Final Work Plan of the In-Situ Pcb Bioavailability

Total Page:16

File Type:pdf, Size:1020Kb

Final Work Plan of the In-Situ Pcb Bioavailability In-Situ PCB Bioavailability Reduction in Grasse River Sediments Final Work Plan August 2006 Grasse River Study Area Massena, New York In-Situ PCB Bioavailability Reduction in Grasse River Sediments Final Work Plan Table of Contents SECTION 1 INTRODUCTION................................................................................................1-1 1.1 GENERAL DESCRIPTION..........................................................................................1-1 1.2 RECENT STUDIES ON ACTIVATED CARBON.......................................................1-1 1.3 APPLICABILITY TO THE LOWER GRASSE RIVER...............................................1-2 1.4 DOCUMENT ORGANIZATION..................................................................................1-4 SECTION 2 OBJECTIVES AND APPROACH.....................................................................2-1 2.1 OBJECTIVES ................................................................................................................2-1 2.2 STUDY DESIGN...........................................................................................................2-1 2.2.1 Site Selection...........................................................................................................2-2 2.2.2 Study Components...................................................................................................2-3 SECTION 3 IMPLEMENTATION .........................................................................................3-1 3.1 GENERAL .....................................................................................................................3-1 3.2 APPLICATION AND MIXING METHODS................................................................3-1 3.3 RIVER ACCESS............................................................................................................3-2 3.4 CONTAINMENT SYSTEMS........................................................................................3-3 3.5 SURVEY CONTROLS..................................................................................................3-3 SECTION 4 MONITORING PROGRAM..............................................................................4-1 4.1 OVERVIEW...................................................................................................................4-1 4.2 FIELD INVESTIGATION.............................................................................................4-2 4.2.1 Sediment Sampling (Physical and Chemical Characterization) ..............................4-2 4.2.2 Water Column Monitoring.......................................................................................4-5 4.2.3 Sediment Sampling (for Verification of Target Thickness and Adequate Mixing).4-7 4.2.4 Erosion Potential Testing.........................................................................................4-7 4.2.5 Benthic Invertebrate Community Studies................................................................4-8 4.2.6 Qualitative Aquatic Habitat Survey.........................................................................4-8 4.2.7 In-Situ PCB Uptake Studies.....................................................................................4-9 4.3 LABORATORY STUDIES.........................................................................................4-11 4.3.1 PCB Aqueous Equilibrium ....................................................................................4-11 4.3.2 PCB Desorption Rate.............................................................................................4-12 4.3.3 Ex-Situ PCB Uptake in Biota ................................................................................4-13 4.4 STATISTICAL DESIGN AND INTERPRETATION FOR THE FIELD INVESTIGATION..................................................................................................................4-13 SECTION 5 SCHEDULE..........................................................................................................5-1 SECTION 6 REFERENCES.....................................................................................................6-1 Alcoa Inc. i August 2006 In-Situ PCB Bioavailability Reduction in Grasse River Sediments Final Work Plan APPENDICES Appendix A: Journal Publications Pertaining to Activated Carbon Technology Appendix B: University of Maryland Baltimore County Standard Operating Procedures for Analytical Methods Appendix C: University of Maryland Baltimore County Method Description and Standard Operating Procedures for the In-Situ PCB Biouptake Studies with L. variegatus Appendix D: University of Maryland Baltimore County Method Description and Standard Operating Procedures for the Laboratory Studies List of Tables Table 2-1. Physical and Chemical Properties of Surface Sediments in Vicinity of Proposed Pilot Study Area Table 4-1. Monitoring Program Summary List of Figures Figure 1-1. Grasse River Study Area Figure 2-1. Proposed Area for Activated Carbon Pilot Study Figure 2-2. Proposed Layout for the Activated Carbon Pilot Study Figure 2-3. Example of Tine Injection Device Figure 2-4. Example of Roto-Tiller Device Alcoa Inc. ii August 2006 In-Situ PCB Bioavailability Reduction in Grasse River Sediments Final Work Plan Figure 2-5. Example of Leveling and Mixing Drag Figure 4-1. Sampling Locations for Sediment, Water Column and Benthic Community Monitoring Figure 4-2. Light microscopy pictures of 63-250 micron size sediment particles (left) and 75-300 micron size activated carbon particles (right) Figure 4-3. Sampling Locations for Erosion Potential Testing Figure 4-4. Design of surficial sediment and pore water exposure chamber from Burton et al. (2002) shown on the left and deployment of five replicate chambers on a rack illustrated in the figure on the right Alcoa Inc. iii August 2006 In-Situ PCB Bioavailability Reduction in Grasse River Sediments Final Work Plan SECTION 1 INTRODUCTION 1.1 GENERAL DESCRIPTION This Work Plan describes a proposed pilot project to be conducted by Alcoa Inc. (Alcoa) that will evaluate a promising new technology for the remediation of polychlorinated biphenyl (PCB)-containing sediments in the lower Grasse River, Massena, New York (Figure 1-1). The lower Grasse River is currently under a fish consumption advisory from the New York State Department of Health due to elevated PCB levels found in fish, and results of site investigation work conducted to date indicate that the major source of PCBs to the fish is from sediments in the river which have been impacted by past discharges (Alcoa, April 2001). The technology proposed for this pilot study consists of the addition of activated carbon to the upper layer of the sediment bed. Recent studies by Ghosh, Luthy and others have demonstrated that this technology is effective in reducing PCB bioaccumulation in benthic organisms, PCB release into the water column, and PCB uptake by semi-permeable membrane devices (SPMDs). Based on these results, the addition of activated carbon to sediments in the lower Grasse River has the potential to greatly reduce PCB leaching and bioavailability in the treated in-situ sediments. This, in turn, is expected to result in the reduction of PCB levels in both water column and fish of the lower Grasse River. 1.2 RECENT STUDIES ON ACTIVATED CARBON Several recent studies have demonstrated that the addition of activated carbon to in-situ sediments is effective at reducing the bioavailability of PCBs in sediments. Zimmerman et al. (2004) and Millward et al. (2005) found that amending activated carbon to marine sediments resulted in a greater than 80 percent (%) reduction in PCB bioavailability to benthic organisms. Laboratory work with sediment from the lower Grasse River has shown that adding 2.5% activated carbon (by weight) reduced PCB uptake in the freshwater clam Corbicula fluminea by 95% (Luthy, unpublished) and in the freshwater oligochaete Lumbriculus variegatus by 93% Alcoa Inc. 1-1 August 2006 In-Situ PCB Bioavailability Reduction in Grasse River Sediments Final Work Plan (Sun and Ghosh, 2005). Zimmerman et al. (2004) have demonstrated that addition of activated carbon to sediments from San Francisco Bay reduced the bioaccumulation of PCBs in Macoma clams by 69%, Leptocheirus amphipods by 72%, and Neanthes worms by 83% after a one-month period (Millward et al., 2005). Zimmerman et al. (2005) found biouptake reductions in 56-day exposure tests of up to 90 to 92% for Hunters Point sediment depending on activated carbon particle size. Zimmerman et al. (2004) also found that sediment treated with activated carbon attains equilibrium PCB concentrations 85 and 92% lower than untreated sediment in one-month and six-month contact experiments, respectively. Tests using freshwater sediments from the Grasse River, New Bedford Harbor and the Hudson River have shown 90 to 99% reductions in equilibrium aqueous PCB concentrations after addition of activated carbon (Ghosh, unpublished). In-situ bioavailability reduction using carbon amendment may be applicable at sites where bioaccumulation reduction can reduce exposure and consequent risk to acceptable levels. Stanford University and the University of Maryland Baltimore County (UMBC) are currently performing a demonstration of this novel risk-reduction approach in the field at Hunters Point in San Francisco Bay, California through funding from the Navy and the Department of Defense. This new approach to management of contaminated sediments is also being tested for freshwater sediments from four Areas of Concern
Recommended publications
  • Activated Carbon in Sediment Remediation
    ACTIVATED CARBON IN SEDIMENT REMEDIATION. BENEFITS, RISKS AND PERSPECTIVES Darya KUPRYIANCHYK Thesis committee Promoter Prof. dr. A.A. Koelmans Professor Water and Sediment Quality Co-promoter Dr. ir. J.T.C. Grotenhuis Assistant professor Environmental Technology Other members Prof. dr. R.N.J. Comans, Wageningen University Prof. dr. ir. W.J.G.M. Peijnenburg, RIVM, Leiden University Prof. dr. ir. A.J. Hendriks, Radboud University Nijmegen Dr. ir. M.T.O. Jonker, Utrecht University This research was conducted under the auspices of the Graduate School for Socio-Economic and Natural Sciences of the Environment (SENSE). ACTIVATED CARBON IN SEDIMENT REMEDIATION. BENEFITS, RISKS AND PERSPECTIVES Darya KUPRYIANCHYK Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 1 February 2013 at 4.00 p.m. in the Aula Darya Kupryianchyk Activated carbon in sediment remediation. Benefits, risks and perspectives 264 pages. Thesis, Wageningen University, Wageningen, The Netherlands (2013) With references and summaries in English and Dutch ISBN 978-94-6173-431-0 To my mother “who told me songs were for the birds, then taught me all the tunes I know and a good deal of the words.” Ken Kesey Contents Chapter 1. General introduction....................................................................................... 9 Chapter 2. In situ remediation of contaminated sediments using carbonaceous materials. A review......................................................................................... 17 Chapter 3. In situ sorption of hydrophobic organic compounds to sediment amended with activated carbon.....................................................................................
    [Show full text]
  • Fish Bioconcentration Data Requirement: Guidance for Selection of Number of Treatment Concentrations
    Document ID No.: EPA 705-G-2020-3708 Fish Bioconcentration Data Requirement: Guidance for Selection of Number of Treatment Concentrations [Supplement to OCSPP Test Guideline 850.1730] July 15, 2020 Disclaimer: The contents of this document do not have the force and effect of law and are not meant to bind the public in any way. This document is intended only to provide clarity to the public regarding existing requirements under the law or agency policies. Office of Pesticide Programs Office of Chemical Safety and Pollution Prevention U.S. Environmental Protection Agency I. Purpose The purpose of this document is to clarify EPA recommendations for the number of treatment concentrations needed to result in acceptable fish bioconcentration factor (BCF) studies for pesticide registration. EPA routinely requires BCF studies to determine whether pesticide active ingredients have the potential to accumulate in fish, enter the food chain, and cause adverse effects in fish-eating predators such as aquatic mammals and birds of prey. In April 2017, EPA was approached by an outside party, the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3R), with a suggestion to modify the test guideline for the BCF study to reduce the number of animals used in BCF testing, by reducing the number of concentration levels used from three (two positive doses and one control) to two (one positive level and one control). NC3R stated that this would be “[i]n the interest of international harmonization and reducing unnecessary animal testing” because “[a]t the moment the Japanese and US EPA guideline require that two concentrations are always tested, which is in contrast to the OECD Test Guideline[1]; therefore, many companies are understandably continuing to test two concentrations to ensure acceptance within these regions.” This modification has the potential to reduce the number of fish used by one-third.
    [Show full text]
  • Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) November 2017 TECHNICAL FACT SHEET – PFOS and PFOA
    Technical Fact Sheet – Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) November 2017 TECHNICAL FACT SHEET – PFOS and PFOA Introduction At a Glance This fact sheet, developed by the U.S. Environmental Protection Agency Manmade chemicals not (EPA) Federal Facilities Restoration and Reuse Office (FFRRO), provides a naturally found in the summary of two contaminants of emerging concern, perfluorooctane environment. sulfonate (PFOS) and perfluorooctanoic acid (PFOA), including physical and Fluorinated compounds that chemical properties; environmental and health impacts; existing federal and repel oil and water. state guidelines; detection and treatment methods; and additional sources of information. This fact sheet is intended for use by site managers who may Used in a variety of industrial address these chemicals at cleanup sites or in drinking water supplies and and consumer products, such for those in a position to consider whether these chemicals should be added as carpet and clothing to the analytical suite for site investigations. treatments and firefighting foams. PFOS and PFOA are part of a larger group of chemicals called per- and Extremely persistent in the polyfluoroalkyl substances (PFASs). PFASs, which are highly fluorinated environment. aliphatic molecules, have been released to the environment through Known to bioaccumulate in industrial manufacturing and through use and disposal of PFAS-containing humans and wildlife. products (Liu and Mejia Avendano 2013). PFOS and PFOA are the most Readily absorbed after oral widely studied of the PFAS chemicals. PFOS and PFOA are persistent in the exposure. Accumulate environment and resistant to typical environmental degradation processes. primarily in the blood serum, As a result, they are widely distributed across all trophic levels and are found kidney and liver.
    [Show full text]
  • Toxicity and Assessment of Chemical Mixtures
    Toxicity and Assessment of Chemical Mixtures Scientific Committee on Health and Environmental Risks SCHER Scientific Committee on Emerging and Newly Identified Health Risks SCENIHR Scientific Committee on Consumer Safety SCCS Toxicity and Assessment of Chemical Mixtures The SCHER approved this opinion at its 15th plenary of 22 November 2011 The SCENIHR approved this opinion at its 16th plenary of 30 November 2011 The SCCS approved this opinion at its 14th plenary of 14 December 2011 1 Toxicity and Assessment of Chemical Mixtures About the Scientific Committees Three independent non-food Scientific Committees provide the Commission with the scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission's attention to the new or emerging problems which may pose an actual or potential threat. They are: the Scientific Committee on Consumer Safety (SCCS), the Scientific Committee on Health and Environmental Risks (SCHER) and the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) and are made up of external experts. In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Agency (EMA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA). SCCS The Committee shall provide opinions on questions concerning all types of health and safety risks (notably chemical, biological, mechanical and other physical risks) of non- food consumer products (for example: cosmetic products and their ingredients, toys, textiles, clothing, personal care and household products such as detergents, etc.) and services (for example: tattooing, artificial sun tanning, etc.).
    [Show full text]
  • Toxicological Profile for Zinc
    TOXICOLOGICAL PROFILE FOR ZINC U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry August 2005 ZINC ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. ZINC iii UPDATE STATEMENT A Toxicological Profile for Zinc, Draft for Public Comment was released in September 2003. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE Mailstop F-32 Atlanta, Georgia 30333 ZINC vi *Legislative Background The toxicological profiles are developed in response to the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public law 99-499) which amended the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund). This public law directed ATSDR to prepare toxicological profiles for hazardous substances most commonly found at facilities on the CERCLA National Priorities List and that pose the most significant potential threat to human health, as determined by ATSDR and the EPA. The availability of the revised priority list of 275 hazardous substances was announced in the Federal Register on November 17, 1997 (62 FR 61332). For prior versions of the list of substances, see Federal Register notices dated April 29, 1996 (61 FR 18744); April 17, 1987 (52 FR 12866); October 20, 1988 (53 FR 41280); October 26, 1989 (54 FR 43619); October 17, 1990 (55 FR 42067); October 17, 1991 (56 FR 52166); October 28, 1992 (57 FR 48801); and February 28, 1994 (59 FR 9486).
    [Show full text]
  • Acrylamide Mammography Cohort, the Netherlands Study on Diet and Can- Cer, a Cohort of Swedish Men, the U.S
    Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc Acrylamide Mammography Cohort, the Netherlands Study on Diet and Can- cer, a cohort of Swedish men, the U.S. Nurses’ Health Study, and the CAS No. 79-06-1 Danish Diet, Cancer, and Health Study. In addition, several case- control studies (most of which used food-frequency questionnaires) Reasonably anticipated to be a human carcinogen assessed cancer and dietary exposure of Swedish, French, and U.S. First listed in the Sixth Annual Report on Carcinogens (1991) populations to acrylamide. The tissue site studied most frequently Also known as 2-propenamide was the breast. These studies found no overall association between breast cancer and dietary exposure to acrylamide; however, some, H C NH2 but not all, studies reported an association between acrylamide ex- H2C C posure and a specific type of breast cancer (sex-hormone-receptor- O positive cancer in post-menopausal women). The Danish study used Carcinogenicity acrylamide-hemoglobin adducts to assess exposure; however, these adducts are not source-specific, but reflect both dietary exposure Acrylamide is reasonably anticipated to be a human carcinogen based and exposure from other sources, such as smoking. Two of three pro- on sufficient evidence of carcinogenicity from studies in experimen- spective cohort studies reported increased risks of endometrial and tal animals. ovarian cancer, but a case-control study found no increased risk of ovarian cancer. Most of the studies evaluating prostate and colorectal Cancer Studies in Experimental Animals cancer did not find increased risks associated with dietary exposure Acrylamide caused tumors in two rodent species, at several different to acrylamide.
    [Show full text]
  • Bioconcentration, Bioaccumulation, and the Biomagnification in Puget
    Jason E. Hall Bioconcentration, Bioaccumulation, and Biomagnification in Puget Sound Biota: Assessing the Ecological Risk of Chemical Contaminants in Puget Sound The following piece is republished from the UWT Journal on the Environment, an electronic, peer-reviewed journal designed to provide students with a forum in which to publish and read primary and secondary research, reports on conferences and events, and ideas and opinions in the environmental sciences and studies. Tahoma West encourages submissions that deal with scientific and social matters. Note: For the tables referred to in this article please see Journal of the Environment: <http://courses. washington. edu/uwtjoe/>. Introduction: Puget Sound has a large urban and rural human population, which currently exceeds 3 million, and many industrialized ports and shorelines that provide numerous sources of non-point and point source pollution to Puget Sound (Konasewich et al. 1982). Hundreds of poten­ tia lly toxic chemicals are present in Puget Sound sediments (Matins et al. 1982, NOAA and WSDE 2000, Konasewich et al. 1982, and Lefkovitz et al. J 997). As of 1982, J 83 organic compounds had been identified in Puget Sound sediments, biota, and water (Konasewicb et al. 1982). Although chemical contaminants and heavy metals are present in sedi­ ments throughout Puget Sound, these pollutants are generally greatest in number and concentration within the sediments and embayments that are adjacent to the most populated and industrialized areas, such as Elliot Bay, Commencement Bay, and Sinclair Illlet (Malins et al. 1982, Lefkovitz et aJ. 1997, Konasewich et al. 1982, and NOAA and WSDE 2000). However, the distribution and concentrations of chemical contami­ nants and heavy metals in Puget Sound generally reflect their source.
    [Show full text]
  • Toxicological Profile for Phenol
    TOXICOLOGICAL PROFILE FOR PHENOL U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry September 2008 PHENOL ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. PHENOL iii UPDATE STATEMENT A Toxicological Profile for Phenol, Draft for Public Comment was released in October 2006. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology and Environmental Medicine/Applied Toxicology Branch 1600 Clifton Road NE Mailstop F-32 Atlanta, Georgia 30333 PHENOL iv This page is intentionally blank. PHENOL v FOREWORD This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for the hazardous substance described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a hazardous substance’s toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced. The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile begins with a public health statement that describes, in nontechnical language, a substance’s relevant toxicological properties.
    [Show full text]
  • Bioaccumulation, Biodistribution, Toxicology and Biomonitoring of Organofluorine Compounds in Aquatic Organisms
    International Journal of Molecular Sciences Review Bioaccumulation, Biodistribution, Toxicology and Biomonitoring of Organofluorine Compounds in Aquatic Organisms Dario Savoca and Andrea Pace * Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, 90100 Palermo, Italy; dario.savoca@unipa.it * Correspondence: andrea.pace@unipa.it; Tel.: +39-091-23897543 Abstract: This review is a survey of recent advances in studies concerning the impact of poly- and perfluorinated organic compounds in aquatic organisms. After a brief introduction on poly- and perfluorinated compounds (PFCs) features, an overview of recent monitoring studies is reported illustrating ranges of recorded concentrations in water, sediments, and species. Besides presenting general concepts defining bioaccumulative potential and its indicators, the biodistribution of PFCs is described taking in consideration different tissues/organs of the investigated species as well as differences between studies in the wild or under controlled laboratory conditions. The potential use of species as bioindicators for biomonitoring studies are discussed and data are summarized in a table reporting the number of monitored PFCs and their total concentration as a function of investigated species. Moreover, biomolecular effects on taxonomically different species are illustrated. In the final paragraph, main findings have been summarized and possible solutions to environmental threats posed by PFCs in the aquatic environment are discussed.
    [Show full text]
  • The Effect of Ph on the Bioconcentration and Toxicity of Weak Organic Electrolytes
    Downloaded from orbit.dtu.dk on: Sep 23, 2021 The effect of pH on the bioconcentration and toxicity of weak organic electrolytes Rendal, Cecilie Publication date: 2013 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Rendal, C. (2013). The effect of pH on the bioconcentration and toxicity of weak organic electrolytes. DTU Environment. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. The effect of pH on the bioconcentration and toxicity of weak organic electrolytes Cecilie Rendal PhD Thesis February 2013 The effect of pH on the bioconcentration and toxicity of weak organic electrolytes Cecilie Rendal PhD Thesis February 2013 DTU Environment Department of Environmental Engineering Technical University of Denmark Cecilie Rendal The effect of pH on the bioconcentration and toxicity of weak organic electrolytes PhD Thesis, February 2013 The synopsis part of this thesis is available as a pdf-file for download from the DTU research database ORBIT: http://www.orbit.dtu.dk Address: DTU Environment Department of Environmental Engineering Technical University of Denmark Miljoevej, building 113 2800 Kgs.
    [Show full text]
  • Toxicological Profile for Wood Creosote, Coal Tar Creosote, Coal Tar, Coal Tar Pitch, and Coal Tar Pitch Volatiles
    TOXICOLOGICAL PROFILE FOR WOOD CREOSOTE, COAL TAR CREOSOTE, COAL TAR, COAL TAR PITCH, AND COAL TAR PITCH VOLATILES U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry September 2002 CREOSOTE ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. CREOSOTE iii UPDATE STATEMENT Toxicological profiles are revised and republished as necessary, but no less than once every three years. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE, E-29 Atlanta, Georgia 30333 V FOREWORD This toxicological profile is prepared in accordance with guidelines" developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for the hazardous substance described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a hazardous substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced. The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile begins with a public health statement that describes, in nontechnical language, a substance's relevant toxicological properties.
    [Show full text]
  • Aquatic Pesticides Monitoring Program Literature Review
    SAN FRANCISCO ESTUARY INSTITUTE AQUATIC PESTICIDES MONITORING PROGRAM Aquatic Pesticides Monitoring Program Literature Review Geoff Siemering, Nicole David, Jennifer Hayworth and Amy Franz San Francisco Estuary Institute, Oakland, California Karl Malamud-Roam Contra Costa Mosquito Vector Control CONTRIBUTION NO. 71 APRIL 2003 REVISED FEB 2005 Contact Information San Francisco Estuary Institute 7770 Pardee Lane, 2nd Floor Oakland, CA 94621 Phone: 510-746-SFEI Website: www.sfei.org Contra Costa Mosquito Vector Control District 155 Mason Circle Concord, CA 94520 Phone: 925-685-9301 Website: www.ccmvcd.dst.ca.us/index.html This report should be cited as: Siemering, Geoff, N. David, J. Hayworth, A. Franz and K. Malamud-Roam. October 2003. Revised, February 2005. Aquatics Pesticides Monitoring Program Literature Review. SFEI Contribution 71. San Francisco Estuary Institute, Oakland, CA. San Francisco Estuary Institute Contents Executive Summary ......................................................................................................................................................9 Section I. Evaluation of Health and Environmental Risks Associated with Pesticides and other Chemicals in the Environment ..............................................................................................................................................10 A. Chemical Identification and Characterization ....................................................................................................11 I. Chemical Description and Type .............................................................................................................11
    [Show full text]