Statistical Analysis of Ensemble Forecasts of Tropical Cyclone Tracks Over the Northwest Pacific Ocean

Total Page:16

File Type:pdf, Size:1020Kb

Statistical Analysis of Ensemble Forecasts of Tropical Cyclone Tracks Over the Northwest Pacific Ocean Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2012-09 Statistical Analysis of Ensemble Forecasts of Tropical Cyclone Tracks over the Northwest Pacific Ocean Marino, David R. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/17412 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS STATISTICAL ANALYSIS OF ENSEMBLE FORECASTS OF TROPICAL CYCLONE TRACKS OVER THE NORTHWEST PACIFIC OCEAN by David R. Marino September 2012 Thesis Advisor: Patrick A. Harr Second Reader: Joshua P. Hacker Approved for public release; distribution unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED September 2012 Master’s Thesis 4. TITLE AND SUBTITLE Statistical Analysis of Ensemble Forecasts of Tropical 5. FUNDING NUMBERS Cyclone Tracks over the Northwest Pacific Ocean 6. AUTHOR(S) David R. Marino 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION Naval Postgraduate School REPORT NUMBER Monterey, CA 93943-5000 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING N/A AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ______N/A______. 12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE Approved for public release; distribution is unlimited A 13. ABSTRACT (maximum 200 words) The skill of three ensemble prediction systems (EPS) is evaluated to focus on tropical cyclone (TC) track forecasting over the North Pacific. Probability ellipses are defined to represent ensemble spread and encompass 68 % of the ensemble members. The ellipses are centered on the ensemble mean forecast position. Forecast reliability is defined as whether the verifying position is within the ellipse 68% of the time. A statistical analysis of uncertainty in TC track forecasts examines the attributes of reliability and resolution of each EPS. The European Center for Medium- Range Forecasts (ECMWF) EPS had the highest degree of reliability and resolution. The sizes and shapes of the EPS ellipses varied with TC track characteristics. This suggests that EPS-based probability ellipses may provide value in identifying uncertainty with respect to likely TC track forecast errors. 14. SUBJECT TERMS Tropical Cyclone Track Errors, Ensemble Prediction Systems, Joint Typhoon 15. NUMBER OF Warning Center forecasts PAGES 83 16. PRICE CODE 17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT REPORT PAGE ABSTRACT Unclassified Unclassified Unclassified UU NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 i THIS PAGE INTENTIONALLY LEFT BLANK ii Approved for public release; distribution unlimited STATISTICAL ANALYSIS OF ENSEMBLE FORECASTS OF TROPICAL CYCLONE TRACKS OVER THE NORTHWEST PACIFIC OCEAN David R. Marino Lieutenant Commander, United States Navy B.S. Oceanography, United States Naval Academy, 2002 Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN METEOROLOGY AND OCEANOGRAPHY from the NAVAL POSTGRADUATE SCHOOL SEPTEMBER 2012 Author: David R. Marino Approved by: Patrick A. Harr Thesis Advisor Joshua P. Hacker Second Reader Wendell A. Nuss Chair, Department of Meteorology iii THIS PAGE INTENTIONALLY LEFT BLANK iv ABSTRACT The skill of three ensemble prediction systems (EPS) is evaluated to focus on tropical cyclone (TC) track forecasting over the North Pacific. Probability ellipses are defined to represent ensemble spread and encompass 68 % of the ensemble members. The ellipses are centered on the ensemble mean forecast position. Forecast reliability is defined as whether the verifying position is within the ellipse 68% of the time. A statistical analysis of uncertainty in TC track forecasts examines the attributes of reliability and resolution of each EPS. The European Center for Medium-Range Forecasts (ECMWF) EPS had the highest degree of reliability and resolution. The sizes and shapes of the EPS ellipses varied with TC track characteristics. This suggests that EPS-based probability ellipses may provide value in identifying uncertainty with respect to likely TC track forecast error. v THIS PAGE INTENTIONALLY LEFT BLANK vi TABLE OF CONTENTS I. INTRODUCTION........................................................................................................1 A. MOTIVATION ................................................................................................1 B. OBJECTIVE ....................................................................................................5 II. BACKGROUND ..........................................................................................................7 A. JOINT TYPHOON WARNING CENTER OPERATIONAL METHODS TO DEFINE TROPICAL CYCLONE TRACK FORECAST UNCERTAINTY .......................................................................7 1. Official Forecast Track with Area of Uncertainty ............................7 2. Wind Speed Probability Swath ...........................................................8 3. The Goerss Predicted Consensus Error (GPCE) ..............................9 4. Goerss Predicted Consensus Error Along- and Across-track (GPCE-X)............................................................................................11 B. ENSEMBLE PREDICTION SYSTEMS (EPS) ..........................................11 1. European Center for Medium Range Weather Forecasts (ECMWF) ...........................................................................................12 2. United Kingdom Meteorological Office (UKMO) ..........................13 3. Japan Meteorological Agency Global Spectral Model (JMA/GSM) ........................................................................................14 III. METHODOLOGY ....................................................................................................15 A. DATA ..............................................................................................................15 1. Data Source.........................................................................................15 2. Data Format .......................................................................................18 3. Data Homogeneity ..............................................................................19 4. Region and Sub-regions .....................................................................19 5. Developing the EPS Ellipse ...............................................................21 B. STATISTICAL ANALYSES ........................................................................23 1. Probability within Spread .................................................................23 2. Ellipse Reliability ...............................................................................24 3. Mean Area Difference (MAD) ..........................................................24 IV. ANALYSIS AND RESULTS ....................................................................................25 A. OVERVIEW ...................................................................................................25 B. ENSEMBLE-MEAN TRACK ERRORS .....................................................25 1. FTE ......................................................................................................25 2. ATE .....................................................................................................30 3. XTE .....................................................................................................35 C. PROBABILITY WITHIN SPREAD ............................................................40 D. ELLIPSE RELIABILITY .............................................................................42 E. MEAN AREA DIFFERENCE (MAD) .........................................................44 F. SUMMARY ....................................................................................................45 G. CASE STUDY TYPHOONS NANMADOL AND SONGDA ....................47 1. Typhoon Songda.................................................................................49 vii a. Typhoon Songda 1200 UTC 23 May 2011 .............................49 b. Typhoon Songda 1200 UTC 24 May 2011 .............................51 c. Typhoon Songda 1200 UTC 25 May 2011 .............................52 2. Typhoon Nanmadol ...........................................................................52 a. Typhoon Nanmadol 1200 UTC 23 August 2011 ....................53 b. Typhoon Nanmadol 1200 UTC 24 August 2011 ....................54 c. Typhoon Nanmadol 1200 UTC 25 August 2011
Recommended publications
  • Effects of Climate Change on the World's Oceans
    3rd International Symposium Effects of Climate Change on the World’s Oceans March 21–27, 2015 Santos, Brazil Table of Contents Welcome � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � v Organizers and Sponsors � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �vi Notes for Guidance � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �ix Symposium Timetable � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � x List of Sessions and Workshops � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � xiii Floor Plans � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �xiv Detailed Schedules � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 1 Abstracts - Oral Presentations Keynote � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �77 Plenary Talks � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �79 Theme Session S1 Role of advection and mixing in
    [Show full text]
  • Typhoon Neoguri Disaster Risk Reduction Situation Report1 DRR Sitrep 2014‐001 ‐ Updated July 8, 2014, 10:00 CET
    Typhoon Neoguri Disaster Risk Reduction Situation Report1 DRR sitrep 2014‐001 ‐ updated July 8, 2014, 10:00 CET Summary Report Ongoing typhoon situation The storm had lost strength early Tuesday July 8, going from the equivalent of a Category 5 hurricane to a Category 3 on the Saffir‐Simpson Hurricane Wind Scale, which means devastating damage is expected to occur, with major damage to well‐built framed homes, snapped or uprooted trees and power outages. It is approaching Okinawa, Japan, and is moving northwest towards South Korea and the Philippines, bringing strong winds, flooding rainfall and inundating storm surge. Typhoon Neoguri is a once‐in‐a‐decade storm and Japanese authorities have extended their highest storm alert to Okinawa's main island. The Global Assessment Report (GAR) 2013 ranked Japan as first among countries in the world for both annual and maximum potential losses due to cyclones. It is calculated that Japan loses on average up to $45.9 Billion due to cyclonic winds every year and that it can lose a probable maximum loss of $547 Billion.2 What are the most devastating cyclones to hit Okinawa in recent memory? There have been 12 damaging cyclones to hit Okinawa since 1945. Sustaining winds of 81.6 knots (151 kph), Typhoon “Winnie” caused damages of $5.8 million in August 1997. Typhoon "Bart", which hit Okinawa in October 1999 caused damages of $5.7 million. It sustained winds of 126 knots (233 kph). The most damaging cyclone to hit Japan was Super Typhoon Nida (reaching a peak intensity of 260 kph), which struck Japan in 2004 killing 287 affecting 329,556 people injuring 1,483, and causing damages amounting to $15 Billion.
    [Show full text]
  • Ensemble Forecast Experiment for Typhoon
    Ensemble Forecast Experiment for Typhoon Quantitatively Precipitation in Taiwan Ling-Feng Hsiao1, Delia Yen-Chu Chen1, Ming-Jen Yang1, 2, Chin-Cheng Tsai1, Chieh-Ju Wang1, Lung-Yao Chang1, 3, Hung-Chi Kuo1, 3, Lei Feng1, Cheng-Shang Lee1, 3 1Taiwan Typhoon and Flood Research Institute, NARL, Taipei 2Dept. of Atmospheric Sciences, National Central University, Chung-Li 3Dept. of Atmospheric Sciences, National Taiwan University, Taipei ABSTRACT The continuous torrential rain associated with a typhoon often caused flood, landslide or debris flow, leading to serious damages to Taiwan. Therefore the quantitative precipitation forecast (QPF) during typhoon period is highly needed for disaster preparedness and emergency evacuation operation in Taiwan. Therefore, Taiwan Typhoon and Flood Research Institute (TTFRI) started the typhoon quantitative precipitation forecast ensemble forecast experiment in 2010. The ensemble QPF experiment included 20 members. The ensemble members include various models (ARW-WRF, MM5 and CreSS models) and consider different setups in the model initial perturbations, data assimilation processes and model physics. Results show that the ensemble mean provides valuable information on typhoon track forecast and quantitative precipitation forecasts around Taiwan. For example, the ensemble mean track captured the sharp northward turning when Typhoon Megi (2010) moved westward to the South China Sea. The model rainfall also continued showing that the total rainfall at the northeastern Taiwan would exceed 1,000 mm, before the heavy rainfall occurred. Track forecasts for 21 typhoons in 2011 showed that the ensemble forecast has a comparable skill to those of operational centers and has better performance than a deterministic prediction. With an accurate track forecast for Typhoon Nanmadol, the ability for the model to predict rainfall distribution is significantly improved.
    [Show full text]
  • Appendix 8: Damages Caused by Natural Disasters
    Building Disaster and Climate Resilient Cities in ASEAN Draft Finnal Report APPENDIX 8: DAMAGES CAUSED BY NATURAL DISASTERS A8.1 Flood & Typhoon Table A8.1.1 Record of Flood & Typhoon (Cambodia) Place Date Damage Cambodia Flood Aug 1999 The flash floods, triggered by torrential rains during the first week of August, caused significant damage in the provinces of Sihanoukville, Koh Kong and Kam Pot. As of 10 August, four people were killed, some 8,000 people were left homeless, and 200 meters of railroads were washed away. More than 12,000 hectares of rice paddies were flooded in Kam Pot province alone. Floods Nov 1999 Continued torrential rains during October and early November caused flash floods and affected five southern provinces: Takeo, Kandal, Kampong Speu, Phnom Penh Municipality and Pursat. The report indicates that the floods affected 21,334 families and around 9,900 ha of rice field. IFRC's situation report dated 9 November stated that 3,561 houses are damaged/destroyed. So far, there has been no report of casualties. Flood Aug 2000 The second floods has caused serious damages on provinces in the North, the East and the South, especially in Takeo Province. Three provinces along Mekong River (Stung Treng, Kratie and Kompong Cham) and Municipality of Phnom Penh have declared the state of emergency. 121,000 families have been affected, more than 170 people were killed, and some $10 million in rice crops has been destroyed. Immediate needs include food, shelter, and the repair or replacement of homes, household items, and sanitation facilities as water levels in the Delta continue to fall.
    [Show full text]
  • Probabilistic Evaluation of the Dynamics and Prediction of Supertyphoon Megi (2010)
    1562 WEATHER AND FORECASTING VOLUME 28 Probabilistic Evaluation of the Dynamics and Prediction of Supertyphoon Megi (2010) CHUANHAI QIAN Nanjing University of Information Science and Technology, Nanjing, and National Meteorological Center, Beijing, China, and Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania FUQING ZHANG AND BENJAMIN W. GREEN Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania JIN ZHANG National Meteorological Center, Beijing, China XIAQIONG ZHOU NOAA/NCEP, College Park, Maryland (Manuscript received 21 November 2012, in final form 21 July 2013) ABSTRACT Supertyphoon Megi was the most intense tropical cyclone (TC) of 2010. Megi tracked westward through the western North Pacific and crossed the Philippines on 18 October. Two days later, Megi made a sharp turn to the north, an unusual track change that was not forecast by any of the leading operational centers. This failed forecast was a consequence of exceptionally large uncertainty in the numerical guidance—including the operational ensemble of the European Centre for Medium-Range Weather Forecasts (ECMWF)—at various lead times before the northward turn. This study uses The Observing System Research and Predictability Experiment (THORPEX) Interactive Grand Global Ensemble dataset to examine the uncertainties in the track forecast of the ECMWF operational ensemble. The results show that Megi’s sharp turn is sensitive to its own movement in the early period, the size and structure of the storm, the strength and extent of the western Pacific subtropical high, and an approaching eastward-moving midlatitude trough. In particular, a larger TC (in addition to having a stronger beta effect) may lead to a stronger erosion of the southwestern extent of the subtropical high, which will subsequently lead to an earlier and sharper northward turn.
    [Show full text]
  • Japan's Insurance Market 2020
    Japan’s Insurance Market 2020 Japan’s Insurance Market 2020 Contents Page To Our Clients Masaaki Matsunaga President and Chief Executive The Toa Reinsurance Company, Limited 1 1. The Risks of Increasingly Severe Typhoons How Can We Effectively Handle Typhoons? Hironori Fudeyasu, Ph.D. Professor Faculty of Education, Yokohama National University 2 2. Modeling the Insights from the 2018 and 2019 Climatological Perils in Japan Margaret Joseph Model Product Manager, RMS 14 3. Life Insurance Underwriting Trends in Japan Naoyuki Tsukada, FALU, FUWJ Chief Underwriter, Manager, Underwriting Team, Life Underwriting & Planning Department The Toa Reinsurance Company, Limited 20 4. Trends in Japan’s Non-Life Insurance Industry Underwriting & Planning Department The Toa Reinsurance Company, Limited 25 5. Trends in Japan's Life Insurance Industry Life Underwriting & Planning Department The Toa Reinsurance Company, Limited 32 Company Overview 37 Supplemental Data: Results of Japanese Major Non-Life Insurance Companies for Fiscal 2019, Ended March 31, 2020 (Non-Consolidated Basis) 40 ©2020 The Toa Reinsurance Company, Limited. All rights reserved. The contents may be reproduced only with the written permission of The Toa Reinsurance Company, Limited. To Our Clients It gives me great pleasure to have the opportunity to welcome you to our brochure, ‘Japan’s Insurance Market 2020.’ It is encouraging to know that over the years our brochures have been well received even beyond our own industry’s boundaries as a source of useful, up-to-date information about Japan’s insurance market, as well as contributing to a wider interest in and understanding of our domestic market. During fiscal 2019, the year ended March 31, 2020, despite a moderate recovery trend in the first half, uncertainties concerning the world economy surged toward the end of the fiscal year, affected by the spread of COVID-19.
    [Show full text]
  • Scale and Spatial Distribution Assessment of Rainfall-Induced Landslides in a Catchment with Mountain Roads
    Nat. Hazards Earth Syst. Sci., 18, 687–708, 2018 https://doi.org/10.5194/nhess-18-687-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Scale and spatial distribution assessment of rainfall-induced landslides in a catchment with mountain roads Chih-Ming Tseng1, Yie-Ruey Chen1, and Szu-Mi Wu2 1Department of Land Management and Development, Chang Jung Christian University, Tainan, 71101, Taiwan (ROC) 2Chen-Du Construction Limited, Taoyuan, 33059, Taiwan (ROC) Correspondence: Chih-Ming Tseng ([email protected]) Received: 14 July 2017 – Discussion started: 4 October 2017 Revised: 27 December 2017 – Accepted: 22 January 2018 – Published: 2 March 2018 Abstract. This study focused on landslides in a catchment Landslide susceptibility can be evaluated by analysing the with mountain roads that were caused by Nanmadol (2011) relationships between landslides and various factors that are and Kong-rey (2013) typhoons. Image interpretation tech- responsible for the occurrence of landslides (Brabb, 1984; niques were employed to for satellite images captured before Guzzetti et al., 1999, 2005). In general, the factors that af- and after the typhoons to derive the surface changes. A mul- fect landslides include predisposing factors (e.g. geology, to- tivariate hazard evaluation method was adopted to establish pography, and hydrology) and triggering factors (e.g. rainfall, a landslide susceptibility assessment model. The evaluation earthquakes, and anthropogenic factors) (Chen et al., 2013a, of landslide locations and relationship between landslide and b; Chue et al., 2015). Geological factors include lithological predisposing factors is preparatory for assessing and map- factors, structural conditions, and soil thickness; topograph- ping landslide susceptibility.
    [Show full text]
  • 7 the Analysis of Storm Surge in Manila Bay, the Philippines
    INTERNATIONAL HYDROGRAPHIC REVIEW MAY 2019 THE ANALYSIS OF STORM SURGE IN MANILA BAY, THE PHILIPPINES By Commander C. S. Luma-ang Hydrography Branch, National Mapping and Resource Information Authority, (Philippines) Abstract In 2013, Typhoon Haiyan produced a storm surge over seven metres in San Pedro Bay in the Philippines that killed approximately 6,300 people. The event created significant public awareness on storm surges and exposed the lack of records and historical research in the Philippines. This study investigated the tidal height records during intense cyclone activities in 2016 and 2017 to provide accurate information about storm surge development in the largest and most populated coastal area in the country – Manila Bay. The results of this investigation indicated that there are consistencies in the characteristics of tropical cyclones that produce larger storm surges. The results also show that actual storm surge heights are generally smaller than predicted height values. Résumé En 2013, le typhon Haiyan a provoqué une onde de tempête de plus de sept mètres dans la Baie de San Pedro aux Philippines, faisant près de 6 300 victimes. Cet événement a provoqué une importante sensibilisation du public envers les ondes de tempête et a mis en évidence le manque d’archives et de recherches historiques aux Philippines. La présente étude a examiné les enregistrements des hauteurs des marées au cours d’activités cycloniques intenses en 2016 et 2017 afin de fournir des informations précises sur le développement d’ondes de tempête dans la zone côtière la plus étendue et la plus peuplée du pays, la Baie de Manille.
    [Show full text]
  • The Effect of Warm Water and Its Weak Negative Feedback on the Rapid Intensification of Typhoon Hato (2017)
    Vol.26 No.4 JOURNAL OF TROPICAL METEOROLOGY Dec 2020 Article ID: 1006-8775(2020) 04-0402-15 The Effect of Warm Water and Its Weak Negative Feedback on the Rapid Intensification of Typhoon Hato (2017) HUO Zi-mo (霍子墨), DUAN Yi-hong (端义宏), LIU Xin (刘 欣) (State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081 China) Abstract: Typhoon Hato (2017) went through a rapid intensification (RI) process before making landfall in Zhuhai, Guangdong Province, as the observational data shows. Within 24 hours, its minimum sea level pressure deepened by 35hPa and its maximum sustained wind speed increased by 20m s-1. According to satellite observations, Hato encountered a large area of warm water and two warm core rings before the RI process, and the average sea surface temperature cooling (SSTC) induced by Hato was only around 0.73℃. Air-sea coupled simulations were implemented to investigate the specific impact of the warm water on its RI process. The results showed that the warm water played an important role by facilitating the RI process by around 20%. Sea surface temperature budget analysis showed that the SSTC induced by mixing mechanism was not obvious due to the warm water. Besides, the cold advection hardly caused any SSTC, either. Therefore, the SSTC induced by Hato was much weaker compared with that in general cases. The negative feedback between ocean and Hato was restrained and abundant heat and moisture were sufficiently supplied to Hato. The warm water helped heat flux increase by around 20%, too. Therefore, the warm water influenced the structure and the intensity of Hato.
    [Show full text]
  • Health Action in Crises PHILIPPINES FLOODS
    Health Action in Crises PHILIPPINES FLOODS Situation 2 December 2004 - Tropical Depression "Winnie" has triggered massive floods in northern and central Philippines. Some 400 persons are reported dead, with many people still unaccounted for. An estimated 240,000 persons have been directly affected (government figures). The most affected provinces include Isabela (Region II); Bulacan, Nueva Ecija and Aurora (Region III); Quezon and Rizal (Region IV) and Camarines Sur (Region V). Efforts are focused on search and rescue activities. The procurement and distribution of relief items are also underway. The National Disaster Coordination Council (NDCC) is charged with heading the response, in conjunction with the Defense Department. The NDCC is supported by the UN in-country team. Possible needs in the health sector A comprehensive impact assessment has not yet been undertaken. However, it can be anticipated that the following issues may be of concern: ¾ Damage to health facilities and equipment, as well as disrupted medical supply systems. ¾ Outages in electricity endanger the cold chain. ¾ Relocation of people may result in an overburden of functional primary and referral health services. ¾ Floods and landslides could lead to the disruption of water distribution systems and the loss/contamination of water supplies. In flood situations, the lack of safe drinking water supplies and adequate sanitation, combined with population displacement, heightens the risk of outbreaks of water- and vector-borne diseases. ¾ Shortage of supplies and staff for mass casualty management could occur. WHO immediate actions WHO has mobilized US$ 20,000 to support the assessment of urgent health needs. Medical kits are on standby and are ready to be shipped should they be needed.
    [Show full text]
  • Assimilating AMSU-A Radiance Data with the WRF Hybrid En3dvar System for Track Predictions of Typhoon Megi (2010)
    ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 32, SEPTEMBER 2015, 1231–1243 Assimilating AMSU-A Radiance Data with the WRF Hybrid En3DVAR System for Track Predictions of Typhoon Megi (2010) SHEN Feifei∗ and MIN Jinzhong Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044 (Received 28 October 2014; revised 12 December 2014; accepted 29 December 2014) ABSTRACT The impact of assimilating radiances from the Advanced Microwave Sounding Unit-A (AMSU-A) on the track prediction of Typhoon Megi (2010) was studied using the Weather Research and Forecasting (WRF) model and a hybrid ensemble three- dimensional variational (En3DVAR) data assimilation (DA) system. The influences of tuning the length scale and variance scale factors related to the static background error covariance (BEC) on the track forecast of the typhoon were studied. The results show that, in typhoon radiance data assimilation, a moderate length scale factor improves the prediction of the typhoon track. The assimilation of AMSU-A radiances using 3DVAR had a slight positive impact on track forecasts, even when the static BEC was carefully tuned to optimize its performance. When the hybrid DA was employed, the track forecast was significantly improved, especially for the sharp northward turn after crossing the Philippines, with the flow-dependent ensemble covariance. The flow-dependent BEC can be estimated by the hybrid DA and was capable of adjusting the position of the typhoon systematically. The impacts of the typhoon-specific BEC derived from ensemble forecasts were revealed by comparing the analysis increments and forecasts generated by the hybrid DA and 3DVAR.
    [Show full text]
  • Dynamic Response of a Philippine Dipterocarp Forest to Typhoon Disturbance
    Journal of Vegetation Science 27 (2016) 133–143 Dynamic response of a Philippine dipterocarp forest to typhoon disturbance Sandra L. Yap, Stuart J. Davies & Richard Condit Keywords Abstract Biomass; Dipterocarp forest; Forest dynamics; Forest resilience; Mortality and recruitment; Questions: Natural hazards can wreak catastrophic damage to forest ecosys- Regeneration; Tree demography; Typhoon tems. Here, the effects of typhoon disturbance on forest structure and demogra- disturbance phy of the 16-ha Palanan Forest Dynamics Plot in the northeast Philippines were examined by comparing census intervals with (1998–2004) and without Nomenclature (2004–2010) a strong typhoon. Category 4 Typhoon Imbudo, with wind gusts Co et al. (2006) exceeding 210 kph, hit Palanan in July 2003. In this study, we ask: (1) was there Received 5 August 2014 an effect of the typhoon on stand structure and biomass; (2) was there an impact Accepted 5 February 2015 on species diversity; (3) did annual mortality, growth and recruitment change Co-ordinating Editor: Kerry Woods significantly between typhoon and non-typhoon periods; and (4) did the typhoon’s impact vary with local topography, from leeward to windward sides Yap, S.L. ([email protected])1, of a ridge? Davies, S.J. (corresponding author, Location: Lowland mixed dipterocarp forest, Palanan, Isabela, Philippines. [email protected])2, Condit, R. ([email protected])3 Methods: Census data from 1998, 2004 and 2010 for all trees ≥1 cm DBH in a 1Institute of Biology, University of the 16-ha permanent plot in Palanan, Isabela, were used to assess tree demography. Philippines, Diliman, Quezon City, PH 1101, Recorded in the census were species identification and measurements of DBH Philippines; and tree locations.
    [Show full text]