The Expanding Domain of Aeroelasticity (Collar)

Total Page:16

File Type:pdf, Size:1020Kb

The Expanding Domain of Aeroelasticity (Collar) THE ROYAL AERONAUTICAL SOCIETY Paper received June, 1946 THE EXPANDING DOMAIN OF AEROELASTICITY by A. R. COLLAR, M.A., D.Sc, F.R.Ae.S. Professor Collar took his degree at Cambridge with honours in mathematics and physics; he also took an honours degree in physics at University of London. In 1929 he joined the staff of the Aerodynamics Department of the National Physical Laboratory and was for some time Secretary of the Airscrew Panel and the Fluid Motion Panel of the Aeronautical Research Committee. At the beginning of the war he was specially attached to the staff of the Royal Aircraft Establishment, Farnborough, to take charge of a special group investigating aeroplane flutter and vibration problems. In 1945 he was appointed Sir George White Professor of Aeronautical Engineering in the University .of Bristol. He was elected a Fellow of the Society in March, 1944. SUMMARY. 1. INTRODUCTION. Y MEANS of a broad survey of the The branch of aeronautical science which Bdevelopments in aeroelastic science during has become known as aeroelasticity is of the past ten years and of comparable comparatively recent development. It was developments in associated fields, in so far first studied as such rather more than a as they involve elastic deformation, the decade ago, when Roxbee Cox and Pugsley, following their pioneer work on loss and present paper attempts to show how the reversal of aileron control and on the rolling individual subjects concerned are developing power of a monoplane, began a correlation strong interconnections. At one time the of this work with the flutter investigations of subjects were for the most part regarded as Frazer, Duncan and Collar. This correlation discrete entities; now they are developing led to the formulation and development of into component parts of an integrated whole stiffness criteria for aircraft wings and com­ —the dynamics of a deformable aeroplane. ponents: criteria which have combined an admirable simplicity with a remarkable It is suggested that in the future it may degree of success in the prevention ot be necessary to discontinue the present troubles involving elastic deformation of methods of treatment of the component sub­ aircraft. jects as separate, and to adopt a standard In 1937, Pugsley presented to the Royal method of attack on the problem treated as Aeronautical Society a statement1 of the pro­ a unified whole, especially when adequate gress of the subject to that date. Since then, computational aids become available. A no general review has been made, in spite of modified approach, involving an arrangement great developments and changes of emphasis, of the subjects in a frequency spectrum, is particularly during the past few years. The also discussed. Some speculations on the rapid advances in aeronautical science which elastic provisions which may be necessary in have been made during the war have resulted the future are included, in corresponding strides in aeroelasticity, and 613 A. R. COLLAR the subject has been expanded to such an In the case of wing-aileron flutter, aileron extent that it is now encroaching on fields mass-balance had provided the cure; for the which have previously been regarded as the other three problems, however, wing tor­ preserves of other subjects; and indeed, the sional stiffness was shown to be the property subjects involved may now be regarded as of prime importance. Pugsley's paper con­ beginning to merge into one another. cluded with some speculations as to which The implications of this trend of develop­ of the three phenomena, if any, would be the ment have an obvious interest, and it is determining factor for the elastic properties thought that a discussion of the existing state of wings. of affairs may be helpful at the present time. Accordingly, the following notes have been 3. THE FORCES INVOLVED. prepared to indicate how aeroelasticity is beginning to link up with other subjects, and As a preliminary to the discussion of the what may be the future methods of dealing expansion of the domain of aeroelasticity, it with this coalescence of subjects. is convenient here to consider what forces are involved in the subject. The name itself 2. THE ORIGINAL SCOPE OF defines by implication two of the forces, AEROELASTICITY. namely,' aerodynamic forces and elastic Although Pugsley's paper1 drew attention forces; and these appear alone in studies of to the possible extension of aeroelastic studies unaccelerated motion such as problems of to tailplanes, in fact the phenomena dealt steady rolling or aileron reversal. The flutter with referred exclusively to wings: and and buffeting fields, however, introduce a indeed, at the time, little attention had been third and equally important type, namely, paid to aircraft components other than wings. inertia forces. In addition, there may be Work on tail units had been carried out in certain other forces, for example, gravita­ flutter and buffeting investigations, but from tional forces which make contributions to the the point of view of stiffness wings presented total stiffnesses; but these are relatively the main problem. Pugsley illustrated his unimportant, and we shall restrict ourselves subject by a stiffness diagram in which the to the consideration of aerodynamic, elastic ordinate was a modified (non-dimensional) and inertia forces. wing torsional stiffness criterion and the abscissa, nominally, the wing density: in 4. THE " TRIANGLE OF FORCES " point of fact his independent variable might equally well have been taken as time, since AND PROBLEMS AKIN TO there had been a steady increase in wing AEROELASTICITY. density through the years, and he was It is illuminating to consider some of the regarding the future as a period of very high problems governed by the three types of wing density. force mentioned above; to do this, we may He showed how the criterion had changed make use of the diagram shown in Fig. 1. with increasing wing density, and how it had The three types of force are placed been modified by the influence of various separately at the vertices of the equilateral phenomena in turn: these phenomena, in " triangle of forces " AEI, where the initials chronological order of importance, were: — indicate the force concerned. We now write (a) Wing-aileron flutter. down the subjects originally within the (b) Reversal of aileron control. domain of aeroelasticity, bonding them to the (c) Wing flexure-torsion flutter. appropriate vertices as shown, and placing (d) Wing divergence. them within the triangle when they are 6H THE EXPANDING DOMAIN OF AEROELASTICITY Fig. 1 aerodynamic forces F flutter elastic forces B buffeting inertia forces D divergence R reversal of control bonded to all three vertices. Thus flutter (F) of which a major component is the subject and buffeting (B) are located within the of stability and control (S); again, most triangle. On the other hand, reversal of loading or strength problems (L) of past control (R) and divergence (D) are outside years, including gust problems (G), have been the triangle, since they are unconnected with treated on the basis of interaction of aero­ inertia forces;* though we may draw a bond dynamic and inertia forces. In the inertia- between divergence and flutter. elastic field is a subject which, at the time of Inspection of Fig. 1, however, leads Pugsley's review) was rapidly growing in naturally to the question: in view of their importance—that of mechanical vibration obvious connections with aeroelasticity, what (V); and entering this field we find the of the subjects in the aerodynamic-inertia problem of the stresses induced by impact force field and in the inertia-elastic force loads (Z) which, originally treated as an field? We may in fact add to our diagram, inertia problem only, was acquiring a con­ as in Fig. 2, a number of subjects originally nection with elastic forces. belonging to these fields. In the first field is Fig. 2 shows clearly that the no-man's land the vast subject of rigid aeroplane dynamics, surrounding the territory of aeroelasticity was of very small extent; and any attempt at By divergence we imply here an infinitely slow expansion must involve intrusion into other divergence, such as occurs at a critical diver­ gence speed. fields of work. 615 A. R. COLLAR In the next paragraph we attempt to define is needed therefore if we deal with the sub­ briefly the scope of the problems shown in jects in a very broad and general way, and Fig. 2 at the beginning of the past decade if in so doing we find that in our statement of development. considerable omissions and lacunae appear. 51. AEROELASTICITY. 5. DELIMITATION OF THE ORIGINAL We have already indicated, by reference to SCOPE OF THE PROBLEMS. Pugsley's work, what was the general scope If we were to attempt here to define any of this subject. It related almost exclusively precise limits to the subjects with which we to aeroplane wings, and -Jftid down, on a are concerned, we should have to include in theoretical-cum-statistical basis, standards of a single paragraph a very large part of the torsional stiffness for wings: standards of whole science of aerodynamics. No apology flexural stiffness were not found to be B. Fig. 2 A : aerodynamic forces F flutter E : elastic forces B buffeting 1 : inertia forces S stability and control D divergence R reversal of control C gusts L loading problems V mechanical vibration z impacts 616 THE EXPANDING DOMAIN OF AEROELASTICITY required. It is true that standards of massive, so that in effect it had no bodily torsional stiffness for ailerons had been freedoms; and the components whose flutter tentatively proposed also; but the number of properties were to be studied were regarded criteria was very small.
Recommended publications
  • Introduction to Aircraft Aeroelasticity and Loads
    JWBK209-FM-I JWBK209-Wright November 14, 2007 2:58 Char Count= 0 Introduction to Aircraft Aeroelasticity and Loads Jan R. Wright University of Manchester and J2W Consulting Ltd, UK Jonathan E. Cooper University of Liverpool, UK iii JWBK209-FM-I JWBK209-Wright November 14, 2007 2:58 Char Count= 0 Introduction to Aircraft Aeroelasticity and Loads i JWBK209-FM-I JWBK209-Wright November 14, 2007 2:58 Char Count= 0 ii JWBK209-FM-I JWBK209-Wright November 14, 2007 2:58 Char Count= 0 Introduction to Aircraft Aeroelasticity and Loads Jan R. Wright University of Manchester and J2W Consulting Ltd, UK Jonathan E. Cooper University of Liverpool, UK iii JWBK209-FM-I JWBK209-Wright November 14, 2007 2:58 Char Count= 0 Copyright C 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wileyeurope.com or www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to [email protected], or faxed to (+44) 1243 770620.
    [Show full text]
  • CHAPTER TWO - Static Aeroelasticity – Unswept Wing Structural Loads and Performance 21 2.1 Background
    Static aeroelasticity – structural loads and performance CHAPTER TWO - Static Aeroelasticity – Unswept wing structural loads and performance 21 2.1 Background ........................................................................................................................... 21 2.1.2 Scope and purpose ....................................................................................................................... 21 2.1.2 The structures enterprise and its relation to aeroelasticity ............................................................ 22 2.1.3 The evolution of aircraft wing structures-form follows function ................................................ 24 2.2 Analytical modeling............................................................................................................... 30 2.2.1 The typical section, the flying door and Rayleigh-Ritz idealizations ................................................ 31 2.2.2 – Functional diagrams and operators – modeling the aeroelastic feedback process ....................... 33 2.3 Matrix structural analysis – stiffness matrices and strain energy .......................................... 34 2.4 An example - Construction of a structural stiffness matrix – the shear center concept ........ 38 2.5 Subsonic aerodynamics - fundamentals ................................................................................ 40 2.5.1 Reference points – the center of pressure..................................................................................... 44 2.5.2 A different
    [Show full text]
  • Introduction to Aeroelasticity.Pdf
    Aeroelasticity Dr. Ugur GUVEN Aerospace Engineer (P.hD) Nuclear Science and Technology Engineer (M.Sc) What is Aeroelasticity • Aeroelasticity is broadly defined as the interaction between the aerodynamic forces and the structural forces causing a deformation in the structure of the aerospace craft as well as in its control mechanism or in its propulsion systems. Importance of Aeroelasticity • Aeroelasticity has become a very important force especially after the 1950’s. • The interaction between aerodynamic loads and structural deformations have gained great importance in view of factors related to the design of aircraft as well as missiles. • Aeroelasticity plays at least some part on fuel sloshing as well as on the reentry of spacecraft in astronautics. Trends in Technology • Due to the advancements in technology, it has become quite common to see the slenderness ratio (ratio of length of wing span to thickness at the root) increase. • The wing span area as well as the length of aircrafts have increased causing aircraft to become much more susceptible to interaction between structural loads and aerodynamic loads Slenderness Ratio Effect of Aerodynamic Loads • The forces of lift and drag as well as torsion moment will have some sort of effect on the structural integrity of the spacecraft. • In many cases, some parts of aircraft or spacecraft may bend or ripple slightly due to these loads. • The frequency of these loads and effects can also cause the aircraft’s structure to suffer from metal fatigue in the long run. Scope of Aeroelasticity Vibration • One of the ways in which aerodynamic and structural forces collide with each other is through vibration.
    [Show full text]
  • AAE556-Aeroelasticity
    AIRCRAFT AEROELASTIC DESIGN AND ANALYSIS An introduction to fundamental concepts of static and dynamic aeroelasticity - with simple idealized models and mathematics to describe the essential features of aeroelastic problems. These notes are intended for the use of Purdue University students enrolled in AAE556. They are not for sale or intended for distribution to others, but may be used for educational purposes, with prior permission of the author. Terry A. Weisshaar Purdue University © 1995 (Second edition -2009) Introduction - page 1 Preface to Second Edition – The purpose and scope These notes are the result of three decades of experiences teaching a course in aeroelasticity to seniors and first or second year graduate students. During this time I have presented lectures and developed homework problems with the objective of introducing students to the complexities of a field in which several major disciplines intersect to produce major problems for high speed flight. These problems affect structural and flight stability problems, re-distribution of external aerodynamic loads and a host of other problems described in the notes. This three decade effort has been challenging, but more than anything, it has been fun. My students have had fun and have been contributors to this teaching effort. Some of them have even gone on to surpass my skills in this area and to be recognized practitioners in this area. First of all, let me emphasize what these notes are not. They are not notes on advanced methods of analysis. They are not a “how to” book describing advanced methods of analysis required to analyze complex configurations. If your job is to compute the flutter speed of a Boeing 787, you will have to learn that skill elsewhere.
    [Show full text]
  • A Historical Overview of Flight Flutter Testing
    tV - "J -_ r -.,..3 NASA Technical Memorandum 4720 /_ _<--> A Historical Overview of Flight Flutter Testing Michael W. Kehoe October 1995 (NASA-TN-4?20) A HISTORICAL N96-14084 OVEnVIEW OF FLIGHT FLUTTER TESTING (NASA. Oryden Flight Research Center) ZO Unclas H1/05 0075823 NASA Technical Memorandum 4720 A Historical Overview of Flight Flutter Testing Michael W. Kehoe Dryden Flight Research Center Edwards, California National Aeronautics and Space Administration Office of Management Scientific and Technical Information Program 1995 SUMMARY m i This paper reviews the test techniques developed over the last several decades for flight flutter testing of aircraft. Structural excitation systems, instrumentation systems, Maximum digital data preprocessing, and parameter identification response algorithms (for frequency and damping estimates from the amplltude response data) are described. Practical experiences and example test programs illustrate the combined, integrated effectiveness of the various approaches used. Finally, com- i ments regarding the direction of future developments and Ii needs are presented. 0 Vflutte r Airspeed _c_7_ INTRODUCTION Figure 1. Von Schlippe's flight flutter test method. Aeroelastic flutter involves the unfavorable interaction of aerodynamic, elastic, and inertia forces on structures to and response data analysis. Flutter testing, however, is still produce an unstable oscillation that often results in struc- a hazardous test for several reasons. First, one still must fly tural failure. High-speed aircraft are most susceptible to close to actual flutter speeds before imminent instabilities flutter although flutter has occurred at speeds of 55 mph on can be detected. Second, subcritical damping trends can- home-built aircraft. In fact, no speed regime is truly not be accurately extrapolated to predict stability at higher immune from flutter.
    [Show full text]
  • Aeroelasticity
    1 Matthew Moraguez Aeroelasticity What is Aeroelasticity? An airplane’s wing generates an upward AEROELASTICITY, NOUN force, known as lift, when it passes through air. Although lift is needed for a plane to fly, A term used in the field of aerospace its effect on the structure of the plane can be engineering to describe the interaction harmful. Aeroelasticity refers to the between a structure and a moving fluid [1]. deformation of an airplane’s wing in response to aerodynamic forces, such as lift. [1] Static vs. Dynamic Aeroelasticity Aeroelastic effects are classified as either static or dynamic. While static effects reach an equilibrium, dynamic effects are defined by oscillations [2]. Static Aeroelasticity: Aeroelasticity applies to Divergence refers to a process in which the lift a wing produces causes the wing itself to twist. This twisting any situation in which a leads to greater lift, which causes more twisting. The fluid (gas or liquid) flows process continues until equilibrium is reached [1]. In around a structure [3]. order to prevent divergence, a wing must be stiff enough to prevent twisting. If the wing is too flexible or the force of lift is too strong, divergence will occur [2]. DID YOU KNOW? Aileron reversal occurs when wing twisting causes the plane’s response to the pilot’s commands to be Aeroelasticity affects airplane reversed from the expected. In other words, when a stability, bridge design, and even blood flow through the body! [3] pilot tries to turn left, the plane will turn right [2]. Dynamic Aeroelasticity: Above a critical wind speed, a wing experiences flutter instability, which causes the wing to oscillate.
    [Show full text]
  • Aeroelasticity and Structural Dynamics
    Aeroelasticity and Structural Dynamics Aeroelasticity and Structural Dynamics he fourteenth issue of AerospaceLab Journal is dedicated to aeroelasticity and T structural dynamics. Aeroelasticity can be briefly defined as the study of the low frequency dynamic behavior of a structure (aircraft, turbomachine, helicopter rotor, etc.) in an aerodynamic flow. It focuses on the interactions between, on the one hand, the static or vibrational deformations of the structure and, on the Cédric LIAUZUN other hand, the modifications or fluctuations of the aerodynamic flow field. (ONERA) Senior Scientist Aeroelastic phenomena have a strong influence on stability and therefore on the integrity of aeronautical structures, as well as on their performance and durability. In the current context, in which a reduction of the footprint of aeronautics on the environment is sought, in particular by reducing the mass and fuel consumption of aircraft, aeroelasticity problems must be taken into account as early as possible in the design of such structures, whether they are conventional or innovative concepts. It is therefore necessary to develop increasingly efficient and accurate numerical and experimental methods and tools, allowing additional complex physical phenomena to be taken into account. On the other hand, the development of larger and lighter aeronautical structures entails the need to determine the dynamic characteristics of such Nicolas PIET-LAHANIER highly flexible structures, taking into account their possibly non-linear behavior (large (ONERA) displacements, for example), and optimizing them by, for example, taking advantage Senior Scientist of the particular properties of new materials (in particular, composite materials). DOI: 10.12762/2018.AL14-00 This issue of AerospaceLab Journal presents the current situation regarding numerical calculation and simulation methods specific to aeroelasticity and structural dynamics for several applications: fan damping computation and flutter prediction, static and dynamic aeroelasticity of aircraft and gust response.
    [Show full text]
  • Hypersonic Aeroelasticity and Aerothermoelasticity With
    12th AIAA International Space Planes and Hypersonic Systems and Technologies AIAA 2003-7014 15 - 19 December 2003, Norfolk, Virginia HYPERSONIC AEROTHERMOELASTICITY WITH APPLICATION TO REUSABLE LAUNCH VEHICLES P.P. Friedmann,¤ J.J. McNamara,y B.J. Thuruthimattam,y and K.G. Powellz Department of Aerospace Engineering University of Michigan 3001 Fran»cois-Xavier Bagnoud Bldg., 1320 Beal Ave Ann Arbor, Michigan 48109-2140 Ph: (734) 763-2354 Fax: (734) 763-0578 email: [email protected] ABSTRACT b Semi-chord c Reference length, chord length of The hypersonic aeroelastic and aerothermoelastic double-wedge airfoil problem of a double-wedge airfoil typical cross-section CD;CL;CMy Coe±cients of drag, lift and moment is studied using three di®erent unsteady aerody- about the y-axis namic loads: (1) third-order piston theory, (2) Euler CpP T ;CpNS Piston theory pressure coe±cient, and aerodynamics, and (3) Navier-Stokes aerodynamics. CFD Navier-Stokes pressure coe±cient Computational aeroelastic response results are used respectively to obtain frequency and damping characteristics, and f(x) Function describing airfoil surface compared with those from piston theory solutions for f1(); fi() Functions relating Mach number and a variety of flight conditions. Aeroelastic behavior is temperature studied for 5 < M < 15 at altitudes of 40,000 and h Airfoil vertical displacement at Elastic 70,000 feet. A parametric study of o®sets, wedge Axis angles, and static angle of attack is conducted. All the I® Mass moment of inertia about the solutions are fairly close below the flutter boundary, Elastic Axis and di®erences between the various models increase K®;Kh Spring constants in pitch and plunge when the flutter boundary is approached.
    [Show full text]
  • Theodorsen's and Garrick's Computational
    THEODORSEN’S AND GARRICK’S COMPUTATIONAL AEROELASTICITY, REVISITED Boyd Perry, III Distinguished Research Associate Aeroelasticity Branch NASA Langley Research Center Hampton, Virginia, USA International Forum on Aeroelasticity and Structural Dynamics Savannah, Georgia June 10-13, 2019 “Results of Theodorsen and Garrick Revisited” by Thomas A. Zeiler Journal of Aircraft Vol. 37, No. 5, Sep-Oct 2000, pp. 918-920 Made known that – • Some plots in the foundational trilogy of NACA reports on aeroelastic flutter by Theodore Theodorsen and I. E. Garrick are in error • Some of these erroneous plots appear in classic texts on aeroelasticity Recommended that – • All of the plots in the foundational trilogy be recomputed and published 2 “Results of Theodorsen and Garrick Revisited” by Thomas A. Zeiler Journal of Aircraft Vol. 37, No. 5, Sep-Oct 2000, pp. 918-920 Made known that – • Some plots in the foundational trilogy of NACA reports on aeroelastic flutter by Theodore Theodorsen and I. E. Garrick are in error • Some of these erroneous plots appear in classic texts on aeroelasticity Recommended that – • All of the plots in the foundational trilogy be recomputed and published Cautioned that – • “One does not set about lightly to correct the masters.” 3 Works Containing Erroneous Plots 1. Theodorsen, T.: General Theory of Aerodynamic Instability and the Mechanism of Flutter. NACA Report No. 496, 1934. 2. Theodorsen, T. and Garrick, I. E.: Mechanism of Flutter, a Theoretical and Experimental Investigation of the Flutter Problem. NACA Report No. 685, 1940. 3. Theodorsen, T. and Garrick, I. E.: Flutter Calculations in Three Degrees of Freedom. NACA Report No. 741, 1942.
    [Show full text]
  • Practical Aeroelasticity
    Aeroelasticity Lecture 5: Practical Aircraft Aeroelasticity G. Dimitriadis 1 Introduction • In the previous lecture we showed that Theodorsen theory can be used to obtain an algebraic system of two equations for the two unknowns: – Flutter frequency – Flutter airspeed 2 Non-sinusoidal motion • This algebraic system of equations is only valid if the system is undergoing purely sinusoidal oscillations. There are three situations in which this can happen: – At the flutter condition – At wind-off conditions if the structural damping is zero. – At any airspeed if the wind response to an external sinusoidal load. • The last situation means that we can calculate the response of an aeroelastic system with Theodorsen aerodynamics to any excitation force. • This is particularly useful because it will allow us to calculate the natural frequencies and damping ratios at all airspeeds, as we did with time-domain analysis. 3 Forced response • Until now we have only considered unforced motion: ! $! $ ! $! $ ! $ m S h!! Kh 0 h −l(t) # &# &+# &# & = # & # S I &# & # 0 K & # m(t) & " α %" α!! % " α %" α % " % • No we will consider an external loads (e.g. control input) applied on one of the degrees of freedom. E.g. force on plunge: ! $! $ ! $! $ ! $ ! $ m S h!! Kh 0 h l(t) Fh t # &# &+# &# &+# & = # ( ) & # S I &# & # 0 K & # m(t) & # & " α %" α!! % " α %" α % " − % " 0 % • Or moment on pitch: ! $! $ ! $! $ ! $ ! $ m S h!! Kh 0 h l(t) 0 # &# &+# &# &+# & = # & # S I &# & # 0 K & # m(t) & # M t & " α %" α!! % " α %" α % " − % " α ( ) % 4 Sinusoidal force • If Theodorsen analysis is to be applied, the force must be sinusoidal, e.g. jωt Fh = F0e jωt Mα = M 0e • The steady-state response of the pitch-plunge wing will also be sinusoidal once all the transients have died out, i.e.
    [Show full text]
  • ASEN 5111 Aeroelasticity
    ASEN 5111: Introduction to Aeroelasticity F. Demet Ulker Spring- 2020 E-mail: [email protected] Web: Office Hours: T/TH 5:30pm-6:30pm Class Hours: T/TH 4:00pm-5:15pm Course Description This course provides an introductory level knowledge in theoretical and experimental founda- tions of aeroelasticity. A short review on the 2D aerodynamics and discrete and continuous system vibration analysis methods will be followed by static and dynamic aeroelastic phenom- ena. Along with the classical flutter analysis, several other critical flutter conditions such as Body Freedom Flutter will be discussed in the class. Analytical and numerical based approximate so- lution techniques will be introduced. ASWING will be used for coupled flight dynamics and aeroelastic analysis and experimental simulations. Homeworks are designed to complement the subjects covered in the class, hence different aeroelastic phenomena including fixed wing and rotary wing aeroelastic systems, and control couplings will be analyzed. Prerequisite Requires corequisite courses of APPM 2360, ASEN 2001. • Sufficient familiarity with vibrations: response of multimass and continuous systems, free vibration modes, normal coordinates, and variational principles in dynamics. Desirable: MATH 2400, ASEN 3112, ASEN 4123. • Sufficient familiarity with low-speed aerodynamics and flight dynamics of aerospace vehi- cles. Desirable: ASEN 3111, ASEN 3128. • Sufficient familiarity with stability analysis. Desirable: ASEN 5012. • Prior programming skills in MATLAB. 1 ASEN 5111 Reference Materials [1] J. Wright and J. Cooper, Introduction to Aircraft Aeroelasticity and Loads, 2nd ed., ser. aerospace series. Wiley, 2015. [2] R. L. Bisplinghoff and H. Ashley, Principles of Aeroelasticity. Dover, 1962. [3] D. Hodges and G. Pierce, Introduction to Structural Dynamics and Aeroelasticity, ser.
    [Show full text]
  • Aeronautical Science 101: the Development of Engineering Science in Aeronautical Engineering Education at the University of Minnesota
    Aeronautical Science 101: The Development of Engineering Science in Aeronautical Engineering Education at the University of Minnesota A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Amy Elizabeth Foster IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ARTS October 2000 1. Introduction: Engineering Science and Its Role in Aeronautical Engineering Education In 1929, the University of Minnesota founded its Department of Aeronautical Engineering. John D. Akerman, the department head, developed the curriculum the previous year when aeronautical engineering was still an option for mechanical engineering students. Akerman envisioned the department's graduates finding positions as practical design engineers in industry. Therefore, he designed the curriculum with a practical perspective. However, with the rising complexity of aircraft through the 1930s, 40s, and 50s, engineering science grew more important to aeronautical engineering design practices than ever before. In 1948, the university closed a deal on an idle gunpowder plant. The aeronautical engineering department converted the site into a top- notch aeronautical research laboratory. A new dean for the engineering schools, Athelstan Spilhaus, arrived at the University of Minnesota in 1949. He brought a vision for science-based engineering. Akerman, who never felt completely comfortable with theoretical design methods, struggled with the integration of engineering science into his department's curriculum. Despite Akerman's resistance, engineering science eventually permeated the aeronautical engineering curriculum at Minnesota through this new lab and the dean's vision. In following this path, the University of Minnesota came to exemplify the significant place of engineering science in aeronautical engineering by the 1950s.
    [Show full text]