Multilingual Disfluency Removal Using

Total Page:16

File Type:pdf, Size:1020Kb

Multilingual Disfluency Removal Using Multilingual Disfluency Removal using NMT Eunah Cho, Jan Niehues, Thanh-Le Ha, Alex Waibel Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology, Karlsruhe, Germany [email protected] Abstract the characteristics of neural machine translation (NMT) uti- lizing continuous representations of the input sentences in- In this paper, we investigate a multilingual approach for stead of a language-specific, fixed format have brought a lot speech disfluency removal. A major challenge of this task of attention in building a model for multilingual inputs [1, 2]. comes from the costly nature of disfluency annotation. Moti- The potential benefit from sharing semantic representations vated by the fact that speech disfluencies are commonly ob- of the languages is a strong advantage of multilingual NMT. served throughout different languages, we investigate the po- From this assessment, we expect that multilingual disfluency tential of multilingual disfluency modeling. We suggest that learning can be a solution to a task with the data sparsity is- learning a joint representation of the disfluencies in multiple sue. Utilizing the neural network (NN)-based system, we aim languages can be a promising solution to the data sparsity is- to obtain a joint representation of speech disfluencies across sue. In this work, we utilize a multilingual neural machine different languages. translation system, where a disfluent speech transcript is di- NMT offers a powerful framework where further speech- rectly transformed into a cleaned up text. cleaning or reconstructing operations are allowed, such as Disfluency removal experiments on English and German reordering and replacement of words. As an initial work to speech transcripts show that multilingual disfluency model- apply the NMT framework for this task, we establish the ef- ing outperforms the single language systems. In a follow- fectiveness of this framework on the disfluency removal task. ing experiment, we show that the improvements are also We use disfluency-annotated English meeting data and observed in a downstream application using the disfluency- German lecture data, and build three separated disfluency re- removed transcripts as input. moval systems: two single language systems (one trained on the English data, another on the German data) and the mul- 1. Introduction tilingual system. In each system, the source side consists of The challenges posed by spoken language translation (SLT) disfluent transcripts. In the multilingual system, it includes have received a great deal of research interest lately. One of German and English disfluent transcripts. Note that the tran- these challenges is the handling of speech disfluencies. Un- scripts in each language do not form a parallel or comparative like written language, spoken language contains disfluencies, corpus; they are speech transcripts from individual sources. such as repetitions, false starts, stutters, etc. Speech disflu- The target side then consists of clean transcripts. Each lan- encies not only hinder the readability of speech transcripts guage, therefore, goes through a monolingual translation pro- but also harms the performance of subsequent applications of cess where its disfluencies can be directly removed. natural language processing (NLP), including machine trans- This work will demonstrate that by allowing multilingual lation (MT). learning we can improve the overall disfluency removal per- One challenge of speech disfluency modeling is the formance over the single language learning systems. In order costly nature of disfluency-annotated data. Most state-of- to evaluate the performance, disfluency-removed test sets are the-art techniques for disfluency detection rely on supervised compared to manually cleaned transcripts. In addition, we data, whose annotation process is expensive. Moreover, conduct an extrinsic evaluation, where we measure the im- disfluency-annotated data is often limited to only certain lan- pact of disfluency removal in a subsequent application. Once guages, which brings an even bigger challenge when model- a disfluent test set is transformed into a clean one, it will be ing the speech phenomenon for low resourced languages. translated into another language using an MT system. By Many of the speech disfluencies, such as stutters, false evaluating the MT performance, we can measure the impact starts and repetitions, commonly occur in different lan- of multilingual disfluency removal in a downstream applica- guages. This research, thus, is motivated by the idea that the tion. data sparsity issue can be remedied if joint representations of This paper is organized as follows. In Section 2, a brief speech disfluencies across languages are available. Recently, overview of past research on disfluency removal and multi- lingual learning is given. Followed by a brief introduction where one source language can be translated into multiple to speech disfluencies in Section 3, The multilingual disflu- languages. In this scheme, the attention mechanism is lo- ency removal scheme is explained in Section 4. Preceding cated in the each target language decoder. In [17], the au- experiments on parameter optimization are also discussed. thors introduced an attention-based NMT which can accom- In Section 5, our experimental setups and the results along modate shared attention mechanism for multilingual transla- with an analysis are given. Finally, Section 6 concludes our tion. While supporting many-to-many translation tasks, they discussion. integrated a single attention mechanism into the NMT. NN for sequence-to-sequence learning [18] and the 2. Related Work framework of encoder-decoder networks [19] showed its ef- fectiveness in sequence-to-sequence mapping. The drawback Including the early approaches using statistical language of this approach, difficulty in learning from long sentences, model [3], there has been extensive research on the speech is later addressed by having an attention mechanism [20]. disfluency issue. One promising direction was using noisy With the attention mechanism, which is now used in many channel model [4, 5], where it is assumed that fluent text, state-of-the-art NMT systems, the system can learn which without any disfluencies, passes through a noisy channel source tokens to observe more when predicting the next tar- which introduces disfluencies. The noisy channel model is get words. NMT systems achieved a greater performance later extended with a tree-adjoining grammar [6]. In this over the traditional approach of phrase-based machine trans- work, the authors used a syntactic parser for building a lan- lation (PBMT) using the same parallel data as observed in guage model. Sequential tagging has shown a good perfor- recent machine translation campaigns [21, 22]. mance as well. In [7], conditional random fields (CRF) with features from lexical, language model, and parser informa- 3. Speech Disfluency tion have been used for the automatic identification of disflu- encies. The authors in [8] compared different modeling tech- Spoken language differs largely from written language. It of- niques for this task, including CRF and maximum entropy ten contains self-repairs, stutters, ungrammatical expressions (ME) model. Recent efforts have made to evaluate different and incomplete sentences or phrases. segmentation and disfluency removal techniques for conver- Different disfluency categories are thoroughly studied in sational speech [9], where CRFs have been used extensively [23]. A common type of disfluency is the filler disfluency, as well. which includes filled pauses, as well as discourse markers. Following a huge success of neural networks in many Obvious filler words or sounds would be uh, uhm or their challenges in NLP, however, there has been a great number variants. Representative discourse markers in English are of research on disfluency detection using NN. Word embed- you know and well, and in German ja and nun, for exam- dings from recurrent neural networks (RNN) have been se- ple. Edit disfluencies, on the other hand, are often writ- lected as features in a sequential tagging model for disfluency ten as (reparandum) * <editing term> correction. The detection [10]. In [11], the authors investigated the combined reparandum represents the aborted part of the utterance. The approach of CRF and feed-forward neural networks (FFNN) interruption point * is the point where the speaker aborts on the disfluency detection and punctuation insertion task. the ongoing utterance and introduces the corrected utterance. The combination of the two modeling techniques yielded 0.6 Therefore, the reparandum includes repetition, false starts, to 0.8 BLEU [12] points of improvements over the individ- etc. Before introducing the corrected utterance, often speak- ual models. One recent study [13] explored RNNs for the ers use an editing term, i.e. sorry. This scheme has been disfluency detection and analyzed the effect of context on the the bases for disfluency analysis and modeling for many lan- performance. The authors showed a good incremental prop- guages [24]. erties of RNNs with low latency. Bidirectional LSTMs have Example sentences from the English and German spon- been used for this task in [14], with engineered disfluency taneous data are shown in Table 1. For the German excerpt, pattern match features. its English gloss translation is also provided. The excerpt The idea behind multilingual speech processing was also shows exact and rough repetitions and filler words, marked supported by [15]. In [16], for example, the authors showed
Recommended publications
  • Recurrent Neural Networks in Speech Disfluency Detection And
    Recurrent Neural Networks in Speech Disfluency Detection and Punctuation Prediction Master’s Thesis Matthias Reisser 1538923 At the Department of Informatics Interactive Systems Lab (ISL) Institute of Anthropomatics and Robotics Reviewer: Prof. Dr. Alexander Waibel Second reviewer: Prof. Dr. J. Marius Zöllner Advisor: Kevin Kilgour, Ph.D Second advisor: Eunah Cho 15th of November 2015 KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu Abstract With the increased performance of automatic speech recognition systems in recent years, applications that process spoken speech transcripts become in- creasingly relevant. These applications, such as automated machine transla- tion systems, dialogue systems or information extraction systems, usually are trained on large amount of text corpora. Since acquiring, manually transcribing and annotating spoken language transcripts is prohibitively expensive, natural language processing systems are trained on existing text corpora of well-written texts. However, since spoken language transcripts, as they are generated by automatic speech recognition systems, are full of speech disfluencies and lack punctuation marks as well as sentence boundaries, there is a mismatch be- tween the training corpora and the actual use case. In order to achieve high performance on spoken language transcripts, it is necessary to detect and re- move these disfluencies, as well as insert punctuation marks prior to processing them. The focus of this thesis therefore lies in addressing the tasks of disfluency de- tection and punctuation prediction on two data sets of spontaneous speech: The multi-party meeting data set (Cho, Niehues, & Waibel, 2014) and the switchboard data set of telephone conversations (Godfrey et al., 1992).
    [Show full text]
  • A Corpus-Based Study of Speech Fluency Across English Dialects
    1 A CORPUS-BASED STUDY OF SPEECH FLUENCY ACROSS ENGLISH DIALECTS A thesis submitted in partial fulfillment of the Requirements for the degree of Master of Science in Speech and Language Sciences In the University of Canterbury By Nandini Shanmukha University of Canterbury 2017 2 Table of Contents List of Figures .................................................................................................................... 5 List of Tables ...................................................................................................................... 6 Acknowledgements ............................................................................................................ 7 Abstract: ............................................................................................................................. 8 1. BACKGROUND ........................................................................................................... 9 1.1. Speech Fluency vs Disfluency ........................................................................... 10 1.2. Normal disfluencies Vs Stuttering-like disfluencies: ...................................... 11 1.2.1. Normative fluency data ................................................................................. 11 1.3. Contributing factors to speech disfluency: ...................................................... 13 1.3.1. Situational factors: ........................................................................................ 14 1.3.2. Topic familiarity:..........................................................................................
    [Show full text]
  • NWAV 46 Booklet-Oct29
    1 PROGRAM BOOKLET October 29, 2017 CONTENTS • The venue and the town • The program • Welcome to NWAV 46 • The team and the reviewers • Sponsors and Book Exhibitors • Student Travel Awards https://english.wisc.edu/nwav46/ • Abstracts o Plenaries Workshops o nwav46 o Panels o Posters and oral presentations • Best student paper and poster @nwav46 • NWAV sexual harassment policy • Participant email addresses Look, folks, this is an electronic booklet. This Table of Contents gives you clues for what to search for and we trust that’s all you need. 2 We’ll have buttons with sets of pronouns … and some with a blank space to write in your own set. 3 The venue and the town We’re assuming you’ll navigate using electronic devices, but here’s some basic info. Here’s a good campus map: http://map.wisc.edu/. The conference will be in Union South, in red below, except for Saturday talks, which will be in the Brogden Psychology Building, just across Johnson Street to the northeast on the map. There are a few places to grab a bite or a drink near Union South and the big concentration of places is on and near State Street, a pedestrian zone that runs east from Memorial Library (top right). 4 The program 5 NWAV 46 2017 Madison, WI Thursday, November 2nd, 2017 12:00 Registration – 5th Quarter Room, Union South pm-6:00 pm Industry Landmark Northwoods Agriculture 1:00- Progress in regression: Discourse analysis for Sociolinguistics and Texts as data 3:00 Statistical and practical variationists forensic speech sources for improvements to Rbrul science: Knowledge-
    [Show full text]
  • Exploring the Role of Fillers in the Automatic Prediction of a Speaker's
    How Confident are You? Exploring the Role of Fillers in the Automatic Prediction of a Speaker’s Confidence Tanvi Dinkar, Ioana Vasilescu, Catherine Pelachaud, Chloé Clavel To cite this version: Tanvi Dinkar, Ioana Vasilescu, Catherine Pelachaud, Chloé Clavel. How Confident are You? Ex- ploring the Role of Fillers in the Automatic Prediction of a Speaker’s Confidence. Workshop sur les Affects, Compagnons artificiels et Interactions, CNRS, Université Toulouse Jean Jaurès, Université de Bordeaux, Jun 2020, Saint Pierre d’Oléron, France. hal-02933476 HAL Id: hal-02933476 https://hal.inria.fr/hal-02933476 Submitted on 8 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. How Confident are You? Exploring the Role of Fillers in the Automatic Prediction of a Speaker’s Confidence Tanvi Dinkar Ioana Vasilescu [email protected] [email protected] Institut Mines-Telecom, Telecom Paris, CNRS-LTCI, Paris, LIMSI, CNRS, Université Paris-Saclay, Orsay, France France Catherine Pelachaud Chloé Clavel [email protected] [email protected] CNRS-ISIR, UPMC, Paris, France Institut Mines-Telecom, Telecom Paris, CNRS-LTCI, Paris, France ABSTRACT structure of their utterance, such as in their (difficulties of) selec- “Fillers", example “um" in English, have been linked to the “Feel- tion of appropriate vocabulary while maintaining their turn (in ing of Another’s Knowing (FOAK)" or the listener’s perception of dialogue).
    [Show full text]
  • Automatic Detection of Sentence Boundaries, Disfluencies, And
    Automatic Detection of Sentence Boundaries, Disfluencies, and Conversational Fillers in Spontaneous Speech Joungbum Kim A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering University of Washington 2004 Program Authorized to Offer Degree: Electrical Engineering University of Washington Graduate School This is to certify that I have examined this copy of a master's thesis by Joungbum Kim and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Committee Members: Mari Ostendorf Katrin Kirchhoff Date: In presenting this thesis in partial fulfillment of the requirements for a Master's degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this thesis is allowable only for scholarly purposes, consistent with \fair use" as prescribed in the U.S. Copyright Law. Any other reproduction for any purpose or by any means shall not be allowed without my written permission. Signature Date University of Washington Abstract Automatic Detection of Sentence Boundaries, Disfluencies, and Conversational Fillers in Spontaneous Speech Joungbum Kim Chair of Supervisory Committee: Professor Mari Ostendorf Electrical Engineering Ongoing research on improving the performance of speech-to-text (STT) systems has the potential to provide high quality machine transcription of human speech in the future. However, even if such a perfect STT system were available, readability of transcripts of spontaneous speech as well as their usability in natural language processing systems are likely to be low, since such transcripts lack segmentations and since spontaneous speech contains disfluencies and conversational fillers.
    [Show full text]
  • Pronunciation and Disfluency Modeling for Expressive Speech Synthesis Raheel Qader
    Pronunciation and disfluency modeling for expressive speech synthesis Raheel Qader To cite this version: Raheel Qader. Pronunciation and disfluency modeling for expressive speech synthesis. Artificial Intelligence [cs.AI]. Université Rennes 1, 2017. English. NNT : 2017REN1S076. tel-01668014v2 HAL Id: tel-01668014 https://hal.inria.fr/tel-01668014v2 Submitted on 15 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N o d’ordre : 00000 ANNÉE 2017 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Bretagne Loire pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Informatique École doctorale Matisse présentée par Raheel QADER préparée à l’unité de recherche IRISA – UMR6074 Institut de Recherche en Informatique et Système Aléatoires École Nationale Supérieure des Sciences Appliquées et de Technologie Soutenance de thèse envisagée à Lannion Pronunciation le 31 mars 2017 and disfluency devant le jury composé de : Simon KING modeling for ex- Full professor at the university of Edinburgh / Rapporteur Spyros RAPTIS Research director
    [Show full text]
  • An Analysis of Speech Disfluency on the Ellen Degeneres Show
    AN ANALYSIS OF SPEECH DISFLUENCY ON THE ELLEN DEGENERES SHOW A THESIS BY SUCI AZLINA REG. NO.120705039 DEPARTMENT OF ENGLISH FACULTY OF CULTURAL STUDIES UNIVERSITY OF SUMATERA UTARA MEDAN 2016 UNIVERSITAS SUMATERA UTARA AN ANALYSIS OF SPEECH DISFLUENCY ON THE ELLEN DEGENERES SHOW A THESIS BY SUCI AZLINA REG. NO. 120705039 DEPARTMENT OF ENGLISH FACULTY OF CULTURAL STUDIES UNIVERSITY OF SUMATERA UTARA MEDAN 2016 UNIVERSITAS SUMATERA UTARA AN ANALYSIS OF SPEECH DISFLUENCY ON THE ELLEN DEGENERES SHOW A THESIS BY SUCI AZLINA REG. NO. 120705039 SUPERVISOR CO-SUPERVISOR Dr. H. Muhizar Muchtar, M.S. Drs. Bahagia Tarigan, M.A. NIP. 195411171980031002 NIP. 195810171986011000 Submitted to Faculty of Cultural Studies University of Sumatera Utara Medan in partial fulfillment of the requirements for the degree of Sarjana Sastra From Department English. DEPARTMENT OF ENGLISH FACULTY OF CULTURAL STUDIES UNIVERSITY OF SUMATERA UTARA MEDAN 2016 i UNIVERSITAS SUMATERA UTARA Approved by the Department of English, Faculty of Cultural Studies University of Sumatera Utara (USU) Medan as thesis for The Sarjana Sastra Examination. Head, Secretary, Dr. H. Muhizar Muchtar, M.S. Rahmadsyah Rangkuti, M.A., Ph.D NIP. 19541117198003 1 002 NIP. 19750209 200812 1 002 ii UNIVERSITAS SUMATERA UTARA Accepted by the Board of Examiners in partial fulfillment of requirements for the degree of Sarjana Sastra from the Department of English, Faculty of Cultural Studies University of Sumatera Utara, Medan. The examination is held in Department of English Faculty of Cultural Studies University of Sumatera Utara on 29 June 2016 Dean of Faculty of Cultural Studies University of Sumatera Utara Dr. Budi Agustono, M.S.
    [Show full text]
  • Diss2005 Proceedings
    Proceedings of DiSS’05, Disfluency in Spontaneous Speech Workshop. 10–12 September 2005, Aix-en-Provence, France, pp. 7-11. Characteristics of final part-word repetitions Jan McAllister* & Mary Kingston** * University of East Anglia, United Kingdom ** Norwich Primary Care Trust, United Kingdom Abstract small sub-cortical lesions were evident on MRI scans taken when he was nine years old. In an earlier paper, we have described final part-word McAllister & Kingston [12] reported FPWRs in the speech of repetitions in the conversational speech of two school-age two seven-year-old boys, E and R. These subjects differed boys of normal intelligence with no known neurological from the majority of older children described in earlier reports lesions. In this paper we explore in more detail the phonetic of this behaviour in that their disfluency was not associated and linguistic characteristics of the speech of the boys. The with neurological problems. Their general language abilities repeated word fragments were more likely to be preceded by a were normal for their ages, as indicated by their performance pause than followed by one. The word immediately following on a standard clinical test. Both boys produced similar the fragment tended to have a higher word frequency score disfluencies in reading, sentence repetition and spontaneous than other surrounding words. Utterances containing the speech. disfluencies typically contained a greater number of syllables A range of normal non-fluencies (e.g. filled and unfilled than those that did not; however, there was no reliable pauses, single and multiple word repetitions, and revisions) difference between fluent and disfluent utterances in terms of occurred with typical frequency in the speech of the boys, but their grammatical complexity.
    [Show full text]
  • Abnormal Speech Sound Representation in Persistent Developmental Stuttering
    Abnormal speech sound representation in persistent developmental stuttering Sı´lvia Corbera, MSc; Marı´a-Jose´ Corral, MSc; Carles Escera, PhD; and Ma. Angeles Idiaza´bal, MD Abstract—Objectives: To determine whether adults with persistent developmental stuttering (PDS) have auditory percep- tual deficits. Methods: The authors compared the mismatch negativity (MMN) event–related brain potential elicited to simple tone (frequency and duration) and phonetic contrasts in a sample of PDS subjects with that recorded in a sample of paired fluent control subjects. Results: Subjects with developmental stuttering had normal MMN to simple tone contrasts but a significant supratemporal left-lateralized enhancement of this electrophysiologic response to phonetic contrasts. In addition, the enhanced MMN correlated positively with speech disfluency as self-rated by the subjects. Conclusions: Individuals with persistent developmental stuttering have abnormal permanent traces for speech sounds, and their abnormal speech sound representation may underlie their speech disorder. The link between abnormal speech neural traces of the auditory cortex and speech disfluency supports the relevance of speech perception mechanisms to speech production. NEUROLOGY 2005;65:1246–1252 Neural mechanisms underlying developmental stut- niques, including chorus reading, singing, masking, tering are not fully understood despite recent and shadowing.1,5,6,9 These effects seem to rely on the progress. Individuals with persistent developmental provision of external timing patterns
    [Show full text]
  • Psycholinguistic Analysis of Stuttering in Joe Biden's
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Library of UIN Sunan Ampel PSYCHOLINGUISTIC ANALYSIS OF STUTTERING IN JOE BIDEN’S SPEECH THESIS Saskia Nur Febriana Reg. Number: A73215071 ENGLISH DEPARTMENT FACULTY OF ARTS AND HUMANITIES STATE ISLAMIC UNIVERSITY OF SUNAN AMPEL SURABAYA 2019 DEC LARATION The Undersigned, Name : Saskia Nur Febriana Reg. Number : A73215071 Department : English Department Faculty : Arts and Humanities Declares that the thesis under the title Psycholinguistis Analysis in Joe Biden’s Speech is my original scientific work which has been conducted as a partial fulfillment of the requirements for the Sarjana Degree and submitted to English Department, Art and Humanities Faculty of Sunan Ampel State Islamic University. Additionally, it does not incorporate any other text from the previous experts excepts the quotations and theories itself. If the thesis later is found as a plagiarism work, the writer is truthfully responsible with any kind of suitable rules and consequences. Surabaya, September 12th 2019 Writer, Saskia Nur Febriana v iii EXAMINER SHEET This thesis has been approved and accepted by the Board of Examiners, English Department, Faculty of Arts and Humanities, State Islamic University Sunan Ampel Surabaya, on September 12th, 2019 The Board of Examiners are: Examiner 1 Examiner 2 Raudlotul Jannah, M. App. Ling Dr. Mohammad Kurjum, M.Ag NIP: 197810062005012004 NIP: 196909251994031002 Examiner 3 Examiner 4 Dr. A. Dzo’ul Milal, M. Pd. Murni Fidiyanti, M.A. NIP: 196005152000031002 NIP: 198305302011012011 Acknowledged by: The Dean of Faculty Arts and Humanities UIN Sunan Ampel Surabaya Dr. H.
    [Show full text]
  • Um and Uh, and the Expression of Stance in Conversational Speech
    Um and Uh, and the Expression of Stance in Conversational Speech Esther Le Grézause A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2017 Reading Committee: Richard Wright, Chair Nicolas Ballier Gina-Anne Levow Mari Ostendorf Ellen Kaisse Program Authorized to Offer Degree: UW Department of Linguistics ©Copyright 2017 Esther Le Grézause University of Washington Abstract Um and Uh, and the Expression of Stance in Conversational Speech Esther Le Grézause Chair of the Supervisory Committee: Professor Richard Wright Department of Linguistics Um and uh are some of the most frequent items in spoken American and British English (Biber et al., 1999). They have been traditionally treated as disfluencies but recent research has focused on their discursive functions and acoustic properties, and suggest that um and uh are not just filled pauses or random speech errors. At this stage, there is little agreement on whether they should be considered as by-products of the planning process (speech errors) or as pragmatic markers. In addition, most work on um and uh considers them to be the same variable, collapsing both into the same category. The present work investigates the discursive and the acoustic properties of um and uh in spontaneous speech with the aim of finding out if they occur in systematic ways and if they correlate with specific variables. The analysis of um and uh is conducted on two corpora, ATAROS and Switchboard, to determine how the markers are used in different spontaneous speech activities. The Switchboard corpus consists of phone conversations between strangers, which allow us to study how speakers use um and uh in this context.
    [Show full text]
  • Assessing Speech Fluency Problems in Typically Developing Children Aged 4 to 5 Years
    UCL Assessing Speech Fluency Problems in Typically Developing Children Aged 4 to 5 Years. Avin Mirawdeli This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University College London 2 ACKNOWLEDGEMENTS There are numerous people who have contributed extensively to this work. Professor Peter Howell, Thank you! Not only have you provided help, direction and guidance whenever needed, but you have also enabled me to be free and independent. By offering me this PhD post, I was able, for the first time, to live outside of the four walls that my culture had imposed on me. For this, no amount of thank you and not a single word exists that would sufficiently express and show my gratitude. Your dedication and the hours you devote to making sure the work is absolutely perfect is incredible and truly inspiring. Mr and Mrs Barker and the Dominic Barker Trust, I am forever indebted to you, not only for funding this work, but also for welcoming me into your home and providing much support and assistance. Again, without your funding, I would not have been able to do this work. I am truly honoured to have met you all. Thank you for everything. UCL EP and Impact Fund, Thank you. You have enabled me to meet the most interesting and most successful people around in this field. The knowledge I have gained here is invaluable. Dr Alastair McClelland and Professor Charles Hulme, thank you for all your help and support. The schools, their participation and warm welcome are greatly appreciated.
    [Show full text]