Isogonal Conjugates in a Tetrahedron
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Point of Concurrency the Three Perpendicular Bisectors of a Triangle Intersect at a Single Point
3.1 Special Segments and Centers of Classifications of Triangles: Triangles By Side: 1. Equilateral: A triangle with three I CAN... congruent sides. Define and recognize perpendicular bisectors, angle bisectors, medians, 2. Isosceles: A triangle with at least and altitudes. two congruent sides. 3. Scalene: A triangle with three sides Define and recognize points of having different lengths. (no sides are concurrency. congruent) Jul 249:36 AM Jul 249:36 AM Classifications of Triangles: Special Segments and Centers in Triangles By angle A Perpendicular Bisector is a segment or line 1. Acute: A triangle with three acute that passes through the midpoint of a side and angles. is perpendicular to that side. 2. Obtuse: A triangle with one obtuse angle. 3. Right: A triangle with one right angle 4. Equiangular: A triangle with three congruent angles Jul 249:36 AM Jul 249:36 AM Point of Concurrency The three perpendicular bisectors of a triangle intersect at a single point. Two lines intersect at a point. The point of When three or more lines intersect at the concurrency of the same point, it is called a "Point of perpendicular Concurrency." bisectors is called the circumcenter. Jul 249:36 AM Jul 249:36 AM 1 Circumcenter Properties An angle bisector is a segment that divides 1. The circumcenter is an angle into two congruent angles. the center of the circumscribed circle. BD is an angle bisector. 2. The circumcenter is equidistant to each of the triangles vertices. m∠ABD= m∠DBC Jul 249:36 AM Jul 249:36 AM The three angle bisectors of a triangle Incenter properties intersect at a single point. -
Median and Altitude of a Triangle Goal: • to Use Properties of the Medians
Median and Altitude of a Triangle Goal: • To use properties of the medians of a triangle. • To use properties of the altitudes of a triangle. Median of a Triangle Median of a Triangle – a segment whose endpoints are the vertex of a triangle and the midpoint of the opposite side. Vertex Median Median of an Obtuse Triangle A D Point of concurrency “P” or centroid E P C B F Medians of a Triangle The medians of a triangle intersect at a point that is two-thirds of the distance from each vertex to the midpoint of the opposite side. A D If P is the centroid of ABC, then AP=2 AF E 3 P C CP=22CE and BP= BD B F 33 Example - Medians of a Triangle P is the centroid of ABC. PF 5 Find AF and AP A D E P C B F 5 Median of an Acute Triangle A Point of concurrency “P” or centroid E D P C B F Median of a Right Triangle A F Point of concurrency “P” or centroid E P C B D The three medians of an obtuse, acute, and a right triangle always meet inside the triangle. Altitude of a Triangle Altitude of a triangle – the perpendicular segment from the vertex to the opposite side or to the line that contains the opposite side A altitude C B Altitude of an Acute Triangle A Point of concurrency “P” or orthocenter P C B The point of concurrency called the orthocenter lies inside the triangle. Altitude of a Right Triangle The two legs are the altitudes A The point of concurrency called the orthocenter lies on the triangle. -
Exploring Some Concurrencies in the Tetrahedron
Exploring some concurrencies in the tetrahedron Consider the corresponding analogues of perpendicular bisectors, angle bisectors, medians and altitudes of a triangle for a tetrahedron, and investigate which of these are also concurrent for a tetrahedron. If true, prove it; if not, provide a counter-example. Let us start with following useful assumption (stated without proof) for 3D: Three (non-parallel) planes meet in a point. (It is easy to see this in a rectangular room where two walls and the ceiling meet perpendicularly in a point.) Definition 1: The perpendicular edge bisector is the A generalisation to 3D of the concept of a perpendicular bisector. For example, the perpendicular edge bisector of AB is the plane through the midpoint of AB, and perpendicular D to it. Or equivalently, it is the set of points equidistant from A and B. B Theorem 1: The six perpendicular edge bisectors of a C tetrahedron all meet at the circumcentre. Proof: Let S be the intersection of the three perpendicular edge bisectors of AB, BC, CD. Therefore SA = SB = SC = SD. Therefore S must lie on all 6 perpendicular edge bisectors, and the sphere, centre S and radius SA, goes through all four vertices. Definition 2: Let a, b, c, d denote the four faces of a A tetrahedron ABCD. The face angle bisector of ab is the plane through CD bisecting the angle between b the faces a, b. It is therefore also the set of points equidistant from a and b. D a Theorem 2: The six face angle bisectors of a B tetrahedron all meet at the incentre. -
Cevians, Symmedians, and Excircles Cevian Cevian Triangle & Circle
10/5/2011 Cevians, Symmedians, and Excircles MA 341 – Topics in Geometry Lecture 16 Cevian A cevian is a line segment which joins a vertex of a triangle with a point on the opposite side (or its extension). B cevian C A D 05-Oct-2011 MA 341 001 2 Cevian Triangle & Circle • Pick P in the interior of ∆ABC • Draw cevians from each vertex through P to the opposite side • Gives set of three intersecting cevians AA’, BB’, and CC’ with respect to that point. • The triangle ∆A’B’C’ is known as the cevian triangle of ∆ABC with respect to P • Circumcircle of ∆A’B’C’ is known as the evian circle with respect to P. 05-Oct-2011 MA 341 001 3 1 10/5/2011 Cevian circle Cevian triangle 05-Oct-2011 MA 341 001 4 Cevians In ∆ABC examples of cevians are: medians – cevian point = G perpendicular bisectors – cevian point = O angle bisectors – cevian point = I (incenter) altitudes – cevian point = H Ceva’s Theorem deals with concurrence of any set of cevians. 05-Oct-2011 MA 341 001 5 Gergonne Point In ∆ABC find the incircle and points of tangency of incircle with sides of ∆ABC. Known as contact triangle 05-Oct-2011 MA 341 001 6 2 10/5/2011 Gergonne Point These cevians are concurrent! Why? Recall that AE=AF, BD=BF, and CD=CE Ge 05-Oct-2011 MA 341 001 7 Gergonne Point The point is called the Gergonne point, Ge. Ge 05-Oct-2011 MA 341 001 8 Gergonne Point Draw lines parallel to sides of contact triangle through Ge. -
The Isogonal Tripolar Conic
Forum Geometricorum b Volume 1 (2001) 33–42. bbb FORUM GEOM The Isogonal Tripolar Conic Cyril F. Parry Abstract. In trilinear coordinates with respect to a given triangle ABC,we define the isogonal tripolar of a point P (p, q, r) to be the line p: pα+qβ+rγ = 0. We construct a unique conic Φ, called the isogonal tripolar conic, with respect to which p is the polar of P for all P . Although the conic is imaginary, it has a real center and real axes coinciding with the center and axes of the real orthic inconic. Since ABC is self-conjugate with respect to Φ, the imaginary conic is harmonically related to every circumconic and inconic of ABC. In particular, Φ is the reciprocal conic of the circumcircle and Steiner’s inscribed ellipse. We also construct an analogous isotomic tripolar conic Ψ by working with barycentric coordinates. 1. Trilinear coordinates For any point P in the plane ABC, we can locate the right projections of P on the sides of triangle ABC at P1, P2, P3 and measure the distances PP1, PP2 and PP3. If the distances are directed, i.e., measured positively in the direction of −→ −→ each vertex to the opposite side, we can identify the distances α =PP1, β =PP2, −→ γ =PP3 (Figure 1) such that aα + bβ + cγ =2 where a, b, c, are the side lengths and area of triangle ABC. This areal equation for all positions of P means that the ratio of the distances is sufficient to define the trilinear coordinates of P (α, β, γ) where α : β : γ = α : β : γ. -
Midpoints and Medians in Triangles
MPM1D Midpoints and Medians in Triangles Midpoint: B A C 1) Use a ruler to create a midpoint for AB. Label it X. 2) Use a ruler to create a midpoint for AC. Label it Y. 3) Join the points X and Y with a line. 4) Measure all the sides. Write them on the diagram. Q: What do you notice about the lenGth of XY and BC? Q: What do you notice about the direction of the lines XY and BC? Q: How could we prove this? The line seGments joining the midpoint of two sides of a triangle is _________________________ the third side and ___________________________ . Recall: The area of a trianGle is: � = Median: A line from one vertex to the midpoint of the opposite side. A B C 1) Draw the midpoint of BC, label it M 2) Draw the median from A to BC 3) Calculate the area of rABM and rAMC (MeasurinG any lenGths you need to find the area) Medians of a trianGle ________ its area. Example 2 The area of rXYZ is 48 ��(. A median is drawn from X, and the midpoint of the opposite side is labelled M. What is the area of rXYM? 1. Find the length of line segment MN in each triangle. a) b) c) d) 2. Find the lengths of line segments AD and DE in each triangle. a) b) c) d) 3. The area of rABC is 10 cm2. Calculate the area of each triangle. a) rABD b) rADC 4. Calculate the area of each triangle given the area of rMNQ is 12 cm2. -
The Euler Line in Non-Euclidean Geometry
California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2003 The Euler Line in non-Euclidean geometry Elena Strzheletska Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Mathematics Commons Recommended Citation Strzheletska, Elena, "The Euler Line in non-Euclidean geometry" (2003). Theses Digitization Project. 2443. https://scholarworks.lib.csusb.edu/etd-project/2443 This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. THE EULER LINE IN NON-EUCLIDEAN GEOMETRY A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Elena Strzheletska December 2003 THE EULER LINE IN NON-EUCLIDEAN GEOMETRY A Thesis Presented to the Faculty of California State University, San Bernardino by Elena Strzheletska December 2003 Approved by: Robert Stein, Committee Member Susan Addington, Committee Member Peter Williams, Chair Terry Hallett, Department of Mathematics Graduate Coordinator Department of Mathematics ABSTRACT In Euclidean geometry, the circumcenter and the centroid of a nonequilateral triangle determine a line called the Euler line. The orthocenter of the triangle, the point of intersection of the altitudes, also belongs to this line. The main purpose of this thesis is to explore the conditions of the existence and the properties of the Euler line of a triangle in the hyperbolic plane. -
Lemmas in Euclidean Geometry1 Yufei Zhao [email protected]
IMO Training 2007 Lemmas in Euclidean Geometry Yufei Zhao Lemmas in Euclidean Geometry1 Yufei Zhao [email protected] 1. Construction of the symmedian. Let ABC be a triangle and Γ its circumcircle. Let the tangent to Γ at B and C meet at D. Then AD coincides with a symmedian of △ABC. (The symmedian is the reflection of the median across the angle bisector, all through the same vertex.) A A A O B C M B B F C E M' C P D D Q D We give three proofs. The first proof is a straightforward computation using Sine Law. The second proof uses similar triangles. The third proof uses projective geometry. First proof. Let the reflection of AD across the angle bisector of ∠BAC meet BC at M ′. Then ′ ′ sin ∠BAM ′ ′ BM AM sin ∠ABC sin ∠BAM sin ∠ABD sin ∠CAD sin ∠ABD CD AD ′ = ′ sin ∠CAM ′ = ∠ ∠ ′ = ∠ ∠ = = 1 M C AM sin ∠ACB sin ACD sin CAM sin ACD sin BAD AD BD Therefore, AM ′ is the median, and thus AD is the symmedian. Second proof. Let O be the circumcenter of ABC and let ω be the circle centered at D with radius DB. Let lines AB and AC meet ω at P and Q, respectively. Since ∠PBQ = ∠BQC + ∠BAC = 1 ∠ ∠ ◦ 2 ( BDC + DOC) = 90 , we see that PQ is a diameter of ω and hence passes through D. Since ∠ABC = ∠AQP and ∠ACB = ∠AP Q, we see that triangles ABC and AQP are similar. If M is the midpoint of BC, noting that D is the midpoint of QP , the similarity implies that ∠BAM = ∠QAD, from which the result follows. -
Degree of Triangle Centers and a Generalization of the Euler Line
Beitr¨agezur Algebra und Geometrie Contributions to Algebra and Geometry Volume 51 (2010), No. 1, 63-89. Degree of Triangle Centers and a Generalization of the Euler Line Yoshio Agaoka Department of Mathematics, Graduate School of Science Hiroshima University, Higashi-Hiroshima 739–8521, Japan e-mail: [email protected] Abstract. We introduce a concept “degree of triangle centers”, and give a formula expressing the degree of triangle centers on generalized Euler lines. This generalizes the well known 2 : 1 point configuration on the Euler line. We also introduce a natural family of triangle centers based on the Ceva conjugate and the isotomic conjugate. This family contains many famous triangle centers, and we conjecture that the de- gree of triangle centers in this family always takes the form (−2)k for some k ∈ Z. MSC 2000: 51M05 (primary), 51A20 (secondary) Keywords: triangle center, degree of triangle center, Euler line, Nagel line, Ceva conjugate, isotomic conjugate Introduction In this paper we present a new method to study triangle centers in a systematic way. Concerning triangle centers, there already exist tremendous amount of stud- ies and data, among others Kimberling’s excellent book and homepage [32], [36], and also various related problems from elementary geometry are discussed in the surveys and books [4], [7], [9], [12], [23], [26], [41], [50], [51], [52]. In this paper we introduce a concept “degree of triangle centers”, and by using it, we clarify the mutual relation of centers on generalized Euler lines (Proposition 1, Theorem 2). Here the term “generalized Euler line” means a line connecting the centroid G and a given triangle center P , and on this line an infinite number of centers lie in a fixed order, which are successively constructed from the initial center P 0138-4821/93 $ 2.50 c 2010 Heldermann Verlag 64 Y. -
Chapter 10 Isotomic and Isogonal Conjugates
Chapter 10 Isotomic and isogonal conjugates 10.1 Isotomic conjugates The Gergonne and Nagel points are examples of isotomic conjugates. Two points P and Q (not on any of the side lines of the reference triangle) are said to be isotomic conjugates if their respective traces are symmetric with respect to the midpoints of the corresponding sides. Thus, BX = X′C, CY = Y ′A, AZ = Z′B. B X′ Z X Z′ P P • C A Y Y ′ We shall denote the isotomic conjugate of P by P •. If P =(x : y : z), then 1 1 1 P • = : : =(yz : zx : xy). x y z 320 Isotomic and isogonal conjugates 10.1.1 The Gergonne and Nagel points 1 1 1 Ge = s a : s b : s c , Na =(s a : s : s c). − − − − − − Ib A Ic Z′ Y Y Z I ′ Na Ge B C X X′ Ia 10.1 Isotomic conjugates 321 10.1.2 The isotomic conjugate of the orthocenter The isotomic conjugate of the orthocenter is the point 2 2 2 2 2 2 2 2 2 H• =(b + c a : c + a b : a + b c ). − − − Its traces are the pedals of the deLongchamps point Lo, the reflection of H in O. A Z′ L Y o O Y ′ H• Z H B C X X′ Exercise 1. Let XYZ be the cevian triangle of H•. Show that the lines joining X, Y , Z to the midpoints of the corresponding altitudes are concurrent. What is the common point? 1 2. Show that H• is the perspector of the triangle of reflections of the centroid G in the sidelines of the medial triangle. -
January 2009
How Euler Did It by Ed Sandifer The Euler line January 2009 A hundred years ago, if you'd asked people why Leonhard Euler was famous, those who had an answer would very likely have mentioned his discovery of the Euler line, the remarkable property that the orthocenter, the center of gravity and the circumcenter of a triangle are collinear. But times change, and so do fashions and the standards by which we interpret history. At the end of the nineteenth century, triangle geometry was regarded as one of the crowning achievements of mathematics, and the Euler line was one of its finest jewels. Mathematicians who neglected triangle geometry to study exotic new fields like logic, abstract algebra or topology were taking brave risks to their professional careers. Now it would be the aspiring triangle geometer taking the risks. Still, the late H. S. M. Coxeter made a long and distinguished career without straying far from the world of triangles, and he introduced hundreds of others to their delightful properties, especially the Euler line. This month, we look at how Euler discovered the Euler line and what he was trying to do when he discovered it. We will find that the discovery was rather incidental to the problem he was trying to solve, and that the problem itself was otherwise rather unimportant. This brings us to the 325th paper in Gustav Eneström's index of Euler's published work, "Solutio facilis problematum quorumdam geometricorum difficillimorum" (An easy solution to a very difficult problem in geometry) [E325]. Euler wrote the paper in 1763 when he lived in Berlin and worked at the academy of Frederick the Great. -
Volume 3 2003
FORUM GEOMETRICORUM A Journal on Classical Euclidean Geometry and Related Areas published by Department of Mathematical Sciences Florida Atlantic University b bbb FORUM GEOM Volume 3 2003 http://forumgeom.fau.edu ISSN 1534-1178 Editorial Board Advisors: John H. Conway Princeton, New Jersey, USA Julio Gonzalez Cabillon Montevideo, Uruguay Richard Guy Calgary, Alberta, Canada George Kapetis Thessaloniki, Greece Clark Kimberling Evansville, Indiana, USA Kee Yuen Lam Vancouver, British Columbia, Canada Tsit Yuen Lam Berkeley, California, USA Fred Richman Boca Raton, Florida, USA Editor-in-chief: Paul Yiu Boca Raton, Florida, USA Editors: Clayton Dodge Orono, Maine, USA Roland Eddy St. John’s, Newfoundland, Canada Jean-Pierre Ehrmann Paris, France Lawrence Evans La Grange, Illinois, USA Chris Fisher Regina, Saskatchewan, Canada Rudolf Fritsch Munich, Germany Bernard Gibert St Etiene, France Antreas P. Hatzipolakis Athens, Greece Michael Lambrou Crete, Greece Floor van Lamoen Goes, Netherlands Fred Pui Fai Leung Singapore, Singapore Daniel B. Shapiro Columbus, Ohio, USA Steve Sigur Atlanta, Georgia, USA Man Keung Siu Hong Kong, China Peter Woo La Mirada, California, USA Technical Editors: Yuandan Lin Boca Raton, Florida, USA Aaron Meyerowitz Boca Raton, Florida, USA Xiao-Dong Zhang Boca Raton, Florida, USA Consultants: Frederick Hoffman Boca Raton, Floirda, USA Stephen Locke Boca Raton, Florida, USA Heinrich Niederhausen Boca Raton, Florida, USA Table of Contents Bernard Gibert, Orthocorrespondence and orthopivotal cubics,1 Alexei Myakishev,