Echinodermata) from the Southern Mexican Pacific: a Historical Review

Total Page:16

File Type:pdf, Size:1020Kb

Echinodermata) from the Southern Mexican Pacific: a Historical Review Checklist of echinoderms (Echinodermata) from the Southern Mexican Pacific: a historical review Rebeca Granja-Fernández1, Francisco Alonso Solís-Marín2, Francisco Benítez-Villalobos3, María Dinorah Herrero-Pérezrul4 & Andrés López-Pérez5 1. Doctorado en Ciencias Biológicas y de la Salud. Universidad Autónoma Metropolitana. San Rafael Atlixco 186, Col. Vicentina. CP 09340. D.F., México; [email protected] 2. Colección Nacional de Equinodermos “Ma. E. Caso Muñoz”, Laboratorio de Sistemática y Ecología de Equinodermos, ICMyL, Universidad Nacional Autónoma de México, 04510 México, D.F.; [email protected] 3. Instituto de Recursos, Universidad del Mar, Campus Puerto Ángel, 70902, San Pedro Pochutla, Puerto Ángel, Oaxaca, México; [email protected] 4. Centro Interdisciplinario de Ciencias Marinas. Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional s/n, col. Playa Palo de Santa Rita, 23096, La Paz, B.C.S., México; [email protected] 5. Departamento de Hidrobiología, División CBS, UAM-Iztapalapa. Av. San Rafael Atlixco 186, Col. Vicentina, 09340, AP 55-535, México, D.F.; [email protected] Received 22-VII-2014. Corrected 04-XI-2014. Accepted 08-XII-2014. Abstract: The echinoderms of the Southern Mexican Pacific have been studied for three centuries, but dis- crepancies in the nomenclature of some species have pervaded through time. The objective of this work is to present the first updated checklist of all valid species and synonyms, and a historical review of the study of the echinoderms of the Southern Mexican Pacific is also presented. The checklist is based on an exhaustive pub- lished literature search and records of specimens deposited in museum and curated reference collections. There are 162 species of echinoderms in the Southern Mexican Pacific from 96 genera, 54 families and 20 orders. The State of Guerrero presented a total of 135 species, Oaxaca 94 and Chiapas 15. We updated the list and added five new records of the species (Microphiopholis platydisca, Ophiostigma tenue, Arbacia stellata, Thyone bidentata, Chiridota rigida) for the Southern Mexican Pacific and one for the Mexican Pacific (Encope laevis). This check- list expands the number of species known for the study area; nevertheless studies suggest that still more species are yet to be discovered. Rev. Biol. Trop. 63 (Suppl. 2): 87-114. Epub 2015 June 01. Key words: Asteroidea, Ophiuroidea, Echinoidea, Holothuroidea, México. The phylum Echinodermata is represented a large number of habitats (i.e. coral reefs, approximately by 7 000 living species, and mangroves, coastal lagoons) and represents 13 000 fossil species, and comprises five living the main dispersal route to Mexico for species classes (Pawson, 2007). In the Mexican Pacif- from Central America (Arriaga-Cabrera et al., ic, the taxonomy and ecology of the echino- 1998; Reyes-Bonilla & López-Pérez, 1998). derm species have been studied for more than A large amount of information has been pub- a hundred years, being the Gulf of California lished regarding the echinoderm fauna of the the most extensively studied area (Solís-Marín SMP, resulting in a research history that can be et al., 2013). divided into three periods. The Southern Mexican Pacific (SMP) The first expedition carried out at the coasts comprises the States of Guerrero, Oaxaca and of the SMP was Albatross in 1891. The lead- Chiapas. This is a region with a high marine ing scientist of the expedition was Alexander biodiversity and endemism, besides it has Agassiz, who collected marine specimens from Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 63 (Suppl. 2): 87-114, June 2015 87 the Eastern Pacific. The expedition resulted in et al. 2008b), reproduction (Benítez-Villalobos the reports of Ludwig (1894) (Holothuroidea), & Martínez-García, 2012; Benítez-Villalobos Agassiz (1898, 1904) (Echinoidea), Lütken and et al., 2012, 2013), and symbiosis (Granja- Mortensen (1899) (Ophiuroidea) and Ludwig Fernández et al., 2013b). (1905) (Asteroidea). Although Albatross was Notwithstanding that the knowledge of the the only expedition into the SMP during the echinoderms in the SMP has increased since 19th century, numerous taxonomic contribu- the 19th century, the large amount of work in tions were produced for this area mostly for the area has generated a myriad of names that Asteroidea (Gray, 1871; Perrier, 1875, 1878; not only have often been misspelled, but have Sladen, 1899) and Echinoidea (Agassiz, 1863, also created longstanding taxonomic problems. 1872, 1873, 1881, 1898; Lockington, 1876; To overcome this trend, the main goal of this Rathbun, 1886). contribution is to present the first updated During the 20th century (in 1904 and checklist of all valid and synonymous names of 1905) the Albatross made a final expedition to echinoderms from the SMP based on published the SMP. This expedition resulted in the exten- literature and from specimens deposited in sive work of H.L. Clark (1920) about the East- collections, which will be useful as a baseline ern Tropical Pacific Asteroidea. Along with for future taxonomic, ecological and marine the Albatross, during 1931-1941, the Velero III resource management studies. surveyed the SMP. As a result of the Velero III expeditions, Deichmann (1941, 1958) (Holo- MATERIALS AND METHODS thuroidea), H.L. Clark (1948) (Echinoidea) and Ziesenhenne (1940) (Ophiuroidea) published We present a list of all known valid extensive works on the echinoderms of the names and synonyms of echinoderm species area. During 1937-1938, the New York Zoo- (classes Asteroidea, Ophiuroidea, Echinoidea logical Society organized an expedition to the and Holothuroidea) from Guerrero (GRO), Eastern Pacific (Zaca) under the direction of Oaxaca (OAX), Chiapas (CHIS) and the Gulf William Beebe, which generated the works of of Tehuantepec (GT), México. The Gulf of Deichmann (1938) (Holothuroidea) and H.L. Tehuantepec comprises the States of Oaxaca Clark (1940) (Asteroidea, Ophiuroidea, Echi- and Chiapas; some of the records in the area do noidea). In addition, during this century, there not mention a specific State, thus we refer to was an increase in systematic studies of echino- them as Gulf of Tehuantepec. derms from the SMP. In particular, researchers The checklist is based on an exhaustive such as H.L. Clark (1907a, 1907b, 1914, 1915, published literature search (131 references) 1917, 1920, 1922, 1925, 1940, 1948), Deich- and records of specimens deposited in muse- mann (1936, 1937, 1938, 1941, 1958) and ums or properly curated reference collections Caso (1944, 1945, 1946, 1948a, 1948b, 1949, (AMNH-American Museum of Natural His- 1951, 1954, 1958, 1962, 1963, 1964, 1965, tory, New York; AMS-Australian Museum, 1967a, 1967b, 1970, 1977, 1978a, 1978b, Sydney; CAS-California Academy of Sciences, 1979, 1980a, 1980b, 1983, 1986) produced a San Francisco; FMNH-The Field Museum, vast number of publications. Chicago; ICML-UNAM-Colección Nacional Recently, the study of echinoderms in de Equinodermos “Dra. Ma. Elena Caso”, Insti- the Southern Mexican Pacific has not only tuto de Ciencias del Mar y Limnología, Univer- focused on systematics, but also on ecology sidad Nacional Autónoma de México, México (Benítez-Villalobos, 2001; Lirman et al., 2001; City; LACM-Los Angeles County Museum, Calderón-Aguilera & Reyes-Bonilla, 2006; Los Angeles; MACN-Museo Argentino de López-Pérez et al., 2008; Zamorano & Leyte- Ciencias Naturales “Bernardino Rivadavia”, Morales, 2005a, 2005b, 2009), bioerosion (Her- Buenos Aires; MCZ-Museum of Comparative rera-Escalante et al., 2005; Benítez-Villalobos Zoology, Cambridge; UMAR-Colección de 88 Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN-0034-7744) Vol. 63 (Suppl. 2): 87-114, June 2015 equinodermos de la Universidad del Mar, Puer- archaic group (Blake, 1972). Based on speci- to Ángel, México; USNM-National Museum of mens donated by the Museum of Comparative Natural History, Washington; YPM-Yale Pea- Zoology, Cambridge to the Museum of Natu- body Museum of Natural History, New Haven). ral History of Paris, Perrier (1875) recorded Systematic arrangements follow the cri- Nidorellia armata, Pharia pyramidatus, Heli- teria of A.M. Clark (1989, 1993, 1996), A.M. aster kubiniji and Heliaster microbrachius Clark and Mah (2001) and Mah (2014) for from Acapulco, Guerrero. the Asteroidea; Smith et al. (1995), Stöhr et The 20th century was the period with al. (2014) for the Ophiuroidea; Mortensen the highest addition of Asteroidea to the SMP (1928, 1935, 1943a, 1943b, 1948, 1950, 1951), fauna (20 species). Ludwig (1905) described Kroh and Smith (2010) and Kroh and Mooi Eremicaster pacificus, Pseudarchaster pulcher, (2014) for the Echinoidea; Pawson and Fell Mediaster transfuga, Hymenaster violaceus, (1965), Rowe (1969), Solís-Marín et al. (2009), Zoroaster hirsutus and Freyella insignis from Smirnov (2012) and WoRMS (2014) for the Acapulco and other areas of the Tropical Eastern Holothuroidea. The taxonomic status of all spe- Pacific. Ludwig (1905) also reported Porcel- cies (valid names and synonyms) was tracked lanaster waltharii from Acapulco, now con- in the literature back to the original description, sidered as a synonym of Eremicaster crassus and was constructed with the help of systemat- (A.M. Clark, 1989). It is important to note that ics experts. The current checklist includes only P. waltharii has been incorrectly spelled as P. those synonyms that have been used in the waltherii (A.M. Clark, 1989), in contrast with SMP, but some species can have a larger syn- the original spelling
Recommended publications
  • Star Asterias Rubens
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425292; this version posted January 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. How to build a sea star V9 The development and neuronal complexity of bipinnaria larvae of the sea star Asterias rubens Hugh F. Carter*, †, Jeffrey R. Thompson*, ‡, Maurice R. Elphick§, Paola Oliveri*, ‡, 1 The first two authors contributed equally to this work *Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom †Department of Life Sciences, Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, United Kingdom ‡UCL Centre for Life’s Origins and Evolution (CLOE), University College London, Darwin Building, Gower Street, London WC1E 6BT, United Kingdom §School of Biological & Chemical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom 1Corresponding Author: [email protected], Office: (+44) 020-767 93719, Fax: (+44) 020 7679 7193 Keywords: indirect development, neuropeptides, muscle, echinoderms, neurogenesis 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.04.425292; this version posted January 4, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. How to build a sea star V9 Abstract Free-swimming planktonic larvae are a key stage in the development of many marine phyla, and studies of these organisms have contributed to our understanding of major genetic and evolutionary processes.
    [Show full text]
  • The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328063815 The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS Article · January 2018 CITATIONS READS 0 6 5 authors, including: Ferdinard Olisa Megwalu World Fisheries University @Pukyong National University (wfu.pknu.ackr) 3 PUBLICATIONS 0 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Population Dynamics. View project All content following this page was uploaded by Ferdinard Olisa Megwalu on 04 October 2018. The user has requested enhancement of the downloaded file. Review Article Published: 17 Sep, 2018 SF Journal of Biotechnology and Biomedical Engineering The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization Rahman MA1*, Molla MHR1, Megwalu FO1, Asare OE1, Tchoundi A1, Shaikh MM1 and Jahan B2 1World Fisheries University Pilot Programme, Pukyong National University (PKNU), Nam-gu, Busan, Korea 2Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Abstract The Sea stars (Asteroidea: Echinodermata) are comprising of a large and diverse groups of sessile marine invertebrates having seven extant orders such as Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida and Velatida and two extinct one such as Calliasterellidae and Trichasteropsida. Around 1,500 living species of starfish occur on the seabed in all the world's oceans, from the tropics to subzero polar waters. They are found from the intertidal zone down to abyssal depths, 6,000m below the surface. Starfish typically have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, and is covered with overlapping plates.
    [Show full text]
  • A Revision of Ophidiaster Davidsoni
    Foss. Rec., 23, 141–149, 2020 https://doi.org/10.5194/fr-23-141-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. A revision of Ophidiaster davidsoni de Loriol and Pellat 1874 from the Tithonian of Boulogne (France) and its transfer from the Valvatacea to the new forcipulatacean genus Psammaster gen. nov. Marine Fau1, Loïc Villier2, Timothy A. M. Ewin3, and Andrew S. Gale3,4 1Department of Geosciences, University of Fribourg, Chemin du Musée 6, 1700 Fribourg, Switzerland 2Centre de Recherche en Paléontologie – Paris, Sorbonne Université, 4 place Jussieu, 75005 Paris, France 3Department of Earth Sciences, The Natural History Museum London, Cromwell Road, South Kensington, London, UK, SW7 5BD, UK 4School of Earth and Environmental Sciences, University of Portsmouth, Burnaby Building, Burnaby Road, Portsmouth, PO13QL, UK Correspondence: Marine Fau ([email protected]) Received: 20 April 2020 – Revised: 20 June 2020 – Accepted: 23 June 2020 – Published: 28 July 2020 Abstract. Forcipulatacea is one of the three major groups 1 Introduction of extant sea stars (Asteroidea: Echinodermata), composed of 400 extant species, but only known from fewer than 25 Asteroidea (starfish or sea stars) is one of the most diverse fossil species. Despite unequivocal members being recog- echinoderm clades with approximately 1900 extant species nized in the early Jurassic, the evolutionary history of this (Mah and Blake, 2012) and around 600 extinct species (Vil- group is still the subject of debate. Thus, the identifica- lier, 2006) However, the fossil record of Asteroidea is rather tion of any new fossil representatives is significant. We here scarce (e.g.
    [Show full text]
  • 15 Marine Discovery Ecology 450 Intertidal Stories: Research At
    Marine Discovery Ecology 450 Copyright Marine Discovery, University of Arizona Ecol 450 Printed from http://www.tolweb.org Intertidal Stories: Research at Puerto Penasco What maintains different morphs (polymorphism) within a species? Two examples: Bent and straight Chthamalus barnacles and the angelic tooth snail Acanthina angelica is a predatory gastropod that specializes on barnacles. The snail has an apertural spine (“tooth”) on the opening (aperture) of the shell, which it uses to wedge open barnacle tests in order to eat the animal inside. Newly-settled Chthamalus juveniles react to mucus from Acanthina (which it secretes as it travels) by developing a bent test. Bent tests are much more difficult for Acanthina to wedge open (Lively 1986). The snail preys upon two different species of barnacles in Puerto Penasco’s intertidal zone (Tetraclita stalactifera and Chthamalus anisopoma). The snail can actually adjust the length of the spine depending upon what species of barnacle it is feeding (Yensen 1979). Reproductive strategies and alternative male forms in the bread crumb sponge isopod An unusual example of a reproductive strategy occurs in the Puerto Penasco intertidal zone in the isopod Paracerceis sculpta that lives in the breadcrumb sponge Leucetta losangelensis (Shuster 1989). The isopod uses the sponge as a home and courtship site. Three distinct male morphs (body forms) exist in this isopod species. The largest (alpha males) guard the opening of the sponge’s excurrent pores, which house a harem of reproductive females. The alpha male sits in the pore opening with his head facing the inside of the hole and his spiny hind end exposed.
    [Show full text]
  • Density, Spatial Distribution and Mortality Rate of the Sea Urchin Diadema Mexicanum (Diadematoida: Diadematidae) at Two Reefs of Bahías De Huatulco, Oaxaca, Mexico
    Density, spatial distribution and mortality rate of the sea urchin Diadema mexicanum (Diadematoida: Diadematidae) at two reefs of Bahías de Huatulco, Oaxaca, Mexico Julia Patricia Díaz-Martínez1, Francisco Benítez-Villalobos2 & Antonio López-Serrano2 1. División de Estudios de Posgrado, Universidad del Mar (UMAR), Campus Puerto Ángel, Distrito de San Pedro Pochutla, Puerto Ángel, Oaxaca, México.C.P. 70902; [email protected] 2. Instituto de Recursos, Universidad del Mar (UMAR), Campus Puerto Ángel, Distrito de San Pedro Pochutla, Puerto Ángel, Oaxaca, México.C.P. 70902; [email protected], [email protected] Received 09-VI-2014. Corrected 14-X-2014. Accepted 17-XII-2014. Abstract: Diadema mexicanum, a conspicuous inhabitant along the Mexican Pacific coast, is a key species for the dynamics of coral reefs; nevertheless, studies on population dynamics for this species are scarce. Monthly sampling was carried out between April 2008 and March 2009 at Isla Montosa and La Entrega, Oaxaca, Mexico using belt transects. Population density was estimated as well as abundance using Zippin’s model. The relation- ship of density with sea-bottom temperature, salinity, pH, and pluvial precipitation was analyzed using a step by step multiple regression analysis. Spatial distribution was analyzed using Morisita’s, Poisson and negative binomial models. Natural mortality rate was calculated using modified Berry’s model. Mean density was 3.4 ± 0.66 ind·m-2 in La Entrega and 1.2 ± 0.4 ind·m-2 in Isla Montosa. Abundance of D. mexicanum in La Entrega was 12166 ± 25 individuals and 2675 ± 33 individuals in Isla Montosa. In Isla Montosa there was a positive relationship of density with salinity and negative with sea-bottom temperature, whereas in La Entrega there was not a significant relationship of density with any recorded environmental variable.
    [Show full text]
  • Redalyc.Equinodermos (Echinodermata) Del Golfo De
    Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Solís-Marín, Francisco A.; Laguarda-Figueras, Alfredo; Durán-González, Alicia; Gust Ahearn, Cynthia; Torres Vega, Juan Equinodermos (Echinodermata) del Golfo de California, México Revista de Biología Tropical, vol. 53, núm. 3, -diciembre, 2005, pp. 123-137 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Disponible en: http://www.redalyc.org/articulo.oa?id=44919815007 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Equinodermos (Echinodermata) del Golfo de California, México Francisco A. Solís-Marín1, Alfredo Laguarda-Figueras1, Alicia Durán-González1, Cynthia Gust Ahearn2 & Juan Torres Vega1 1 Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM). Apdo. Post. 70-305, México, D. F. 04510, México; [email protected]. mx; [email protected]; [email protected]; [email protected] 2 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC. 20560. USA; [email protected] Recibido 14-VI-2004. Corregido 09-XII-2004. Aceptado 17-V-2005. Abstract: Echinoderms (Echinodermata) from the Gulf of California, Mexico. A systematic list of the echi- noderms of the Gulf of California, based on museum specimens of the Colección Nacional de Equinodermos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México and the National Museum of Natural History, Smithsonian Institution, Washington, D.C.
    [Show full text]
  • Marine Biodiversity of an Eastern Tropical Pacific Oceanic Island, Isla Del Coco, Costa Rica
    Marine biodiversity of an Eastern Tropical Pacific oceanic island, Isla del Coco, Costa Rica Jorge Cortés1, 2 1. Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Ciudad de la Investigación, Universidad de Costa Rica, San Pedro, 11501-2060 San José, Costa Rica; [email protected] 2. Escuela de Biología, Universidad de Costa Rica, San Pedro, 11501-2060 San José, Costa Rica Received 05-I-2012. Corrected 01-VIII-2012. Accepted 24-IX-2012. Abstract: Isla del Coco (also known as Cocos Island) is an oceanic island in the Eastern Tropical Pacific; it is part of the largest national park of Costa Rica and a UNESCO World Heritage Site. The island has been visited since the 16th Century due to its abundance of freshwater and wood. Marine biodiversity studies of the island started in the late 19th Century, with an intense period of research in the 1930’s, and again from the mid 1990’s to the present. The information is scattered and, in some cases, in old publications that are difficult to access. Here I have compiled published records of the marine organisms of the island. At least 1688 species are recorded, with the gastropods (383 species), bony fishes (354 spp.) and crustaceans (at least 263 spp.) being the most species-rich groups; 45 species are endemic to Isla del Coco National Park (2.7% of the total). The number of species per kilometer of coastline and by square kilometer of seabed shallower than 200m deep are the highest recorded in the Eastern Tropical Pacific. Although the marine biodiversity of Isla del Coco is relatively well known, there are regions that need more exploration, for example, the south side, the pelagic environments, and deeper waters.
    [Show full text]
  • Chec List Marine and Coastal Biodiversity of Oaxaca, Mexico
    Check List 9(2): 329–390, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution ǡ PECIES * S ǤǦ ǡÀ ÀǦǡ Ǧ ǡ OF ×±×Ǧ±ǡ ÀǦǡ Ǧ ǡ ISTS María Torres-Huerta, Alberto Montoya-Márquez and Norma A. Barrientos-Luján L ǡ ǡǡǡǤͶ͹ǡ͹ͲͻͲʹǡǡ ǡ ȗ ǤǦǣ[email protected] ćĘęėĆĈęǣ ϐ Ǣ ǡǡ ϐǤǡ ǤǣͳȌ ǢʹȌ Ǥͳͻͺ ǯϐ ʹǡͳͷ͹ ǡͳͷ ȋǡȌǤǡϐ ǡ Ǥǡϐ Ǣ ǡʹͶʹȋͳͳǤʹΨȌ ǡ groups (annelids, crustaceans and mollusks) represent about 44.0% (949 species) of all species recorded, while the ͹͸ʹ ȋ͵ͷǤ͵ΨȌǤǡ not yet been recorded on the Oaxaca coast, including some platyhelminthes, rotifers, nematodes, oligochaetes, sipunculids, echiurans, tardigrades, pycnogonids, some crustaceans, brachiopods, chaetognaths, ascidians and cephalochordates. The ϐϐǢ Ǥ ēęėĔĉĚĈęĎĔē Madrigal and Andreu-Sánchez 2010; Jarquín-González The state of Oaxaca in southern Mexico (Figure 1) is and García-Madrigal 2010), mollusks (Rodríguez-Palacios known to harbor the highest continental faunistic and et al. 1988; Holguín-Quiñones and González-Pedraza ϐ ȋ Ǧ± et al. 1989; de León-Herrera 2000; Ramírez-González and ʹͲͲͶȌǤ Ǧ Barrientos-Luján 2007; Zamorano et al. 2008, 2010; Ríos- ǡ Jara et al. 2009; Reyes-Gómez et al. 2010), echinoderms (Benítez-Villalobos 2001; Zamorano et al. 2006; Benítez- ϐ Villalobos et alǤʹͲͲͺȌǡϐȋͳͻ͹ͻǢǦ Ǥ ǡ 1982; Tapia-García et alǤ ͳͻͻͷǢ ͳͻͻͺǢ Ǧ ϐ (cf. García-Mendoza et al. 2004). ǡ ǡ studies among taxonomic groups are not homogeneous: longer than others. Some of the main taxonomic groups ȋ ÀʹͲͲʹǢǦʹͲͲ͵ǢǦet al.
    [Show full text]
  • Echinoderm Research and Diversity in Latin America
    Echinoderm Research and Diversity in Latin America Bearbeitet von Juan José Alvarado, Francisco Alonso Solis-Marin 1. Auflage 2012. Buch. XVII, 658 S. Hardcover ISBN 978 3 642 20050 2 Format (B x L): 15,5 x 23,5 cm Gewicht: 1239 g Weitere Fachgebiete > Chemie, Biowissenschaften, Agrarwissenschaften > Biowissenschaften allgemein > Ökologie Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 The Echinoderms of Mexico: Biodiversity, Distribution and Current State of Knowledge Francisco A. Solís-Marín, Magali B. I. Honey-Escandón, M. D. Herrero-Perezrul, Francisco Benitez-Villalobos, Julia P. Díaz-Martínez, Blanca E. Buitrón-Sánchez, Julio S. Palleiro-Nayar and Alicia Durán-González F. A. Solís-Marín (&) Á M. B. I. Honey-Escandón Á A. Durán-González Laboratorio de Sistemática y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología (ICML), Colección Nacional de Equinodermos ‘‘Ma. E. Caso Muñoz’’, Universidad Nacional Autónoma de México (UNAM), Apdo. Post. 70-305, 04510, México, D.F., México e-mail: [email protected] A. Durán-González e-mail: [email protected] M. B. I. Honey-Escandón Posgrado en Ciencias del Mar y Limnología, Instituto de Ciencias del Mar y Limnología (ICML), UNAM, Apdo. Post. 70-305, 04510, México, D.F., México e-mail: [email protected] M. D. Herrero-Perezrul Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Ave.
    [Show full text]
  • Glossary for the Echinodermata
    February 2011 Christina Ball ©RBCM Phil Lambert GLOSSARY FOR THE ECHINODERMATA OVERVIEW The echinoderms are a globally distributed and morphologically diverse group of invertebrates whose history dates back 500 million years (Lambert 1997; Lambert 2000; Lambert and Austin 2007; Pearse et al. 2007). The group includes the sea stars (Asteroidea), sea cucumbers (Holothuroidea), sea lilies and feather stars (Crinoidea), the sea urchins, heart urchins and sand dollars (Echinoidea) and the brittle stars (Ophiuroidea). In some areas the group comprises up to 95% of the megafaunal biomass (Miller and Pawson 1990). Today some 13,000 species occur around the world (Pearse et al. 2007). Of those 13,000 species 194 are known to occur in British Columbia (Lambert and Boutillier, in press). The echinoderms are a group of almost exclusively marine organisms with the few exceptions living in brackish water (Brusca and Brusca 1990). Almost all of the echinoderms are benthic, meaning that they live on or in the substrate. There are a few exceptions to this rule. For example several holothuroids (sea cucumbers) are capable of swimming, sometimes hundreds of meters above the sea floor (Miller and Pawson 1990). One species of holothuroid, Rynkatorpa pawsoni, lives as a commensal with a deep-sea angler fish (Gigantactis macronema) (Martin 1969). While the echinoderms are a diverse group, they do share four unique features that define the group. These are pentaradial symmetry, an endoskeleton made up of ossicles, a water vascular system and mutable collagenous tissue. While larval echinoderms are bilaterally symmetrical the adults are pentaradially symmetrical (Brusca and Brusca 1990). All echinoderms have an endoskeleton made of calcareous ossicles (figure 1).
    [Show full text]
  • The 1940 Ricketts-Steinbeck Sea of Cortez Expedition: an 80-Year Retrospective Guest Edited by Richard C
    JOURNAL OF THE SOUTHWEST Volume 62, Number 2 Summer 2020 Edited by Jeffrey M. Banister THE SOUTHWEST CENTER UNIVERSITY OF ARIZONA TUCSON Associate Editors EMMA PÉREZ Production MANUSCRIPT EDITING: DEBRA MAKAY DESIGN & TYPOGRAPHY: ALENE RANDKLEV West Press, Tucson, AZ COVER DESIGN: CHRISTINE HUBBARD Editorial Advisors LARRY EVERS ERIC PERRAMOND University of Arizona Colorado College MICHAEL BRESCIA LUCERO RADONIC University of Arizona Michigan State University JACQUES GALINIER SYLVIA RODRIGUEZ CNRS, Université de Paris X University of New Mexico CURTIS M. HINSLEY THOMAS E. SHERIDAN Northern Arizona University University of Arizona MARIO MATERASSI CHARLES TATUM Università degli Studi di Firenze University of Arizona CAROLYN O’MEARA FRANCISCO MANZO TAYLOR Universidad Nacional Autónoma Hermosillo, Sonora de México RAYMOND H. THOMPSON MARTIN PADGET University of Arizona University of Wales, Aberystwyth Journal of the Southwest is published in association with the Consortium for Southwest Studies: Austin College, Colorado College, Fort Lewis College, Southern Methodist University, Texas State University, University of Arizona, University of New Mexico, and University of Texas at Arlington. Contents VOLUME 62, NUMBER 2, SUmmer 2020 THE 1940 RICKETTS-STEINBECK SEA OF CORTEZ EXPEDITION: AN 80-YEAR RETROSPECTIVE GUesT EDITed BY RIchard C. BRUsca DedIcaTed TO The WesTerN FLYer FOUNdaTION Publishing the Southwest RIchard C. BRUsca 215 The 1940 Ricketts-Steinbeck Sea of Cortez Expedition, with Annotated Lists of Species and Collection Sites RIchard C. BRUsca 218 The Making of a Marine Biologist: Ed Ricketts RIchard C. BRUsca AND T. LINdseY HasKIN 335 Ed Ricketts: From Pacific Tides to the Sea of Cortez DONald G. Kohrs 373 The Tangled Journey of the Western Flyer: The Boat and Its Fisheries KEVIN M.
    [Show full text]
  • 34.1. Cretaceous and Quaternary
    34. SILICEOUS MICROFOSSILS 34.1 CRETACEOUS AND QUATERNARY RADIOLARIA IN DEEP SEA SEDIMENTS FROM THE NORTHWEST ATLANTIC OCEAN AND MEDITERRANEAN SEA Paulian Dumitrica, Geological Institute, Bucharest, Romania INTRODUCTION Albian Radiolaria. Although pyritized, the Albian radio- larians are well preserved. The replacement of silica by Radiolaria, and siliceous microfossils generally (see the pyrite has preserved the finest details of the ornamentation reports on silicoflagellates, ebridians, diatoms and phyto- (see Plates 1-4) and all other distinctive morphological litharia) were encountered rather rarely in the cores features so that their identification is quite possible by recovered during Leg 13 of the Deep Sea Drilling Project. means of the scanning electron microscope. The presence of radiolarians in a more or less significant The Albian assemblage is dominated by large numbers of quantity was recorded in only a few cores from a few of the spherical forms with a smooth, rough, polygonal or fifteen drilling sites. Samples reported on here are from the tuberculate surface. This is followed by conical tower- following five sites: shaped forms, frequently with costate or tuberculate Site 120 - Gorringe Bank, north slope; 36° 41.39'N, surface. A superficial examination thus gives a false 11° 25.94'W; water depth 1711 meters. impression of the systematic composition of the Site 121 - Alboran Sea, 36° 09.65'N. 04° 22.43'W; assemblage. It would appear to be particularly formed of water depth 1163 meters. spumellarians, and subordinately of nassellarians. However, Site 127 — Hellenic Trench, northeastern margin; 35° a thorough examination proves that most spherical forms 43.90'N, 22° 29.81 'E; water depth 4654 meters.
    [Show full text]