1658 Peel.Vp
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Sirius Passet Lagerst‰Tte of North
Durham Research Online Deposited in DRO: 02 January 2019 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Hammarlund, Emma U. and Smith, M. Paul and Rasmussen, Jan A. and Nielsen, Arne T. and Caneld, Donald E. and Harper, David A. T. (2019) 'The Sirius Passet Lagerst¤atteof North Greenlanda geochemical window on early Cambrian lowoxygen environments and ecosystems.', Geobiology., 17 (1). pp. 12-26. Further information on publisher's website: https://doi.org/10.1111/gbi.12315 Publisher's copyright statement: c 2018 The Authors. Geobiology Published by John Wiley Sons Ltd This is an open access article under the terms of the Creative Commons AttributionNonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Received: 14 January 2018 | Revised: 17 August 2018 | Accepted: 22 August 2018 DOI: 10.1111/gbi.12315 ORIGINAL ARTICLE The Sirius Passet Lagerstätte of North Greenland—A geochemical window on early Cambrian low- oxygen environments and ecosystems Emma U. -
Soft−Part Preservation in Two Species of the Arthropod Isoxys from the Middle Cambrian Burgess Shale of British Columbia, Canada
Soft−part preservation in two species of the arthropod Isoxys from the middle Cambrian Burgess Shale of British Columbia, Canada DIEGO C. GARCÍA−BELLIDO, JEAN VANNIER, and DESMOND COLLINS García−Bellido, D.C., Vannier, J., and Collins, D. 2009. Soft−part preservation in two species of the arthropod Isoxys from the middle Cambrian Burgess Shale of British Columbia, Canada. Acta Palaeontologica Polonica 54 (4): 699–712. doi:10.4202/app.2009.0024 More than forty specimens from the middle Cambrian Burgess Shale reveal the detailed anatomy of Isoxys, a worldwide distributed bivalved arthropod represented here by two species, namely Isoxys acutangulus and Isoxys longissimus. I. acutangulus had a non−mineralized headshield with lateral pleural folds (= “valves” of previous authors) that covered the animal’s body almost entirely, large frontal spherical eyes and a pair of uniramous prehensile appendages bearing stout spiny outgrowths along their anterior margins. The 13 following appendages had a uniform biramous design—i.e., a short endopod and a paddle−like exopod fringed with marginal setae with a probable natatory function. The trunk ended with a flap−like telson that protruded beyond the posterior margin of the headshield. The gut of I. acutangulus was tube−like, running from mouth to telson, and was flanked with numerous 3D−preserved bulbous, paired features inter− preted as digestive glands. The appendage design of I. acutangulus indicates that the animal was a swimmer and a visual predator living off−bottom. The general anatomy of Isoxys longissimus was similar to that of I. acutangulus although less information is available on the exact shape of its appendages and visual organs. -
Contributions in BIOLOGY and GEOLOGY
MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - --- -
Paleontological Contributions
Paleontological Contributions Number 3 A new Cambrian arthropod, Emeraldella brutoni, from Utah Martin Stein, Stephen B. Church, and Richard A. Robison September 30, 2011 Lawrence, Kansas, USA ISSN 1946-0279 paleo.ku.edu/contributions http://hdl.handle.net/1808/8086 Paleontological Contributions September 30, 2011 Number 3 A NEW CAMBRIAN ARTHROPOD, EMERALDELLA BRUTONI, FROM UTAH Martin Stein,1* Stephen B. Church,2 and Richard A. Robison1 1University of Kansas, Department of Geology, Lawrence, Kansas 66045, USA, [email protected], [email protected]; 2Sinclair Oil & Gas Company, Salt Lake City, Utah 84130, USA, [email protected] ABSTRACT Emeraldella is a rare arthropod of relatively large body size that belongs with the trilobite-like arthropods, Artiopoda. E. brutoni n. sp. from the Wheeler Formation of west-central Utah is the second species described and marks the first confirmed occurrence of Emeraldella outside the Burgess Shale of British Columbia. An articulated, flagelliform telson, similar to that of the Burgess Shale taxon Molaria, is recognized in Emeraldella. Evidence for the presence of lamellae on the exopods of Molaria is presented, supporting affinity of that taxon with Artiopoda. A close relationship between Emeraldella and Molaria is tentatively suggested, based on the morphology of tergites and telson. Keywords: Wheeler Formation, Drum Mountains, exceptional preservation, Arthropoda INTRODUCTION others (2007), Elrick and Hinnov (2007), Brett and others (2009), Halgedahl and others (2009), and Howley and Jiang (2010), The Wheeler Formation of west-central Utah is well known have provided more detailed information about its stratigraphy for its diverse and exceptionally preserved biota, which was and depositional environments. One of us (S.B.C.) collected the reviewed by Robison (1991). -
Abstract Volume
https://doi.org/10.3301/ABSGI.2019.04 Milano, 2-5 July 2019 ABSTRACT BOOK a cura della Società Geologica Italiana 3rd International Congress on Stratigraphy GENERAL CHAIRS Marco Balini, Università di Milano, Italy Elisabetta Erba, Università di Milano, Italy - past President Società Geologica Italiana 2015-2017 SCIENTIFIC COMMITTEE Adele Bertini, Peter Brack, William Cavazza, Mauro Coltorti, Piero Di Stefano, Annalisa Ferretti, Stanley C. Finney, Fabio Florindo, Fabrizio Galluzzo, Piero Gianolla, David A.T. Harper, Martin J. Head, Thijs van Kolfschoten, Maria Marino, Simonetta Monechi, Giovanni Monegato, Maria Rose Petrizzo, Claudia Principe, Isabella Raffi, Lorenzo Rook ORGANIZING COMMITTEE The Organizing Committee is composed by members of the Department of Earth Sciences “Ardito Desio” and of the Società Geologica Italiana Lucia Angiolini, Cinzia Bottini, Bernardo Carmina, Domenico Cosentino, Fabrizio Felletti, Daniela Germani, Fabio M. Petti, Alessandro Zuccari FIELD TRIP COMMITTEE Fabrizio Berra, Mattia Marini, Maria Letizia Pampaloni, Marcello Tropeano ABSTRACT BOOK EDITORS Fabio M. Petti, Giulia Innamorati, Bernardo Carmina, Daniela Germani Papers, data, figures, maps and any other material published are covered by the copyright own by the Società Geologica Italiana. DISCLAIMER: The Società Geologica Italiana, the Editors are not responsible for the ideas, opinions, and contents of the papers published; the authors of each paper are responsible for the ideas opinions and con- tents published. La Società Geologica Italiana, i curatori scientifici non sono responsabili delle opinioni espresse e delle affermazioni pubblicate negli articoli: l’autore/i è/sono il/i solo/i responsabile/i. ST3.2 Cambrian stratigraphy, events and geochronology Conveners and Chairpersons Per Ahlberg (Lund University, Sweden) Loren E. -
The Extent of the Sirius Passet Lagerstätte (Early Cambrian) of North Greenland
The extent of the Sirius Passet Lagerstätte (early Cambrian) of North Greenland JOHN S. PEEL & JON R. INESON Ancillary localities for the Sirius Passet biota (early Cambrian; Cambrian Series 2, Stage 3) are described from the im- mediate vicinity of the main locality on the southern side of Sirius Passet, north-western Peary Land, central North Greenland, where slope mudstones of the Transitional Buen Formation abut against the margin of the Portfjeld Forma- tion carbonate platform. Whilst this geological relationship may extend over more than 500 km east–west across North Greenland, known exposures of the sediments yielding the lagerstätte are restricted to a 1 km long window at the south-western end of Sirius Passet. • Keywords: Early Cambrian, Greenland, lagerstätte. PEEL, J.S. & INESON, J.R. The extent of the Sirius Passet Lagerstätte (early Cambrian) of North Greenland. Bulletin of Geosciences 86(3), 535–543 (4 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received March 24, 2011; accepted in revised form July 8, 2011; published online July 28, 2011; issued September 30, 2011. John S. Peel, Department of Earth Sciences (Palaeobiology), Uppsala University, Villavägen 16, SE-75 236 Uppsala, Sweden; [email protected] • Jon R. Ineson, Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark; [email protected] Almost all of the fossils described from the early Cambrian The first fragmentary fossils from the Sirius Passet Sirius Passet Lagerstätte of northern Peary Land, North Lagerstätte (GGU collection 313035) were collected by Greenland, were collected from a single, west-facing talus A.K. -
New Cheloniellid Arthropod with Large Raptorial Appendages from the Silurian of Wisconsin, USA
bioRxiv preprint doi: https://doi.org/10.1101/407379; this version posted September 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. New cheloniellid arthropod with large raptorial appendages from the Silurian of Wisconsin, USA Andrew J. Wendruff1*, Loren E. Babcock2, Donald G. Mikulic3, Joanne Kluessendorf4 1 Department of Biology and Earth Science, Otterbein University, Westerville, Ohio, United States of America, 2 Department of Earth Sciences, The Ohio State University, Columbus, Ohio, United States of America, 3 Illinois Geological Survey, Champaign, Illinois, United States of America, 4 Weis Earth Science Museum, University of Wisconsin-Fox Valley, Menasha, Wisconsin, United States of America *[email protected] Abstract Cheloniellids comprise a small, distinctive group of Paleozoic arthropods of whose phylogenetic relationships within the Arthropoda remain unresolved. A new form, Xus yus, n. gen, n. sp. is reported from the Waukesha Lagerstatte in the Brandon Bridge Formation (Silurian: Telychian), near Waukesha, Wisconsin, USA. Exceptionally preserved specimens show previously poorly known features including biramous appendages; this is the first cheloniellid to show large, anterior raptorial appendages. We emend the diagnosis of Cheloniellida; cephalic appendages are uniramous and may include raptorial appendages; trunk appendages are biramous. bioRxiv preprint doi: https://doi.org/10.1101/407379; this version posted September 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Th TRILO the Back to the Past Museum Guide to TRILO BITES
With regard to human interest in fossils, trilobites may rank second only to dinosaurs. Having studied trilobites most of my life, the English version of The Back to the Past Museum Guide to TRILOBITES by Enrico Bonino and Carlo Kier is a pleasant treat. I am captivated by the abundant color images of more than 600 diverse species of trilobites, mostly from the authors’ own collections. Carlo Kier The Back to the Past Museum Guide to Specimens amply represent famous trilobite localities around the world and typify forms from most of the Enrico Bonino Enrico 250-million-year history of trilobites. Numerous specimens are masterpieces of modern professional preparation. Richard A. Robison Professor Emeritus University of Kansas TRILOBITES Enrico Bonino was born in the Province of Bergamo in 1966 and received his degree in Geology from the Depart- ment of Earth Sciences at the University of Genoa. He currently lives in Belgium where he works as a cartographer specialized in the use of satellite imaging and geographic information systems (GIS). His proficiency in the use of digital-image processing, a healthy dose of artistic talent, and a good knowledge of desktop publishing software have provided him with the skills he needed to create graphics, including dozens of posters and illustrations, for all of the displays at the Back to the Past Museum in Cancún. In addition to his passion for trilobites, Enrico is particularly inter- TRILOBITES ested in the life forms that developed during the Precambrian. Carlo Kier was born in Milan in 1961. He holds a degree in law and is currently the director of the Azul Hotel chain. -
An Ordovician Lobopodian from the Soom Shale Lagerstätte, South Africa
[Palaeontology, Vol. 52, Part 3, 2009, pp. 561–567] AN ORDOVICIAN LOBOPODIAN FROM THE SOOM SHALE LAGERSTA¨ TTE, SOUTH AFRICA by ROWAN J. WHITTLE*,à, SARAH E. GABBOTT*, RICHARD J. ALDRIDGE* and JOHANNES THERON *Department of Geology, University of Leicester, Leicester LE1 7RH, UK; e-mails: [email protected]; [email protected] Department of Geology, University of Stellenbosch, Private Bag XI, Stellenbosch 7602, South Africa; e-mail: [email protected] àPresent address: British Antarctic Survey, Madingley Road, Cambridge, CB3 0ET, UK; e-mail: [email protected] Typescript received 18 July 2008; accepted in revised form 27 January 2009 Abstract: The first lobopodian known from the Ordovician and Carboniferous. The new fossil preserves an annulated is described from the Soom Shale Lagersta¨tte, South Africa. trunk, lobopods with clear annulations, and curved claws. It The organism shows features homologous to Palaeozoic mar- represents a rare record of a benthic organism from the ine lobopodians described from the Middle Cambrian Bur- Soom Shale, and demonstrates intermittent water oxygena- gess Shale, the Lower Cambrian Chengjiang biota, the Lower tion during the deposition of the unit. Cambrian Sirius Passet Lagersta¨tte and the Lower Cambrian of the Baltic. The discovery provides a link between marine Key words: Lagersta¨tte, lobopodian, Ordovician, Soom Cambrian lobopodians and younger forms from the Silurian Shale. Cambrian lobopodians are a diverse group showing a in an intracratonic basin with water depths of approxi- great variety of body shape, size and ornamentation. mately 100 m (Gabbott 1999). Dominantly quiet water However, they share a segmented onychophoran-like conditions are indicated by a lack of flow-induced sedi- body, paired soft-skinned annulated lobopods, and in mentary structures and the taphonomy of the fossils. -
Arthropoda, Trilobitomorpha
MEROSTOMOIDEA (ARTHROPODA, TRILO BITOMORPHA) FROM THE AUSTRALIAN MIDDLE TRIASSIC By E. F. RIEK Division of Entomology, C.S.I.R.O., Canberra. Plate 35. Figs. 1 and 2. Manuscript received August 28, 1963 SUMMARY A monotypic genus of a new family of Merostomoidea is described from the Middle Triassic of Brookvale, New South Wales, Australia. The known range of the subclass, previously recorded from the Middle Cambrian, is extended considerably by this record. Three well preserved non-insect arthropod specimens, apart from the xiphosuron, Austrolimulus ftetcheri Riek, (1955), have been collected from the Middle Triassic freshwater sediments at Brookvale, New South Wales. These sediments also contain abundant insects and fish. These three specimens bear a considerable resemblance in body shape to both the Synziphosurina (Merostomata) and the Merostomoidea (Trilobitomorpha). The post-cephalic portion of the body is divided into two distinct regions and ends in a long caudal style. Although appendages are not clearly preserved, their general structure can be distinguished below the crumpled pleural regions in one of the specimens and their bases distinguished in another. These numerous pairs of similar appendages are of trilobitomorph form. Trilobitomorpha, which are first recorded from the Lower Cambrian, are not known from strata younger than the Middle Permian and almost all the species occurring since the Cambrian are referred to the well-known trilobites (Class Trilobita). The Class Trilobitoidea is, however, recorded from the Devonian as well as from the Cambrian. If these Middle Triassic specimens do belong to the Trilobitoidea they extend the known range of the class very considerably. There seeJ;llS little doubt from a study of the insect remains that the sediments in which these specimens occur are of Triassic, very probably Middle Triassic, age. -
Lobopodian Phylogeny Reanalysed
BRIEF COMMUNICATIONS ARISING Phylogenetic position of Diania challenged ARISING FROM J. Liu et al. Nature 470, 526–530 (2011) Liu et al.1 describe a new and remarkable fossil, Diania cactiformis. absent. For example, character 6 (position of frontal appendage) can This animal apparently combined the soft trunk of lobopodians (a only be coded in taxa that possess a frontal appendage (character 5) in group including the extant velvet worms in addition to many the first instance (such that a ‘‘0’’ for character 5 necessitates a ‘‘-’’ for Palaeozoic genera) with the jointed limbs that typify arthropods. character 6). In morphological analyses such as this, inapplicable They go on to promote Diania as the immediate sister group to the states are usually assumed to have no bearing on the analysis, being arthropods, and conjecture that sclerotized and jointed limbs may reconstructed passively in the light of known states. In analyses of therefore have evolved before articulated trunk tergites in the imme- nucleotide data, by contrast, gaps may alternatively be construed as a diate arthropod stem. The data published by Liu et al.1 do not un- fifth and novel state, because shared deletions from some ancestral ambiguously support these conclusions; rather, we believe that Diania sequence may actually be informative. If this assumption is made with probably belongs within an unresolved clade or paraphyletic grade of morphological data, however, all the logically uncodable states in a lobopodians. character are initially assumed to be homologous, and a legitimate Without taking issue with the interpretation of Diania offered by basis for recognizing clades. -
Hallucigenia's Onychophoran-Like Claws
LETTER doi:10.1038/nature13576 Hallucigenia’s onychophoran-like claws and the case for Tactopoda Martin R. Smith1 & Javier Ortega-Herna´ndez1 The Palaeozoic form-taxon Lobopodia encompasses a diverse range of Onychophorans lack armature sclerites, but possess two types of ap- soft-bodied‘leggedworms’ known from exceptionalfossil deposits1–9. pendicular sclerite: paired terminal claws in the walking legs, and den- Although lobopodians occupy a deep phylogenetic position within ticulate jaws within the mouth cavity9,23.AsinH. sparsa, claws in E. Panarthropoda, a shortage of derived characters obscures their evo- kanangrensis exhibit a broad base that narrows to a smooth conical point lutionary relationships with extant phyla (Onychophora, Tardigrada (Fig. 1e–h). Each terminal clawsubtends anangle of130u and comprises and Euarthropoda)2,3,5,10–15. Here we describe a complex feature in two to three constituent elements (Fig. 1e–h). Each smaller element pre- the terminal claws of the mid-Cambrian lobopodian Hallucigenia cisely fills the basal fossa of its container, from which it can be extracted sparsa—their construction from a stack of constituent elements— with careful manipulation (Fig. 1e, g, h and Extended Data Fig. 3a–g). and demonstrate that equivalent elements make up the jaws and claws Each constituent element has a similar morphology and surface orna- of extant Onychophora. A cladistic analysis, informed by develop- ment (Extended Data Fig. 3a–d), even in an abnormal claw where mental data on panarthropod head segmentation, indicates that the element tips are flat instead of pointed (Extended Data Fig. 3h). The stacked sclerite components in these two taxa are homologous— proximal bases of the innermost constituent elements are associated with resolving hallucigeniid lobopodians as stem-group onychophorans.