Polycyclic Aromatic Hydrocarbons Standard Mixture
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recipe 2016 V1.1 a Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report I: Characterization
ReCiPe 2016 v1.1 A harmonized life cycle impact assessment method at midpoint and endpoint level Report I: Characterization RIVM Report 2016-0104a RIVM Report 2016-0104 Colophon © RIVM 2017 Parts of this publication may be reproduced, provided acknowledgement is given to: National Institute for Public Health and the Environment, along with the title and year of publication. M.A.J. Huijbregts (author), Radboud University Nijmegen Z.J.N. Steinmann (author), Radboud University Nijmegen P.M.F. Elshout (author), Radboud University Nijmegen G. Stam (author), Radboud University Nijmegen F. Verones (author), NTNU Trondheim M.D.M. Vieira (author), Radboud University Nijmegen, Pré Consultants A. Hollander (author), RIVM M. Zijp (author), RIVM R. van Zelm (author), Radboud University Nijmegen Contact: Anne Hollander RIVM/DMG [email protected] This investigation has been performed by order and for the account of Ministerie IenM, within the framework of Van Afval naar Grondstof This is a publication of: National Institute for Public Health and the Environment P.O. Box 1 | 3720 BA Bilthoven The Netherlands www.rivm.nl/en Page 2 of 201 RIVM Report 2016-0104 Synopsis ReCiPe 2016 v1.1 A harmonized life cycle impact assessment method at midpoint and endpoint level Report I: Characterization Life cycle assessment (LCA) enables the assessment of the pressure a certain (production) process places on the environment. The assessment comprises all phases needed to produce and use a product, from the initial development to the treatment of waste (the total life cycle). The goal of LCA is, for example, to compare alternatives or to identify phases in the production process that place a relatively high level of pressure on the environment. -
Estimation of Enthalpy of Bio-Oil Vapor and Heat Required For
Edinburgh Research Explorer Estimation of Enthalpy of Bio-Oil Vapor and Heat Required for Pyrolysis of Biomass Citation for published version: Yang, H, Kudo, S, Kuo, H-P, Norinaga, K, Mori, A, Masek, O & Hayashi, J 2013, 'Estimation of Enthalpy of Bio-Oil Vapor and Heat Required for Pyrolysis of Biomass', Energy & Fuels, vol. 27, no. 5, pp. 2675-2686. https://doi.org/10.1021/ef400199z Digital Object Identifier (DOI): 10.1021/ef400199z Link: Link to publication record in Edinburgh Research Explorer Document Version: Early version, also known as pre-print Published In: Energy & Fuels General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Estimation of Enthalpy of Bio-oil Vapor and Heat Required for Pyrolysis of Biomass Hua Yang,† Shinji Kudo,§ Hsiu-Po Kuo,‡ Koyo Norinaga, ξ Aska Mori, ξ Ondřej Mašek,|| and Jun-ichiro Hayashi †, ξ, §, * †Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, -
Scientific Committee on Toxicity, Ecotoxicity and the Environment
EUROPEAN COMMISSION DIRECTORATE-GENERAL HEALTH AND CONSUMER PROTECTION Directorate C – Scientific Opinions on Health Matters Unit C2 – Management of Scientific Committees I Scientific Committee on Toxicity, Ecotoxicity and the Environment Brussels, C2/JCD/csteeop/Ter91100/D(0) SCIENTIFIC COMMITTEE ON TOXICITY, ECOTOXICITY AND THE ENVIRONMENT (CSTEE) Opinion on THE AVAILABLE SCIENTIFIC APPROACHES TO ASSESS THE POTENTIAL EFFECTS AND RISK OF CHEMICALS ON TERRESTRIAL ECOSYSTEMS Opinion expressed at the 19th CSTEE plenary meeting Brussels, 9 November 2000 CSTEE OPINION ON THE AVAILABLE SCIENTIFIC APPROACHES TO ASSESS THE POTENTIAL EFFECTS AND RISK OF CHEMICALS ON TERRESTRIAL ECOSYSTEMS FOREWORD AND SCOPE OF THIS DOCUMENT The concept "terrestrial environment" cannot be easily defined. It is characterised as the part of the biosphere that is not covered by water, less than one third of the total surface. From a geological viewpoint it just represents a thin line (a few meters wide) of the interface between both the solid (soil) and the gaseous (atmosphere) phases of the Earth, several orders of magnitude wider than this line. However, from the biological point of view, this thin line concentrates all non-aquatic living organisms, including human beings. Humans use the terrestrial environment for living and developing most of their activities, which include the commercial production of other species by agriculture and farming. Human activities deeply modify the terrestrial environment. Particularly in developed areas such as Europe, the landscape has been intensively modified by agricultural, mining, industrial and urban activities and only in a small proportion (mostly in extreme conditions such as high mountains, Northern latitudes, wetlands or semi-desert areas) of the European surface the landscape still resembles naive conditions. -
Summary of Information for ABC for Polycyclic Aromatic Hydrocarbons
Air Toxics Science Advisory Committee Summary of Information for ABC for Polycyclic Aromatic Hydrocarbons September 16, 2015 ATSAC Meeting #10 Presenter: Sue MacMillan, DEQ ATSAC lead Sue MacMillan | Oregon Department of Environmental Quality 26 Individual PAHs to Serve as Basis of ABC for Total PAHs Acenaphthene Cyclopenta(c,d)pyrene Acenaphthylene Dibenzo(a,h)anthracene Anthracene Dibenzo(a,e)pyrene Anthanthrene Dibenzo(a,h)pyrene Benzo(a)pyrene Dibenzo(a,i)pyrene Naphthalene Benz(a)anthracene Dibenzo(a,l)pyrene has separate Benzo(b)fluoranthene Fluoranthene ABC. Benzo(k)fluoranthene Fluorene Benzo( c)pyrene Indeno(1,2,3-c,d)pyrene Benzo(e)pyrene Phenanthrene Benzo(g,h,i)perylene Pyrene Benzo(j)fluoranthene 5-Methylchrysene Chrysene 6-Nitrochrysene Use of Toxic Equivalency Factors for PAHs • Benzo(a)pyrene serves as the index PAH, and has a documented toxicity value to which other PAHs are adjusted • Other PAHs adjusted using Toxic Equivalency Factors (TEFs), aka Potency Equivalency Factors (PEFs). These values are multipliers and are PAH-specific. • Once all PAH concentrations are adjusted to account for their relative toxicity as compared to BaP, the concentrations are summed • This summed concentration is then compared to the toxicity value for BaP, which is used as the ABC for total PAHs. Source of PEFs for PAHs • EPA provides a range of values of PEFs for each PAH • Original proposal suggested using upper-bound value of each PEF range as the PEF to use for adjustment of our PAHs • Average PEF value for each PAH is a better approximation of central tendency, and is consistent with the use of PEFs by other agencies • Result of using average, rather than upper-bound PEFs: slightly lower summed concentrations for adjusted PAHs, thus less apt to exceed ABC for total PAHs Documents can be provided upon request in an alternate format for individuals with disabilities or in a language other than English for people with limited English skills. -
Polycyclic Aromatic Hydrocarbons (Pahs)
Polycyclic Aromatic Hydrocarbons (PAHs) Factsheet 4th edition Donata Lerda JRC 66955 - 2011 The mission of the JRC-IRMM is to promote a common and reliable European measurement system in support of EU policies. European Commission Joint Research Centre Institute for Reference Materials and Measurements Contact information Address: Retiewseweg 111, 2440 Geel, Belgium E-mail: [email protected] Tel.: +32 (0)14 571 826 Fax: +32 (0)14 571 783 http://irmm.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC 66955 © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Belgium Table of contents Chemical structure of PAHs................................................................................................................................. 1 PAHs included in EU legislation.......................................................................................................................... 6 Toxicity of PAHs included in EPA and EU -
Persistent Organic Pollutants (Pops): State of the Science
Environmental Pollution 100 (1999) 209±221 www.elsevier.com/locate/envpol Persistent organic pollutants (POPs): state of the science K.C. Jones a,*, P. de Voogt b aEnvironmental Science Department, Institute of Environmental and Natural Sciences, Lancaster University, Lancaster, LA1 4YQ, UK bDepartment of Environmental and Toxicological Chemistry, Amsterdam Research Institute for Substances in Ecosystems (ARISE), University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, Netherlands Received 15 November 1998; accepted 22 March 1999 Abstract The environmental chemistry and ecotoxicology of persistent organic pollutants (POPs) are fascinating areas of scienti®c research. Our objective in this paper is to provide a brief, focussed overview of what constitutes a POP, highlight the harmful eects they may have on biota, make some comments on their environmental sources and analysis, their environmental trends and pro- cesses, their movement through foodchains and highlight some important regional-and global-scale environmental transport issues. Finally, we oer some personal thoughts on some current and future areas of scienti®c enquiry on POPs. # 1999 Elsevier Science Ltd. All rights reserved. Keywords: Persistent organic pollutant, POP; Sources; Air±surface exchange; Biota; Foodchains 1. What are Persistent Organic Pollutants (POPs) and They also partition into lipids in organisms rather than their properties? entering the aqueous milieu of cells and become stored in fatty tissue. This confers persistence on the chemical There are many thousands of POP chemicals, often in biota since metabolism is slow and POPs may there- coming from certain series or `families' of chemicals (e.g fore accumulate in foodchains. there are theoretically 209 dierent polychlorinated Importantly, POPs have the propensity to enter the biphenyls, diering from each other by level of chlor- gas phase under environmental temperatures. -
Polycyclic Aromatic Hydrocarbons in Water, Sediment, and Snow, from Lakes in Grand Teton National Park, Wyoming
POLYCYCLIC AROMATIC HYDROCARBONS IN WATER, SEDIMENT, AND SNOW, FROM LAKES IN GRAND TETON NATIONAL PARK, WYOMING Final Report, USGS-CERC-91344 February 2005 Darren T. Rhea1, Robert W. Gale2, Carl E. Orazio2, Paul H. Peterman2, David D. Harper1, and Aїda M. Farag1* 1U.S. Geological Survey, Columbia Environmental Research Center, Jackson Field Research Station, P.O. Box 1089, Jackson, WY 83001 2U.S. Geological Survey, Columbia Environmental Research Center, 4200 New Haven Rd., Columbia, MO 65201 *Corresponding author: [email protected] U.S. Department of the Interior U.S. Geological Survey Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. CONTENTS PAGE Abstract…………………………………………………………………………………... 3 Introduction……………………………………………………………………………… 4 Methods…………………………………………………………………………………... 5 Study areas…………………………………………………………………........... 5 Sample collection…………………………………………………………………. 6 Sample analysis……………………………………………………….................... 6 Results…………………………………………………………………………………..... 8 Quality assurance/quality control……………………………………………….....8 PAH concentrations…………………………………………………………......... 8 Organic carbon concentrations………………………………………………….... 9 Discussion………………………………………………………………………………..10 Literature Cited………………………………………………………………................14 Tables Table 1…………………………………………………………………................16 Table 2………………………………………………………………………........17 Figures Figure 1………………………………………………………………….............. 18 Appendices Appendix A……………………………………………………………………… -
Thermodynamics and Phase Behavior of Polycyclic Aromatic
Thermodynamics and Phase Behavior of Polycyclic Aromatic Hydrocarbon Mixtures By James William Rice B.S., Northeastern University, 2006 Sc.M., Brown University, 2008 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the School of Engineering at Brown University PROVIDENCE, RHODE ISLAND MAY 2011 © Copyright 2011 by James W. Rice This dissertation by James W. Rice is accepted in its present form by the School of Engineering as satisfying the dissertation requirement for the degree of Doctor of Philosophy Date: _________________ ________________________________________________ Eric Suuberg, Advisor Recommended to the Graduate Council Date: _________________ ________________________________________________ Joseph Calo, Reader Date: _________________ ________________________________________________ Gerald Diebold, Reader Approved by the Graduate Council Date: _________________ ________________________________________________ Peter Weber, Dean of the Graduate School iii Curriculum Vitae for James W. Rice BORN on July 26, 1983 in Beverly, Massachusetts USA EDUCATION PhD Brown University, Providence, RI, Chemical Engineering (May 2011) ScM Brown University, Providence, RI, Engineering (May 2008) BS Northeastern University, Boston, MA, Chemical Engineering (May 2006) PUBLICATIONS J.W. Rice, J. Fu, E.M. Suuberg. “Anthracene + Pyrene Solid Mixtures: Eutectic and Azeotropic Character.” Journal of Chemical & Engineering Data (2010). J.W. Rice, E.M. Suuberg. “Thermodynamic Study of (Anthracene + Benzo[a]Pyrene) Solid Mixtures.” Journal of Chemical Thermodynamics (2010). J.W. Rice, J. Fu, E.M. Suuberg. “Thermodynamics of Multicomponent PAH Mixtures and Development of Tarlike Behavior.” Industrial and Engineering Chemistry Research (2011) J. Fu, J.W. Rice, E.M. Suuberg. “Phase Behavior and Vapor Pressures of the Pyrene + 9,10‐ Dibromoanthracene System.” Fluid Phase Equilibria (2010). CONFERENCE PRESENTATIONS J.W. -
Coal Tar Creosote
This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organization, or the World Health Organization. Concise International Chemical Assessment Document 62 COAL TAR CREOSOTE Please note that the layout and pagination of this pdf file are not identical to the document being printed First draft prepared by Drs Christine Melber, Janet Kielhorn, and Inge Mangelsdorf, Fraunhofer Institute of Toxicology and Experimental Medicine, Hanover, Germany Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organization, and the World Health Organization, and produced within the framework of the Inter-Organization Programme for the Sound Management of Chemicals. World Health Organization Geneva, 2004 The International Programme on Chemical Safety (IPCS), established in 1980, is a joint venture of the United Nations Environment Programme (UNEP), the International Labour Organization (ILO), and the World Health Organization (WHO). The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 by UNEP, ILO, the Food and Agriculture Organization of the United Nations, WHO, the United Nations Industrial Development Organization, the United Nations Institute for Training and Research, and the Organisation for Economic Co-operation and Development (Participating Organizations), following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase coordination in the field of chemical safety. -
Provisional Peer-Reviewed Toxicity Values For
EPA/690/R-11/001F l Final 4-6-2011 Provisional Peer-Reviewed Toxicity Values for Acenaphthene (CASRN 83-32-9) Superfund Health Risk Technical Support Center National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Cincinnati, OH 45268 AUTHORS, CONTRIBUTORS, AND REVIEWERS CHEMICAL MANAGER J. Phillip Kaiser, PhD National Center for Environmental Assessment, Cincinnati, OH DRAFT DOCUMENT PREPARED BY ICF International 9300 Lee Highway Fairfax, VA 22031 PRIMARY INTERNAL REVIEWERS Paul G. Reinhart, PhD, DABT National Center for Environmental Assessment, Research Triangle Park, NC Q. Jay Zhao, PhD, MPH, DABT National Center for Environmental Assessment, Cincinnati, OH This document was externally peer reviewed under contract to Eastern Research Group, Inc. 110 Hartwell Avenue Lexington, MA 02421-3136 Questions regarding the contents of this document may be directed to the U.S. EPA Office of Research and Development’s National Center for Environmental Assessment, Superfund Health Risk Technical Support Center (513-569-7300). TABLE OF CONTENTS COMMONLY USED ABBREVIATIONS .................................................................................... ii BACKGROUND .............................................................................................................................1 HISTORY ....................................................................................................................................1 DISCLAIMERS ...........................................................................................................................1 -
Acenaphthene Environmental Summary
ENVIRONMENTAL CONTAMINANTS ENCYCLOPEDIA ACENAPHTHENE ENTRY July 1, 1997 COMPILERS/EDITORS: ROY J. IRWIN, NATIONAL PARK SERVICE WITH ASSISTANCE FROM COLORADO STATE UNIVERSITY STUDENT ASSISTANT CONTAMINANTS SPECIALISTS: MARK VAN MOUWERIK LYNETTE STEVENS MARION DUBLER SEESE WENDY BASHAM NATIONAL PARK SERVICE WATER RESOURCES DIVISIONS, WATER OPERATIONS BRANCH 1201 Oakridge Drive, Suite 250 FORT COLLINS, COLORADO 80525 WARNING/DISCLAIMERS: Where specific products, books, or laboratories are mentioned, no official U.S. government endorsement is implied. Digital format users: No software was independently developed for this project. Technical questions related to software should be directed to the manufacturer of whatever software is being used to read the files. Adobe Acrobat PDF files are supplied to allow use of this product with a wide variety of software and hardware (DOS, Windows, MAC, and UNIX). This document was put together by human beings, mostly by compiling or summarizing what other human beings have written. Therefore, it most likely contains some mistakes and/or potential misinterpretations and should be used primarily as a way to search quickly for basic information and information sources. It should not be viewed as an exhaustive, "last-word" source for critical applications (such as those requiring legally defensible information). For critical applications (such as litigation applications), it is best to use this document to find sources, and then to obtain the original documents and/or talk to the authors before depending too heavily on a particular piece of information. Like a library or most large databases (such as EPA's national STORET water quality database), this document contains information of variable quality from very diverse sources. -
Leachate Ecotoxicity - Characterization and Risk Assessment
Leachate ecotoxicity - characterization and risk assessment Olof Berglund Chemical Ecology & Ecotoxicology Department of Ecology Lund University Leachate ecotoxicity • To compare toxic potency of different leachates, and effects of treatment methods - combine chemical and toxicological characterization • For environmental risk assessments -use ecotoxicological approaches with endpoints on population, community or ecosystem level Source • How do you estimate leachate toxicity? • How do you assess impact on recipient? Leachate Recipient • Chemical and toxicological characterization • Environmental risk assessments Landfill leachates • Complex mixture of organic and inorganic constituents • Characterization of leachates • Information needed for: – selection of treatment methods – risk assessments of landfill emissions Xenobiotic organic compounds Baun et al. 2004 Pesticides Phtalates Baun et al. 2004 What information? • Information on compounds present and concentrations • Limitations in traditional chemical analyses - time, money and detection limits • Biological effects - toxicity and environmental impact Leachate toxicity • To predict leachate toxicity both toxicological and chemical characterization required • Toxicological - we cannot analyze and detect everything • Chemical - toxicity tests do not reveal the identity of the potential problematic compounds Battery-of-tests approach Exposure Test Organism Endpoint time MicrotoxTM bacteria 15 min luminescence Selenastrum algae 96h growth mortality Daphnia zooplankton 48h (immobility)