show full text]
  • A Genomic Analysis of Rat Proteases and Protease Inhibitors
    A genomic analysis of rat proteases and protease inhibitors Xose S. Puente and Carlos López-Otín Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain Send correspondence to: Carlos López-Otín Departamento de Bioquímica y Biología Molecular Facultad de Medicina, Universidad de Oviedo 33006 Oviedo-SPAIN Tel. 34-985-104201; Fax: 34-985-103564 E-mail: [email protected] Proteases perform fundamental roles in multiple biological processes and are associated with a growing number of pathological conditions that involve abnormal or deficient functions of these enzymes. The availability of the rat genome sequence has opened the possibility to perform a global analysis of the complete protease repertoire or degradome of this model organism. The rat degradome consists of at least 626 proteases and homologs, which are distributed into five catalytic classes: 24 aspartic, 160 cysteine, 192 metallo, 221 serine, and 29 threonine proteases. Overall, this distribution is similar to that of the mouse degradome, but significatively more complex than that corresponding to the human degradome composed of 561 proteases and homologs. This increased complexity of the rat protease complement mainly derives from the expansion of several gene families including placental cathepsins, testases, kallikreins and hematopoietic serine proteases, involved in reproductive or immunological functions. These protease families have also evolved differently in the rat and mouse genomes and may contribute to explain some functional differences between these two closely related species. Likewise, genomic analysis of rat protease inhibitors has shown some differences with the mouse protease inhibitor complement and the marked expansion of families of cysteine and serine protease inhibitors in rat and mouse with respect to human.
    [Show full text]
  • Hereditary Alpha Tryptasemia, Mastocytosis and Beyond
    International Journal of Molecular Sciences Review Genetic Regulation of Tryptase Production and Clinical Impact: Hereditary Alpha Tryptasemia, Mastocytosis and Beyond Bettina Sprinzl 1,2, Georg Greiner 3,4,5 , Goekhan Uyanik 1,2,6, Michel Arock 7,8 , Torsten Haferlach 9, Wolfgang R. Sperr 4,10, Peter Valent 4,10 and Gregor Hoermann 4,9,* 1 Ludwig Boltzmann Institute for Hematology and Oncology at the Hanusch Hospital, Center for Medical Genetics, Hanusch Hospital, 1140 Vienna, Austria; [email protected] (B.S.); [email protected] (G.U.) 2 Center for Medical Genetics, Hanusch Hospital, 1140 Vienna, Austria 3 Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria; [email protected] 4 Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, 1090 Vienna, Austria; [email protected] (W.R.S.); [email protected] (P.V.) 5 Ihr Labor, Medical Diagnostic Laboratories, 1220 Vienna, Austria 6 Medical School, Sigmund Freud Private University, 1020 Vienna, Austria 7 Department of Hematology, APHP, Pitié-Salpêtrière-Charles Foix University Hospital and Sorbonne University, 75013 Paris, France; [email protected] 8 Centre de Recherche des Cordeliers, INSERM, Sorbonne University, Cell Death and Drug Resistance in Hematological Disorders Team, 75006 Paris, France 9 MLL Munich Leukemia Laboratory, 81377 Munich, Germany; [email protected] 10 Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria * Correspondence: [email protected]; Tel.: +49-89-99017-315 Citation: Sprinzl, B.; Greiner, G.; Uyanik, G.; Arock, M.; Haferlach, T.; Abstract: Tryptase is a serine protease that is predominantly produced by tissue mast cells (MCs) and Sperr, W.R.; Valent, P.; Hoermann, G.
    [Show full text]
  • Chymase Α Inactivated Extracellularly By
    Mast Cell Tissue Inhibitor of Metalloproteinase-1 Is Cleaved and Inactivated Extracellularly by α-Chymase This information is current as Brendon T. Frank, J. Caleb Rossall, George H. Caughey and of September 24, 2021. Kenneth C. Fang J Immunol 2001; 166:2783-2792; ; doi: 10.4049/jimmunol.166.4.2783 http://www.jimmunol.org/content/166/4/2783 Downloaded from References This article cites 56 articles, 23 of which you can access for free at: http://www.jimmunol.org/content/166/4/2783.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Mast Cell Tissue Inhibitor of Metalloproteinase-1 Is Cleaved and Inactivated Extracellularly by ␣-Chymase1 Brendon T. Frank,* J. Caleb Rossall,* George H. Caughey,*† and Kenneth C. Fang2*† We previously reported that mast cell ␣-chymase cleaves and activates progelatinase B (progel B).
    [Show full text]
  • Sequence and Evolutionary Analysis of the Human Trypsin Subfamily of Serine Peptidases
    Biochimica et Biophysica Acta 1698 (2004) 77–86 www.bba-direct.com Sequence and evolutionary analysis of the human trypsin subfamily of serine peptidases George M. Yousefa,b, Marc B. Elliotta, Ari D. Kopolovica, Eman Serryc, Eleftherios P. Diamandisa,b,* a Department of Pathology and Laboratory Medicine, Division of Clinical Biochemistry, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5 b Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5G 1L5 c Faculty of Medicine, Department of Medical Biochemistry, Menoufiya University, Egypt Received 3 June 2003; received in revised form 1 October 2003; accepted 27 October 2003 Abstract Serine peptidases (SP) are peptidases with a uniquely activated serine residue in the substrate-binding site. SP can be classified into clans with distinct evolutionary histories and each clan further subdivided into families. We analyzed 79 proteins representing the S1A subfamily of human SP, obtained from different databases. Multiple alignment identified 87 highly conserved amino acid residues. In most cases of substitution, a residue of similar character was inserted, implying that the overall character of the local region was conserved. We also identified several conserved protein motifs. 7–13 cysteine positions, potentially forming disulfide bridges, were also found to be conserved. Most members are secreted as inactive (pro) forms with a trypsin-like cleavage site for activation. Substrate specificity was predicted to be trypsin-like for most members, with few chymotrypsin-like proteins. Phylogenetic analysis enabled us to classify members of the S1A subfamily into structurally related groups; this might also help to functionally sort members of this subfamily and give an idea about their possible functions.
    [Show full text]