Open Thesis ASM Jonayatv3.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
The Pennsylvania State University The Graduate School Department of Mechanical and Nuclear Engineering PREDICTING STABILITY OF MODIFIED OXIDE SURFACES WITH FUNCTIONAL ATOMIC-LAYERS FOR NANO-ENGINEERED CATALYSTS THROUGH FIRST PRINCIPLES CALCULATIONS AND STATISTICAL LEARNING A Dissertation in Mechanical Engineering by A S M Jonayat 2018 A S M Jonayat Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2018 ii The dissertation of A S M Jonayat was reviewed and approved* by the following: Adri C.T. van Duin Professor of the Department of Mechanical and Nuclear Engineering Dissertation Advisor Chair of Committee Michael J. Janik Professor of the Department of Chemical Engineering Dissertation Co-adviser Richard Yetter Professor of the Department of Mechanical and Nuclear Engineering Lasse Jensen Professor of the Department of Chemistry Karen A. Thole Professor of the Department of Mechanical and Nuclear Engineering Head of the Department of Mechanical and Nuclear Engineering *Signatures are on file in the Graduate School iii ABSTRACT Multicomponent metal oxides (MMOs) are of significant interest because of their tunable catalytic properties. They can form different structures – core shell particles, coatings on substrate, or bulk mixtures. Two specific types of MMOs – monolayer metal oxides and surface confined mixed metal oxides - are the focus of this work. Despite the growing interest in MMOs, our understanding of their stability to date has been limited; only a few experiments have been undertaken of such systems. To date, discovery of these systems has mainly been through empirical procedures. The large number of possible combination makes it very difficult to discover stable MMOs and systems of interest may be metastable, making experimental discovery more difficult. In this dissertation, Density Functional Theory was used along with ab initio thermodynamics to find possible descriptors of (meta)stable monolayer metal oxides and surface confined mixed oxides. A thermodynamic framework is developed to predict phase diagrams of monolayer metal oxide stability with respect to oxide particles of different sizes and pressures- temperatures. Finally, we show that statistical and Machine Learning algorithms can be useful to not only predict, but also discover underlying physical rules that dictate the stability of the monolayer coating/oxide support combinations. iv TABLE OF CONTENTS List of Figures………………………………………………………………………vii List of Tables……………………………………………………………………….xi Acknowledgements…………………………………………………………………xii Chapter 1 Introduction ............................................................................................................. 1 1.1 Background ................................................................................................................ 2 1.2 Research Questions and Hypotheses .......................................................................... 6 1.3 Computational Methods ............................................................................................. 8 1.3.1 Density Functional Theory (DFT) ................................................................... 8 1.3.2 Ab initio thermodynamics ............................................................................... 9 1.3.3 Shrinkage Method, LASSO+lo ......................................................................... 11 1.4 Summary of Chapters ................................................................................................. 12 1.5 References .................................................................................................................. 12 Chapter 2 A first-principles study of stability of surface confined mixed metal oxides with a corundum structure (Fe2O3, Cr2O3, V2O3) ............................................................. 16 2.1 Introduction ................................................................................................................ 16 2.2 Method ....................................................................................................................... 18 2.2.1. Bulk Structures ............................................................................................... 20 2.2.2 The (0001) Surface of (TM)2O3 Corundum Oxides ........................................ 23 2.2.3 Reducibility of the Fe/V2O3 (0001) Surface .................................................. 24 2.2.4. Pure Oxide Surface Energy ............................................................................ 25 2.2.5. Stable Structures of Surface-confined Mixed TM Oxides ............................. 27 2.3. Results and Discussion .............................................................................................. 29 2.3.1 Bulk Structures ................................................................................................ 29 2.3.2. Predicted Surface Segregation from Pure Oxide Surface Energies ................ 29 2.3.3. Reducibility of the Fe/V2O3 (0001) Surface ................................................... 31 2.3.4. Surface/Subsurface Segregation of Substituted TM2 in (TM1)2O3 (0001) .... 32 2.4. Conclusions ............................................................................................................... 37 2.5 Acknowledgements .................................................................................................... 38 2.6 References .................................................................................................................. 38 Supplementary information .............................................................................................. 42 Chapter 3 Predicting monolayer oxide stability over low-index surfaces of TiO2 polymorphs using ab initio thermodynamics ................................................................... 55 v 3.1 Introduction ................................................................................................................ 55 3.2 Computational methods ............................................................................................. 57 3.2.1 Electronic structure calculations ..................................................................... 57 3.2.2 Surface energy for TiO2 supports .................................................................... 58 3.2.3 Monolayer oxide formation energy: ................................................................ 58 3.2.4 Correction for particle reference: .................................................................... 59 3.2.5 Bulk structures................................................................................................. 60 3.2.6 Surfaces ........................................................................................................... 61 3.3 Results ........................................................................................................................ 65 3.3.1 Surface energies of bare surfaces .................................................................... 65 3.3.2 Monolayer formation energy ........................................................................... 65 3.3.3 Decomposition of monolayer formation energy ............................................. 66 3.4 Discussion .................................................................................................................. 70 3.4.1 Stoichiometric coating oxides (MO2) .............................................................. 71 3.4.2 Coating oxides with +3 reference state (M2O3/M3O4) ..................................... 72 3.4.3 Coating oxides with +2 reference state (MO) ................................................. 72 3.4.4 Metal reference state (M) ................................................................................ 73 3.4.5 Temperature and pressure effect ..................................................................... 73 3.4.6 Particle reference: ............................................................................................ 74 3.5 Conclusions ................................................................................................................ 76 3.6 Acknowledgements .................................................................................................... 77 3.7 References .................................................................................................................. 77 Supporting information .................................................................................................... 81 Chapter 4 An ab initio thermodynamic investigation of monolayer stability of multi- component metal oxides: MxOy/ZnO (0001) and MxOy/TiO2 (110) (M=Pd, Ru, Ni, Pt, Au, Zn) ........................................................................................................................ 86 4.1 Introduction ................................................................................................................ 86 4.2 Methods ...................................................................................................................... 89 4.2.1 Thermodynamic Model for Testing Monolayer Stability ............................... 89 4.2.2 Electronic Structure Calculation Method and Structural Models .................... 92 4.3 Results and Discussions ............................................................................................. 98 4.3.1 Reference Particle Energy ..............................................................................