Trial Sequential Analysis: Novel Approach for Meta-Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Trial Sequential Analysis: Novel Approach for Meta-Analysis Anesth Pain Med 2021;16:138-150 https://doi.org/10.17085/apm.21038 Review pISSN 1975-5171 • eISSN 2383-7977 Trial sequential analysis: novel approach for meta-analysis Hyun Kang Received April 19, 2021 Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Accepted April 25, 2021 Medicine, Seoul, Korea Systematic reviews and meta-analyses rank the highest in the evidence hierarchy. However, they still have the risk of spurious results because they include too few studies and partici- pants. The use of trial sequential analysis (TSA) has increased recently, providing more infor- mation on the precision and uncertainty of meta-analysis results. This makes it a powerful tool for clinicians to assess the conclusiveness of meta-analysis. TSA provides monitoring boundaries or futility boundaries, helping clinicians prevent unnecessary trials. The use and Corresponding author Hyun Kang, M.D., Ph.D. interpretation of TSA should be based on an understanding of the principles and assump- Department of Anesthesiology and tions behind TSA, which may provide more accurate, precise, and unbiased information to Pain Medicine, Chung-Ang University clinicians, patients, and policymakers. In this article, the history, background, principles, and College of Medicine, 84 Heukseok-ro, assumptions behind TSA are described, which would lead to its better understanding, imple- Dongjak-gu, Seoul 06974, Korea mentation, and interpretation. Tel: 82-2-6299-2586 Fax: 82-2-6299-2585 E-mail: [email protected] Keywords: Interim analysis; Meta-analysis; Statistics; Trial sequential analysis. INTRODUCTION termined number of patients was reached [2]. A systematic review is a research method that attempts Sequential analysis is a statistical method in which the fi- to collect all empirical evidence according to predefined nal number of patients analyzed is not predetermined, but inclusion and exclusion criteria to answer specific and fo- sampling or enrollment of patients is decided by a prede- cused questions [3]. It uses clear, transparent, and explicit termined stopping rule such as satisfying a statistical sig- methods to minimize bias, providing more reliable infor- nificance. Accordingly, the investigators may draw a con- mation [4]. Meta-analysis is a statistical analytic method clusion earlier than that with the traditional statistical that integrates and summarizes the results from individual methods, reducing time, cost, effort, and resources. studies or examines the sources of heterogeneity among The concept and method of sequential analysis were in- studies [5]. troduced and described as expeditious industrial quality Systematic review and meta-analysis rank highest in evi- control methods during World War II by Abraham Wald [1]. dence hierarchy and provides evidence for clinical prac- This concept was used to prove the desired or undesired tice, healthcare, and policy development. Its use and appli- intervention effects by analyzing data from ongoing trials. cation in clinical practice have increased [6,7]; however, After World War II, Peter Armitage introduced a sequential they are not free from errors and biases [8]. Many system- analysis method to medical research and suggested apply- atic reviews and meta-analyses have included too few ing a strict significance level to stop a trial before a prede- studies and patients to obtain sufficient statistical power, This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Copyright © the Korean Society of Anesthesiologists, 2021 138 Trial sequential analysis leading to spurious positive results [9]. Some positive find- The RIS in meta-analysis is defined as the number of ings from the meta-analysis may be caused by a random events or patients from the included studies necessary to error (by chance) rather than the true effects of the inter- accept or reject the statistical hypothesis [15]. vention. Therefore, results from systematic reviews and The sample size calculation performed in a single RCT is meta-analyses may often increase the likelihood of overes- based on the effect size, significance level, and power [16]. timation (Type I errors) or underestimation (Type II errors) In a single RCT setting, predetermined homogenous pa- [10,11]. Furthermore, because meta-analysis can be updat- tients, intervention, and methodology are used. However, ed when there is a new clinical trial, the inflation of Type I in a meta-analysis setting, a wide range of patients, regi- and II errors from multiple and sequential testing is of ma- mens of intervention, different experimental environ- jor concern [12]. ments, and quality of methodology may be applied in each Trial sequential analysis (TSA) has been developed to re- study. Heterogeneity may arise across the included studies, solve these problems. Conceptually, TSA adopts sequential which increases the sample size needed to accept or reject analysis methods for systematic reviews and meta-analy- the statistical hypothesis. Therefore, the RIS in meta-analy- ses. However, TSA is different from sequential analysis in a sis should be adjusted considering the heterogeneity be- single trial in that the enrolled unit is not a patient but a tween included studies and should be at least as large as study. Sequential analysis is performed at predetermined, the sample size in a homogenous single RCT [15]. regular intervals, although the number of enrolled patients As in a single RCT, assumptions to calculate RIS should did not reach predetermined number of patients. However, be predefined before the systematic review and meta-anal- in TSA, the trials were included in chronological order, and ysis. A single RCT with too few patients is thought to have analysis was performed repetitively and cumulatively after low precision and power. Similarly, results from meta-anal- new trials were conducted. TSA also provided an adjusted yses with too few studies and patients are assumed to have significance level for controlling Type I and II errors. an increased likelihood of overestimation or underestima- Therefore, the adaptation of TSA when performing and tion due to lack of precision and power in the intervention presenting a meta-analysis has been increasing recently effect [10,17]. Therefore, the use of appropriate RIS is im- [13,14]. portant to increase the quality of meta-analysis. This article aims to describe the history, background, The TSA program (Copenhagen Trial Unit, Centre for principles, and assumptions behind the use and interpre- Clinical Intervention Research, Denmark) provides a sim- tation of TSA. ple and useful way to calculate the RIS. The TSA program uses the heterogeneity-adjustment factor (AF) to adjust for BACKGROUND AND PRINCIPLE OF TRIAL heterogeneity among the included trials. AF is calculated SEQUENTIAL ANALYSIS as the total variance in a random-effects model divided by the total variance in a fixed-effect model as follows: Required information size AF = Meta-analysis is a statistical method used to synthesize a pooled estimate by combining the estimates of two or more AF: heterogeneity-adjustment factor individual studies. As the number of events or patients in- VR: total variance in a random-effects model crease, the power and precision of the intervention effect VF: total variance in a fixed-effect model estimate also increases. Thus, a more reliable estimate can Because the total variance in a random-effects model is be obtained from meta-analysis than a single randomized greater than or equal to the total variance in a fixed-effect controlled trial (RCT) [4]. model (VR ≥VF), AF is always greater than or equal to 1. A single RCT performs sample size calculation or power Finally, the RIS adjusted for heterogeneity between trials analysis to ensure that the study provides reliable statistical (random) is calculated by multiplying the non-adjusted inference and targeted power. Similar to sample size calcu- RIS (fixed) with AF. lation or power analysis in a single RCT, the required infor- mation size (RIS) or optimum information size was pro- Adjusted RIS = AF × nonadjusted RIS posed and used in the meta-analysis. www.anesth-pain-med.org 139 Anesth Pain Med In the TSA program, RIS is automatically calculated by Multiple comparisons and multiple testing problems oc- defining the statistical hypotheses, namely information cur when data is sampled repeatedly from the same data size, Type I error, power, relative risk reduction, incidence set, data is analyzed simultaneously or multiple times, or in the intervention and control arms, and heterogeneity data is analyzed sequentially by observing more results. correction in the Alpha-spending boundaries setting win- Multiple comparisons inflate the possibility of a Type I er- dow is activated in TSA tab and displayed in the TSA dia- ror (α). For example, if statistical analysis is performed at a gram (Fig. 1). This will be discussed later in TSA tab sec- significance level of 5% and the null hypothesis for statisti- tion. cal analysis is true, there is a 5% chance for a Type I error. However, if statistical analyses were performed 100 times Alpha spending functions and monitoring boundaries for the same situation, the expected number of Type I er- rors would be 5, and the probability of occurrence of at Type I error, or false positive, is the error of rejecting a least one Type I error would be 99.45% (Fig. 2). Therefore, null hypothesis when it is true, and Type II error, or false it is very important to adjust the α level so that the overall negative, is the error of accepting a null hypothesis when Type I error remains within the desired level. the alternative hypothesis is true. Intuitively, Type I error An interim analysis before the completion of data collec- occurs when a statistical difference is observed, although tion may also cause inflation of Type I error in the absence there is no statistically significant difference in truth, and of appropriate adjustment.
Recommended publications
  • Sequential Analysis Tests and Confidence Intervals
    D. Siegmund Sequential Analysis Tests and Confidence Intervals Series: Springer Series in Statistics The modern theory of Sequential Analysis came into existence simultaneously in the United States and Great Britain in response to demands for more efficient sampling inspection procedures during World War II. The develop ments were admirably summarized by their principal architect, A. Wald, in his book Sequential Analysis (1947). In spite of the extraordinary accomplishments of this period, there remained some dissatisfaction with the sequential probability ratio test and Wald's analysis of it. (i) The open-ended continuation region with the concomitant possibility of taking an arbitrarily large number of observations seems intol erable in practice. (ii) Wald's elegant approximations based on "neglecting the excess" of the log likelihood ratio over the stopping boundaries are not especially accurate and do not allow one to study the effect oftaking observa tions in groups rather than one at a time. (iii) The beautiful optimality property of the sequential probability ratio test applies only to the artificial problem of 1985, XI, 274 p. testing a simple hypothesis against a simple alternative. In response to these issues and to new motivation from the direction of controlled clinical trials numerous modifications of the sequential probability ratio test were proposed and their properties studied-often Printed book by simulation or lengthy numerical computation. (A notable exception is Anderson, 1960; see III.7.) In the past decade it has become possible to give a more complete theoretical Hardcover analysis of many of the proposals and hence to understand them better. ▶ 119,99 € | £109.99 | $149.99 ▶ *128,39 € (D) | 131,99 € (A) | CHF 141.50 eBook Available from your bookstore or ▶ springer.com/shop MyCopy Printed eBook for just ▶ € | $ 24.99 ▶ springer.com/mycopy Order online at springer.com ▶ or for the Americas call (toll free) 1-800-SPRINGER ▶ or email us at: [email protected].
    [Show full text]
  • Detecting Reinforcement Patterns in the Stream of Naturalistic Observations of Social Interactions
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 7-14-2020 Detecting Reinforcement Patterns in the Stream of Naturalistic Observations of Social Interactions James Lamar DeLaney 3rd Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Developmental Psychology Commons Let us know how access to this document benefits ou.y Recommended Citation DeLaney 3rd, James Lamar, "Detecting Reinforcement Patterns in the Stream of Naturalistic Observations of Social Interactions" (2020). Dissertations and Theses. Paper 5553. https://doi.org/10.15760/etd.7427 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Detecting Reinforcement Patterns in the Stream of Naturalistic Observations of Social Interactions by James Lamar DeLaney 3rd A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Psychology Thesis Committee: Thomas Kindermann, Chair Jason Newsom Ellen A. Skinner Portland State University i Abstract How do consequences affect future behaviors in real-world social interactions? The term positive reinforcer refers to those consequences that are associated with an increase in probability of an antecedent behavior (Skinner, 1938). To explore whether reinforcement occurs under naturally occuring conditions, many studies use sequential analysis methods to detect contingency patterns (see Quera & Bakeman, 1998). This study argues that these methods do not look at behavior change following putative reinforcers, and thus, are not sufficient for declaring reinforcement effects arising in naturally occuring interactions, according to the Skinner’s (1938) operational definition of reinforcers.
    [Show full text]
  • Sequential Analysis Exercises
    Sequential analysis Exercises : 1. What is the practical idea at origin of sequential analysis ? 2. In which cases sequential analysis is appropriate ? 3. What are the supposed advantages of sequential analysis ? 4. What does the values from a three steps sequential analysis in the following table are for ? nb accept refuse grains e xamined 20 0 5 40 2 7 60 6 7 5. Do I have alpha and beta risks when I use sequential analysis ? ______________________________________________ 1 5th ISTA seminar on statistics S Grégoire August 1999 SEQUENTIAL ANALYSIS.DOC PRINCIPLE OF THE SEQUENTIAL ANALYSIS METHOD The method originates from a practical observation. Some objects are so good or so bad that with a quick look we are able to accept or reject them. For other objects we need more information to know if they are good enough or not. In other words, we do not need to put the same effort on all the objects we control. As a result of this we may save time or money if we decide for some objects at an early stage. The general basis of sequential analysis is to define, -before the studies-, sampling schemes which permit to take consistent decisions at different stages of examination. The aim is to compare the results of examinations made on an object to control <-- to --> decisional limits in order to take a decision. At each stage of examination the decision is to accept the object if it is good enough with a chosen probability or to reject the object if it is too bad (at a chosen probability) or to continue the study if we need more information before to fall in one of the two above categories.
    [Show full text]
  • Sequential and Multiple Testing for Dose-Response Analysis
    Drug Information Journal, Vol. 34, pp. 591±597, 2000 0092-8615/2000 Printed in the USA. All rights reserved. Copyright 2000 Drug Information Association Inc. SEQUENTIAL AND MULTIPLE TESTING FOR DOSE-RESPONSE ANALYSIS WALTER LEHMACHER,PHD Professor, Institute for Medical Statistics, Informatics and Epidemiology, University of Cologne, Germany MEINHARD KIESER,PHD Head, Department of Biometry, Dr. Willmar Schwabe Pharmaceuticals, Karlsruhe, Germany LUDWIG HOTHORN,PHD Professor, Department of Bioinformatics, University of Hannover, Germany For the analysis of dose-response relationship under the assumption of ordered alterna- tives several global trend tests are available. Furthermore, there are multiple test proce- dures which can identify doses as effective or even as minimally effective. In this paper it is shown that the principles of multiple comparisons and interim analyses can be combined in flexible and adaptive strategies for dose-response analyses; these procedures control the experimentwise error rate. Key Words: Dose-response; Interim analysis; Multiple testing INTRODUCTION rate in a strong sense) are necessary. The global and multiplicity aspects are also re- THE FIRST QUESTION in dose-response flected by the actual International Confer- analysis is whether a monotone trend across ence for Harmonization Guidelines (1) for dose groups exists. This leads to global trend dose-response analysis. Appropriate order tests, where the global level (familywise er- restricted tests can be confirmatory for dem- ror rate in a weak sense) is controlled. In onstrating a global trend and suitable multi- clinical research, one is additionally inter- ple procedures can identify a recommended ested in which doses are effective, which dose. minimal dose is effective, or which dose For the global hypothesis, there are sev- steps are effective, in order to substantiate eral suitable trend tests.
    [Show full text]
  • Dataset Decay and the Problem of Sequential Analyses on Open Datasets
    FEATURE ARTICLE META-RESEARCH Dataset decay and the problem of sequential analyses on open datasets Abstract Open data allows researchers to explore pre-existing datasets in new ways. However, if many researchers reuse the same dataset, multiple statistical testing may increase false positives. Here we demonstrate that sequential hypothesis testing on the same dataset by multiple researchers can inflate error rates. We go on to discuss a number of correction procedures that can reduce the number of false positives, and the challenges associated with these correction procedures. WILLIAM HEDLEY THOMPSON*, JESSEY WRIGHT, PATRICK G BISSETT AND RUSSELL A POLDRACK Introduction sequential procedures correct for the latest in a In recent years, there has been a push to make non-simultaneous series of tests. There are sev- the scientific datasets associated with published eral proposed solutions to address multiple papers openly available to other researchers sequential analyses, namely a-spending and a- (Nosek et al., 2015). Making data open will investing procedures (Aharoni and Rosset, allow other researchers to both reproduce pub- 2014; Foster and Stine, 2008), which strictly lished analyses and ask new questions of existing control false positive rate. Here we will also pro- datasets (Molloy, 2011; Pisani et al., 2016). pose a third, a-debt, which does not maintain a The ability to explore pre-existing datasets in constant false positive rate but allows it to grow new ways should make research more efficient controllably. and has the potential to yield new discoveries Sequential correction procedures are harder *For correspondence: william. (Weston et al., 2019). to implement than simultaneous procedures as [email protected] The availability of open datasets will increase they require keeping track of the total number over time as funders mandate and reward data Competing interests: The of tests that have been performed by others.
    [Show full text]
  • Group-Sequential Analysis for Two Proportions
    NCSS Statistical Software NCSS.com Chapter 710 Group-Sequential Analysis for Two Proportions The corresponding sample size procedure, found in PASS Sample Size software, is Group-Sequential Tests for Two Proportions (Simulation). Introduction This procedure is used to test the difference of two proportions in stages (sometimes called looks or interim analyses) using group-sequential methods. Unless the stage boundaries are entered directly, the stage boundaries are defined using a specified spending function. One- or two-sided tests may be performed with the option of binding or non-binding futility boundaries. Futility boundaries are specified through a beta-spending function. Sample size re-estimation, based on current-stage sample sizes and parameter estimates, may also be obtained in this procedure. The spending functions available in this procedure are the O’Brien-Fleming analog, the Pocock analog, the Hwang-Shih-DeCani gamma family, and the power family. At each stage, the current and future boundaries are calculated based on the accumulated information proportion. Conditional and predictive power for future stages is also given. A group-sequential boundary and analysis graph is produced in this procedure. 710-1 © NCSS, LLC. All Rights Reserved. NCSS Statistical Software NCSS.com Group-Sequential Analysis for Two Proportions At each stage, stage-adjusted difference estimates, confidence intervals, and p-values are available. The probabilities of crossing future boundaries may also be assessed, using simulation. The format of the data for use in this procedure is three columns: one column for the response values, one column defining the two groups, and a third column defining the stage.
    [Show full text]
  • Trial Sequential Analysis in Systematic Reviews with Meta-Analysis Jørn Wetterslev1,2* , Janus Christian Jakobsen1,2,3,4 and Christian Gluud1,4
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Wetterslev et al. BMC Medical Research Methodology (2017) 17:39 DOI 10.1186/s12874-017-0315-7 RESEARCHARTICLE Open Access Trial Sequential Analysis in systematic reviews with meta-analysis Jørn Wetterslev1,2* , Janus Christian Jakobsen1,2,3,4 and Christian Gluud1,4 Abstract Background: Most meta-analyses in systematic reviews, including Cochrane ones, do not have sufficient statistical power to detect or refute even large intervention effects. This is why a meta-analysis ought to be regarded as an interim analysis on its way towards a required information size. The results of the meta-analyses should relate the total number of randomised participants to the estimated required meta-analytic information size accounting for statistical diversity. When the number of participants and the corresponding number of trials in a meta-analysis are insufficient, the use of the traditional 95% confidence interval or the 5% statistical significance threshold will lead to too many false positive conclusions (type I errors) and too many false negative conclusions (type II errors). Methods: We developed a methodology for interpreting meta-analysis results, using generally accepted, valid evidence on how to adjust thresholds for significance in randomised clinical trials when the required sample size has not been reached. Results: The Lan-DeMets trial sequential monitoring boundaries in Trial Sequential Analysis offer adjusted confidence intervals and restricted thresholds for statistical significance when the diversity-adjusted required information size and the corresponding number of required trials for the meta-analysis have not been reached.
    [Show full text]
  • Asymptotically Pointwise Optimal Procedures in Sequential Analysis Peter J
    ASYMPTOTICALLY POINTWISE OPTIMAL PROCEDURES IN SEQUENTIAL ANALYSIS PETER J. BICKEL and JOSEPH A. YAHAV UNIVERSITY OF CALIFORNIA, BERKELEY 1. Introduction After sequential analysis was developed by Wald in the forties [5], Arrow, Blackwell, and Girshick [1] considered the Bayes problem and proved the existence of Bayes solutions. The difficulties involved in computing explicitly the Bayes solutions led Wald [6] to introduce asymptotic sequential analysis in estimation. Asymptotic in his sense, as for all subsequent authors, refers to the limiting behavior of the optimal solution as the cost of observation tends to zero. Chernoff [2] investigated the asymptotic properties of sequential testing. The testing theory was developed further by Schwarz [4] and generalized by Kiefer and Sacks [3]. This paper approaches the asymptotic theory from a slightly different point of view. We introduce the concept of "asymptotic point- wise optimality," and we construct procedures that are "asymptotically point- wise optimal" (A.P.O.) for certain rates of convergence [as n -oo ] of the a posteriori risk. The rates of convergence that we consider apply under some regularity conditions to statistical testing and estimation with quadratic loss. 2. Pointwise optimality Let {Y, n > 1} be a sequence of random variables defined on a probability space (Q, F, P) where Y. is F. measurable and Fn C F.+, ... C F for n > 1. We assume the following two conditions: (2.1) P(Yn > 0) = 1, (2.2) Y. Ox 0 a.s. Define (2.3) X.(c) = Y. + nc for c > 0. Prepared with the partial support of the Ford Foundation Grant given to the School of Business Administration and administered by the Center for Research in Management Science, University of California, Berkeley.
    [Show full text]
  • Sequential Analysis; Adaptive Designs; Type 1 Errors; Power Analysis; Sample
    Sequential Analyses 1 RUNNING HEAD: SEQUENTIAL ANALYSES Performing High-Powered Studies Efficiently With Sequential Analyses Daniël Lakens Eindhoven University of Technology Word Count: 8087 In Press, European Journal of Social Psychology Correspondence can be addressed to Daniël Lakens, Human Technology Interaction Group, IPO 1.33, PO Box 513, 5600MB Eindhoven, The Netherlands. E-mail: [email protected]. Sequential Analyses 2 Abstract Running studies with high statistical power, while effect size estimates in psychology are often inaccurate, leads to a practical challenge when designing an experiment. This challenge can be addressed by performing sequential analyses while the data collection is still in progress. At an interim analysis, data collection can be stopped whenever the results are convincing enough to conclude an effect is present, more data can be collected, or the study can be terminated whenever it is extremely unlikely the predicted effect will be observed if data collection would be continued. Such interim analyses can be performed while controlling the Type 1 error rate. Sequential analyses can greatly improve the efficiency with which data is collected. Additional flexibility is provided by adaptive designs where sample sizes are increased based on the observed effect size. The need for pre-registration, ways to prevent experimenter bias, and a comparison between Bayesian approaches and NHST are discussed. Sequential analyses, which are widely used in large scale medical trials, provide an efficient way to perform high-powered informative experiments. I hope this introduction will provide a practical primer that allows researchers to incorporate sequential analyses in their research. 191 words Keywords: Sequential Analysis; Adaptive Designs; Type 1 Errors; Power Analysis; Sample Size Planning.
    [Show full text]
  • On Rereading R. A. Fisher [Fisher Memorial Lecture, with Comments]
    The Annals of Statistics 1976, Vol. 4, No. 3, 441-500 ON REREADING R. A. FISHER By LEONARD J. SAVAGE?” Yale University 'Fisher’s contributions to statistics are surveyed. His background, skills, temperament, and style of thought and writing are sketched. His mathematical and methodological contributions are outlined. More atten- tion is given to the technical concepts he introduced or emphasized, such as consistency, sufficiency, efficiency, information, and maximumlikeli- hood. Still more attention is given to his conception and concepts of probability and inference, including likelihood, the fiducial argument, and hypothesis testing. Fisher is at once very near to and very far from modern statistical thought generally. | 1. Introduction. 1.1. Why this essay? Of course an R. A. Fisher Memorial Lecture need not be about R. A. Fisher himself, but the invitation to lecture in his honor set me so to thinking of Fisher’s influence on my ownstatistical education that I could not tear myself away from the project of a somewhat personal review of his work. Mystatistical mentors, Milton Friedman and W. Allen Wallis, held that Fisher’s Statistical Methods for Research Workers (RW, 1925) was the serious 1 This is a written version of an R. A. Fisher Memorial Lecture given in Detroit on 29 Decem- ber 1970 underthe auspices of the American Statistical Association, the Institute of Mathematical Statistics, and the Biometric Society. The author’s untimely death on 1 November 1971 occurred before he had finished work on the paper. The editor for publication was John W.Pratt. The author’s work on the lecture and his subsequent paper and the editor’s work were supported in part by the Army, Navy, Air Force, and NASA undera contract administered by the Office of Naval Research.
    [Show full text]
  • Interim Monitoring in Sequential Multiple Assignment Randomized
    INTERIM MONITORING IN SEQUENTIAL MULTIPLE ASSIGNMENT RANDOMIZED TRIALS APREPRINT Liwen Wu∗ Junyao Wang Abdus S. Wahed ABSTRACT A sequential multiple assignment randomized trial (SMART) facilitates comparison of multiple adaptive treatment strategies (ATSs) simultaneously. Previous studies have established a framework to test the homogeneity of multiple ATSs by a global Wald test through inverse probability weighting. SMARTs are generally lengthier than classical clinical trials due to the sequential nature of treatment randomization in multiple stages. Thus, it would be beneficial to add interim analyses allowing for early stop if overwhelming efficacy is observed. We introduce group sequential methods to SMARTs to facilitate interim monitoring based on multivariate chi-square distribution. Simulation study demonstrates that the proposed interim monitoring in SMART (IM-SMART) maintains the desired type I error and power with reduced expected sample size compared to the classical SMART. Lastly, we illustrate our method by re-analyzing a SMART assessing the effects of cognitive behavioral and physical therapies in patients with knee osteoarthritis and comorbid subsyndromal depressive symptoms. Keywords Adaptive treatment strategy · Dynamic treatment regime · Group sequential analysis · Interim monitoring · Sequential multiple assignment randomized trial 1 Introduction Adaptive treatment strategies (ATSs) are sequences of treatments personalized to patients given their own treatment history. Such strategies are popular in the management of chronic diseases, such as mental health disorders, where the treatment courses usually involve multiple stages due to the dynamic nature of disease progression [Lavori et al., 2000, Lavori and Dawson, 2004, Murphy, 2005, Kidwell, 2014]. A sequential multiple assignment randomized trial (SMART) is a systematic and efficient vehicle for comparing multiple ATSs.
    [Show full text]
  • Using Trial Sequential Analysis For
    Claire et al. BMC Medical Research Methodology (2020) 20:284 https://doi.org/10.1186/s12874-020-01169-7 RESEARCH ARTICLE Open Access Using Trial Sequential Analysis for estimating the sample sizes of further trials: example using smoking cessation intervention Ravinder Claire1* , Christian Gluud2, Ivan Berlin3,4, Tim Coleman1 and Jo Leonardi-Bee5 Abstract Background: Assessing benefits and harms of health interventions is resource-intensive and often requires feasibility and pilot trials followed by adequately powered randomised clinical trials. Data from feasibility and pilot trials are used to inform the design and sample size of the adequately powered randomised clinical trials. When a randomised clinical trial is conducted, results from feasibility and pilot trials may be disregarded in terms of benefits and harms. Methods: We describe using feasibility and pilot trial data in the Trial Sequential Analysis software to estimate the required sample size for one or more trials investigating a behavioural smoking cessation intervention. We show how data from a new, planned trial can be combined with data from the earlier trials using trial sequential analysis methods to assess the intervention’s effects. Results: We provide a worked example to illustrate how we successfully used the Trial Sequential Analysis software to arrive at a sensible sample size for a new randomised clinical trial and use it in the argumentation for research funds for the trial. Conclusions: Trial Sequential Analysis can utilise data from feasibility and pilot trials as well as other trials, to estimate a sample size for one or more, similarly designed, future randomised clinical trials. As this method uses available data, estimated sample sizes may be smaller than they would have been using conventional sample size estimation methods.
    [Show full text]