Aquatic Pesticides Monitoring Program Literature Review

Total Page:16

File Type:pdf, Size:1020Kb

Aquatic Pesticides Monitoring Program Literature Review SAN FRANCISCO ESTUARY INSTITUTE AQUATIC PESTICIDES MONITORING PROGRAM Aquatic Pesticides Monitoring Program Literature Review Geoff Siemering, Nicole David, Jennifer Hayworth and Amy Franz San Francisco Estuary Institute, Oakland, California Karl Malamud-Roam Contra Costa Mosquito Vector Control CONTRIBUTION NO. 71 APRIL 2003 REVISED FEB 2005 Contact Information San Francisco Estuary Institute 7770 Pardee Lane, 2nd Floor Oakland, CA 94621 Phone: 510-746-SFEI Website: www.sfei.org Contra Costa Mosquito Vector Control District 155 Mason Circle Concord, CA 94520 Phone: 925-685-9301 Website: www.ccmvcd.dst.ca.us/index.html This report should be cited as: Siemering, Geoff, N. David, J. Hayworth, A. Franz and K. Malamud-Roam. October 2003. Revised, February 2005. Aquatics Pesticides Monitoring Program Literature Review. SFEI Contribution 71. San Francisco Estuary Institute, Oakland, CA. San Francisco Estuary Institute Contents Executive Summary ......................................................................................................................................................9 Section I. Evaluation of Health and Environmental Risks Associated with Pesticides and other Chemicals in the Environment ..............................................................................................................................................10 A. Chemical Identification and Characterization ....................................................................................................11 I. Chemical Description and Type .............................................................................................................11 II. Chemical Identification ...........................................................................................................................11 III. Chemical Class/Group Family ................................................................................................................12 B. Dose-Response Relationship .................................................................................................................................13 I. Toxicity Measurement and Endpoints ...................................................................................................13 C. Evaluation of Human Health Risks .....................................................................................................................14 I. Types of Toxicity Investigations .............................................................................................................14 II. Common Toxicity Effects ........................................................................................................................15 III. Exposure Route ........................................................................................................................................15 D. Evaluation of Environmental Risks .....................................................................................................................16 I. Types of Toxicity Investigations .............................................................................................................16 II. Aquatic Toxicity Table ............................................................................................................................17 E. Toxic Chemical Regulatory Evaluation and Registration ..................................................................................18 I. Registration of Peticides ..........................................................................................................................18 II. Information on Pesticides and Other Toxic Chemicals ........................................................................18 III. Toxicity Classifications and Rankings ...................................................................................................19 Section II. Aquatic Pesticides .....................................................................................................................................24 A. Acrolein ...................................................................................................................................................................25 I. Introduction ..............................................................................................................................................25 II. Active Ingredient ID ................................................................................................................................25 III. Physical Properties ...................................................................................................................................26 IV. Active Ingredient Regulatory Status ......................................................................................................26 V. Pesticide Status .........................................................................................................................................27 VI. Toxicity to Humans and Other Mammals .............................................................................................28 VII. Routes of Human Exposure ....................................................................................................................29 VIII. Environmental Toxicological and Ecological Effects ...........................................................................30 IX. Environmental Fate .................................................................................................................................30 X. Toxicity Values of Acrolein on Select Aquatic Species .........................................................................31 XI. Method Detection Limits .......................................................................................................................33 XII. Manufacturer Contact Info .....................................................................................................................33 XIII. Summary Table ........................................................................................................................................34 B. Copper Sulfate ........................................................................................................................................................35 I. Introduction ..............................................................................................................................................35 II. Active Ingredient ID ................................................................................................................................35 III. Physical Properties ...................................................................................................................................36 IV. Active Ingredient Regulatory Status ......................................................................................................37 V. Pesticide Status .........................................................................................................................................37 VI. Toxicity to Humans and Other Mammals .............................................................................................38 VII. Routes of Human Exposure ....................................................................................................................40 VIII. Environmental Toxicological and Ecological Effects ...........................................................................41 IX. Environmental Fate .................................................................................................................................41 X. Toxicity Values of Copper Sulfate for Select Aquatic Species .............................................................42 XI. Method Detection Limits ........................................................................................................................44 XII. Manufacturer Contact Info: ....................................................................................................................44 XIII. Summary Table ........................................................................................................................................45 C. Diquat Dibromide ..................................................................................................................................................45 I. Introduction ..............................................................................................................................................45 II. Active Ingredient ID ................................................................................................................................46 1 Aquatic Pesticide Monitoring Program III. Physical Properties ...................................................................................................................................46 IV. Active Ingredient Regulatory Status ......................................................................................................47 V. Pesticide Status .........................................................................................................................................48 VI. Toxicity to Humans and Other Mammals .............................................................................................49 VII. Routes of Human Exposure ....................................................................................................................52
Recommended publications
  • Activated Carbon in Sediment Remediation
    ACTIVATED CARBON IN SEDIMENT REMEDIATION. BENEFITS, RISKS AND PERSPECTIVES Darya KUPRYIANCHYK Thesis committee Promoter Prof. dr. A.A. Koelmans Professor Water and Sediment Quality Co-promoter Dr. ir. J.T.C. Grotenhuis Assistant professor Environmental Technology Other members Prof. dr. R.N.J. Comans, Wageningen University Prof. dr. ir. W.J.G.M. Peijnenburg, RIVM, Leiden University Prof. dr. ir. A.J. Hendriks, Radboud University Nijmegen Dr. ir. M.T.O. Jonker, Utrecht University This research was conducted under the auspices of the Graduate School for Socio-Economic and Natural Sciences of the Environment (SENSE). ACTIVATED CARBON IN SEDIMENT REMEDIATION. BENEFITS, RISKS AND PERSPECTIVES Darya KUPRYIANCHYK Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 1 February 2013 at 4.00 p.m. in the Aula Darya Kupryianchyk Activated carbon in sediment remediation. Benefits, risks and perspectives 264 pages. Thesis, Wageningen University, Wageningen, The Netherlands (2013) With references and summaries in English and Dutch ISBN 978-94-6173-431-0 To my mother “who told me songs were for the birds, then taught me all the tunes I know and a good deal of the words.” Ken Kesey Contents Chapter 1. General introduction....................................................................................... 9 Chapter 2. In situ remediation of contaminated sediments using carbonaceous materials. A review......................................................................................... 17 Chapter 3. In situ sorption of hydrophobic organic compounds to sediment amended with activated carbon.....................................................................................
    [Show full text]
  • Fish Bioconcentration Data Requirement: Guidance for Selection of Number of Treatment Concentrations
    Document ID No.: EPA 705-G-2020-3708 Fish Bioconcentration Data Requirement: Guidance for Selection of Number of Treatment Concentrations [Supplement to OCSPP Test Guideline 850.1730] July 15, 2020 Disclaimer: The contents of this document do not have the force and effect of law and are not meant to bind the public in any way. This document is intended only to provide clarity to the public regarding existing requirements under the law or agency policies. Office of Pesticide Programs Office of Chemical Safety and Pollution Prevention U.S. Environmental Protection Agency I. Purpose The purpose of this document is to clarify EPA recommendations for the number of treatment concentrations needed to result in acceptable fish bioconcentration factor (BCF) studies for pesticide registration. EPA routinely requires BCF studies to determine whether pesticide active ingredients have the potential to accumulate in fish, enter the food chain, and cause adverse effects in fish-eating predators such as aquatic mammals and birds of prey. In April 2017, EPA was approached by an outside party, the National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3R), with a suggestion to modify the test guideline for the BCF study to reduce the number of animals used in BCF testing, by reducing the number of concentration levels used from three (two positive doses and one control) to two (one positive level and one control). NC3R stated that this would be “[i]n the interest of international harmonization and reducing unnecessary animal testing” because “[a]t the moment the Japanese and US EPA guideline require that two concentrations are always tested, which is in contrast to the OECD Test Guideline[1]; therefore, many companies are understandably continuing to test two concentrations to ensure acceptance within these regions.” This modification has the potential to reduce the number of fish used by one-third.
    [Show full text]
  • Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) November 2017 TECHNICAL FACT SHEET – PFOS and PFOA
    Technical Fact Sheet – Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) November 2017 TECHNICAL FACT SHEET – PFOS and PFOA Introduction At a Glance This fact sheet, developed by the U.S. Environmental Protection Agency Manmade chemicals not (EPA) Federal Facilities Restoration and Reuse Office (FFRRO), provides a naturally found in the summary of two contaminants of emerging concern, perfluorooctane environment. sulfonate (PFOS) and perfluorooctanoic acid (PFOA), including physical and Fluorinated compounds that chemical properties; environmental and health impacts; existing federal and repel oil and water. state guidelines; detection and treatment methods; and additional sources of information. This fact sheet is intended for use by site managers who may Used in a variety of industrial address these chemicals at cleanup sites or in drinking water supplies and and consumer products, such for those in a position to consider whether these chemicals should be added as carpet and clothing to the analytical suite for site investigations. treatments and firefighting foams. PFOS and PFOA are part of a larger group of chemicals called per- and Extremely persistent in the polyfluoroalkyl substances (PFASs). PFASs, which are highly fluorinated environment. aliphatic molecules, have been released to the environment through Known to bioaccumulate in industrial manufacturing and through use and disposal of PFAS-containing humans and wildlife. products (Liu and Mejia Avendano 2013). PFOS and PFOA are the most Readily absorbed after oral widely studied of the PFAS chemicals. PFOS and PFOA are persistent in the exposure. Accumulate environment and resistant to typical environmental degradation processes. primarily in the blood serum, As a result, they are widely distributed across all trophic levels and are found kidney and liver.
    [Show full text]
  • Toxicity and Assessment of Chemical Mixtures
    Toxicity and Assessment of Chemical Mixtures Scientific Committee on Health and Environmental Risks SCHER Scientific Committee on Emerging and Newly Identified Health Risks SCENIHR Scientific Committee on Consumer Safety SCCS Toxicity and Assessment of Chemical Mixtures The SCHER approved this opinion at its 15th plenary of 22 November 2011 The SCENIHR approved this opinion at its 16th plenary of 30 November 2011 The SCCS approved this opinion at its 14th plenary of 14 December 2011 1 Toxicity and Assessment of Chemical Mixtures About the Scientific Committees Three independent non-food Scientific Committees provide the Commission with the scientific advice it needs when preparing policy and proposals relating to consumer safety, public health and the environment. The Committees also draw the Commission's attention to the new or emerging problems which may pose an actual or potential threat. They are: the Scientific Committee on Consumer Safety (SCCS), the Scientific Committee on Health and Environmental Risks (SCHER) and the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) and are made up of external experts. In addition, the Commission relies upon the work of the European Food Safety Authority (EFSA), the European Medicines Agency (EMA), the European Centre for Disease prevention and Control (ECDC) and the European Chemicals Agency (ECHA). SCCS The Committee shall provide opinions on questions concerning all types of health and safety risks (notably chemical, biological, mechanical and other physical risks) of non- food consumer products (for example: cosmetic products and their ingredients, toys, textiles, clothing, personal care and household products such as detergents, etc.) and services (for example: tattooing, artificial sun tanning, etc.).
    [Show full text]
  • Electric Dipole Moments of the Fluorescent Probes Prodan and Laurdan: Experimental and Theoretical Evaluations
    Electric dipole moments of the fluorescent probes Prodan and Laurdan: experimental and theoretical evaluations Cíntia C. Vequi-Suplicy, Kaline Coutinho & M. Teresa Lamy Biophysical Reviews ISSN 1867-2450 Volume 6 Number 1 Biophys Rev (2014) 6:63-74 DOI 10.1007/s12551-013-0129-8 1 23 Your article is protected by copyright and all rights are held exclusively by International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag Berlin Heidelberg. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self- archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Biophys Rev (2014) 6:63–74 DOI 10.1007/s12551-013-0129-8 REVIEW Electric dipole moments of the fluorescent probes Prodan and Laurdan: experimental and theoretical evaluations Cíntia C. Vequi-Suplicy & Kaline Coutinho & M. Teresa Lamy Received: 13 August 2013 /Accepted: 3 December 2013 /Published online: 14 January 2014 # International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag Berlin Heidelberg 2014 Abstract Several experimental and theoretical approaches Keywords Prodan . Laurdan . Optical absorption and can be used for a comprehensive understanding of solvent fluorescence .
    [Show full text]
  • New Insights on the Fluorescent Emission Spectra of Prodan and Laurdan
    J Fluoresc (2015) 25:621–629 DOI 10.1007/s10895-015-1545-x ORIGINAL PAPER New Insights on the Fluorescent Emission Spectra of Prodan and Laurdan Cíntia C. Vequi-Suplicy & Kaline Coutinho & M. Teresa Lamy Received: 12 December 2014 /Accepted: 23 February 2015 /Published online: 10 March 2015 # Springer Science+Business Media New York 2015 Abstract Prodan and Laurdan are fluorescent probes largely Introduction used in biological systems. They were synthetized to be sen- sitive to the environment polarity, and their fluorescent emis- The fluorescent probes Prodan (2-dimethylamino-6- sion spectrum shifts around 120 nm, from cyclohexane to propionylnaphthalene) and Laurdan (2-dimethylamino-6- water. Although accepted that their emission spectrum is com- dodecanoylnaphthalene) have been widely used in biological posed by two emission bands, the origin of these two bands is relevant systems [1–7]. They were synthetized [1]tobesen- still a matter of discussion. Here we analyze the fluorescent sitive to the environment polarity, so their emission spectra spectra of Prodan and Laurdan in solvents of different polar- shifts about 120 nm from cyclohexane to water [1, 8, 9]. ities, both by decomposing the spectrum into two Gaussian Moreover, when inserted into membranes, their emission bands and by computing the Decay Associated Spectra spectra is extremely dependent on the lipid bilayer phase (DAS), the latter with time resolved fluorescence. Our data (gel or fluid), the maximum of the spectrum shifting around show that the intensity of the lower energy emission band of 50 nm from one phase to the other [4, 6, 10]. Prodan and Laurdan (attributed, in the literature, to the decay Although Prodan and Laurdan have been extensively used, of a solvent relaxed state) is higher in cyclohexane than in their structure and electronic distribution, in different solvents, water, showing a decrease as the polarity of the medium in- are still a matter of discussion [11–13].
    [Show full text]
  • Toxicological Profile for Zinc
    TOXICOLOGICAL PROFILE FOR ZINC U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry August 2005 ZINC ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. ZINC iii UPDATE STATEMENT A Toxicological Profile for Zinc, Draft for Public Comment was released in September 2003. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE Mailstop F-32 Atlanta, Georgia 30333 ZINC vi *Legislative Background The toxicological profiles are developed in response to the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public law 99-499) which amended the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund). This public law directed ATSDR to prepare toxicological profiles for hazardous substances most commonly found at facilities on the CERCLA National Priorities List and that pose the most significant potential threat to human health, as determined by ATSDR and the EPA. The availability of the revised priority list of 275 hazardous substances was announced in the Federal Register on November 17, 1997 (62 FR 61332). For prior versions of the list of substances, see Federal Register notices dated April 29, 1996 (61 FR 18744); April 17, 1987 (52 FR 12866); October 20, 1988 (53 FR 41280); October 26, 1989 (54 FR 43619); October 17, 1990 (55 FR 42067); October 17, 1991 (56 FR 52166); October 28, 1992 (57 FR 48801); and February 28, 1994 (59 FR 9486).
    [Show full text]
  • A New Interpretation of the Absorption and the Dual Fluorescence of Prodan in Solution
    A new interpretation of the absorption and the dual fluorescence of Prodan in solution Cíntia C. Vequi-Suplicy1,2, Yoelvis Orozco-Gonzalez1,3, M. Teresa Lamy1, Sylvio Canuto1, Kaline Coutinho1* 1. Instituto de Física, Universidade de São Paulo, Rua do Matão,1371, 05508-090, São Paulo, SP, Brazil. 2. Fundacion IMDEA-Nanociencia Cantoblanco, 28049, Madrid, Spain. 3. Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States. Abstract Remarkable interest is associated to the interpretation of Prodan fluorescent spectrum. A sequential hybrid Quantum Mechanics/Molecular Mechanics (S-QM/MM) method was used to establish that the fluorescent emission occurs from two different excited states, resulting in a broad asymmetric emission spectrum. The absorption spectra in several solvents were measured and calculated using different theoretical models presenting excellent agreement. All theoretical models (INDO-CIS, TD- B3LYP and CASPT2) agree that the first observed band at the absorption spectrum in solution is composed of three electronic excitations very close in energy. Then, the electronic excitation around 340-360 nm may populate the first three excited states (π-π*Lb, n-π* and π-π*La). The ground state S0 and the first three excited states were analyzed using multi-configurational calculations (CASSCF) and second-order multi-configurational perturbation theory (CASPT2). The corresponding equilibrium geometries are all planar in vacuum. Considering the solvent effects in the electronic structure of the solute and in the solvent relaxation around the solute, it was identified that these three excited states can change the relative order depending on the solvent polarity and following the minimum path energy, internal conversions may occur.
    [Show full text]
  • Acrylamide Mammography Cohort, the Netherlands Study on Diet and Can- Cer, a Cohort of Swedish Men, the U.S
    Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc Acrylamide Mammography Cohort, the Netherlands Study on Diet and Can- cer, a cohort of Swedish men, the U.S. Nurses’ Health Study, and the CAS No. 79-06-1 Danish Diet, Cancer, and Health Study. In addition, several case- control studies (most of which used food-frequency questionnaires) Reasonably anticipated to be a human carcinogen assessed cancer and dietary exposure of Swedish, French, and U.S. First listed in the Sixth Annual Report on Carcinogens (1991) populations to acrylamide. The tissue site studied most frequently Also known as 2-propenamide was the breast. These studies found no overall association between breast cancer and dietary exposure to acrylamide; however, some, H C NH2 but not all, studies reported an association between acrylamide ex- H2C C posure and a specific type of breast cancer (sex-hormone-receptor- O positive cancer in post-menopausal women). The Danish study used Carcinogenicity acrylamide-hemoglobin adducts to assess exposure; however, these adducts are not source-specific, but reflect both dietary exposure Acrylamide is reasonably anticipated to be a human carcinogen based and exposure from other sources, such as smoking. Two of three pro- on sufficient evidence of carcinogenicity from studies in experimen- spective cohort studies reported increased risks of endometrial and tal animals. ovarian cancer, but a case-control study found no increased risk of ovarian cancer. Most of the studies evaluating prostate and colorectal Cancer Studies in Experimental Animals cancer did not find increased risks associated with dietary exposure Acrylamide caused tumors in two rodent species, at several different to acrylamide.
    [Show full text]
  • Bioconcentration, Bioaccumulation, and the Biomagnification in Puget
    Jason E. Hall Bioconcentration, Bioaccumulation, and Biomagnification in Puget Sound Biota: Assessing the Ecological Risk of Chemical Contaminants in Puget Sound The following piece is republished from the UWT Journal on the Environment, an electronic, peer-reviewed journal designed to provide students with a forum in which to publish and read primary and secondary research, reports on conferences and events, and ideas and opinions in the environmental sciences and studies. Tahoma West encourages submissions that deal with scientific and social matters. Note: For the tables referred to in this article please see Journal of the Environment: <http://courses. washington. edu/uwtjoe/>. Introduction: Puget Sound has a large urban and rural human population, which currently exceeds 3 million, and many industrialized ports and shorelines that provide numerous sources of non-point and point source pollution to Puget Sound (Konasewich et al. 1982). Hundreds of poten­ tia lly toxic chemicals are present in Puget Sound sediments (Matins et al. 1982, NOAA and WSDE 2000, Konasewich et al. 1982, and Lefkovitz et al. J 997). As of 1982, J 83 organic compounds had been identified in Puget Sound sediments, biota, and water (Konasewicb et al. 1982). Although chemical contaminants and heavy metals are present in sedi­ ments throughout Puget Sound, these pollutants are generally greatest in number and concentration within the sediments and embayments that are adjacent to the most populated and industrialized areas, such as Elliot Bay, Commencement Bay, and Sinclair Illlet (Malins et al. 1982, Lefkovitz et aJ. 1997, Konasewich et al. 1982, and NOAA and WSDE 2000). However, the distribution and concentrations of chemical contami­ nants and heavy metals in Puget Sound generally reflect their source.
    [Show full text]
  • Toxicological Profile for Phenol
    TOXICOLOGICAL PROFILE FOR PHENOL U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry September 2008 PHENOL ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. PHENOL iii UPDATE STATEMENT A Toxicological Profile for Phenol, Draft for Public Comment was released in October 2006. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology and Environmental Medicine/Applied Toxicology Branch 1600 Clifton Road NE Mailstop F-32 Atlanta, Georgia 30333 PHENOL iv This page is intentionally blank. PHENOL v FOREWORD This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for the hazardous substance described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a hazardous substance’s toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced. The focus of the profiles is on health and toxicologic information; therefore, each toxicological profile begins with a public health statement that describes, in nontechnical language, a substance’s relevant toxicological properties.
    [Show full text]
  • Bioaccumulation, Biodistribution, Toxicology and Biomonitoring of Organofluorine Compounds in Aquatic Organisms
    International Journal of Molecular Sciences Review Bioaccumulation, Biodistribution, Toxicology and Biomonitoring of Organofluorine Compounds in Aquatic Organisms Dario Savoca and Andrea Pace * Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, 90100 Palermo, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-091-23897543 Abstract: This review is a survey of recent advances in studies concerning the impact of poly- and perfluorinated organic compounds in aquatic organisms. After a brief introduction on poly- and perfluorinated compounds (PFCs) features, an overview of recent monitoring studies is reported illustrating ranges of recorded concentrations in water, sediments, and species. Besides presenting general concepts defining bioaccumulative potential and its indicators, the biodistribution of PFCs is described taking in consideration different tissues/organs of the investigated species as well as differences between studies in the wild or under controlled laboratory conditions. The potential use of species as bioindicators for biomonitoring studies are discussed and data are summarized in a table reporting the number of monitored PFCs and their total concentration as a function of investigated species. Moreover, biomolecular effects on taxonomically different species are illustrated. In the final paragraph, main findings have been summarized and possible solutions to environmental threats posed by PFCs in the aquatic environment are discussed.
    [Show full text]