Improving the Analysis of Randomized Controlled Trials: a Posterior Simulation Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sequential Analysis Tests and Confidence Intervals
D. Siegmund Sequential Analysis Tests and Confidence Intervals Series: Springer Series in Statistics The modern theory of Sequential Analysis came into existence simultaneously in the United States and Great Britain in response to demands for more efficient sampling inspection procedures during World War II. The develop ments were admirably summarized by their principal architect, A. Wald, in his book Sequential Analysis (1947). In spite of the extraordinary accomplishments of this period, there remained some dissatisfaction with the sequential probability ratio test and Wald's analysis of it. (i) The open-ended continuation region with the concomitant possibility of taking an arbitrarily large number of observations seems intol erable in practice. (ii) Wald's elegant approximations based on "neglecting the excess" of the log likelihood ratio over the stopping boundaries are not especially accurate and do not allow one to study the effect oftaking observa tions in groups rather than one at a time. (iii) The beautiful optimality property of the sequential probability ratio test applies only to the artificial problem of 1985, XI, 274 p. testing a simple hypothesis against a simple alternative. In response to these issues and to new motivation from the direction of controlled clinical trials numerous modifications of the sequential probability ratio test were proposed and their properties studied-often Printed book by simulation or lengthy numerical computation. (A notable exception is Anderson, 1960; see III.7.) In the past decade it has become possible to give a more complete theoretical Hardcover analysis of many of the proposals and hence to understand them better. ▶ 119,99 € | £109.99 | $149.99 ▶ *128,39 € (D) | 131,99 € (A) | CHF 141.50 eBook Available from your bookstore or ▶ springer.com/shop MyCopy Printed eBook for just ▶ € | $ 24.99 ▶ springer.com/mycopy Order online at springer.com ▶ or for the Americas call (toll free) 1-800-SPRINGER ▶ or email us at: [email protected]. -
Hypothesis Testing and Likelihood Ratio Tests
Hypottthesiiis tttestttiiing and llliiikellliiihood ratttiiio tttesttts Y We will adopt the following model for observed data. The distribution of Y = (Y1, ..., Yn) is parameter considered known except for some paramett er ç, which may be a vector ç = (ç1, ..., çk); ç“Ç, the paramettter space. The parameter space will usually be an open set. If Y is a continuous random variable, its probabiiillliiittty densiiittty functttiiion (pdf) will de denoted f(yy;ç) . If Y is y probability mass function y Y y discrete then f(yy;ç) represents the probabii ll ii tt y mass functt ii on (pmf); f(yy;ç) = Pç(YY=yy). A stttatttiiistttiiicalll hypottthesiiis is a statement about the value of ç. We are interested in testing the null hypothesis H0: ç“Ç0 versus the alternative hypothesis H1: ç“Ç1. Where Ç0 and Ç1 ¶ Ç. hypothesis test Naturally Ç0 § Ç1 = ∅, but we need not have Ç0 ∞ Ç1 = Ç. A hypott hesii s tt estt is a procedure critical region for deciding between H0 and H1 based on the sample data. It is equivalent to a crii tt ii call regii on: a critical region is a set C ¶ Rn y such that if y = (y1, ..., yn) “ C, H0 is rejected. Typically C is expressed in terms of the value of some tttesttt stttatttiiistttiiic, a function of the sample data. For µ example, we might have C = {(y , ..., y ): y – 0 ≥ 3.324}. The number 3.324 here is called a 1 n s/ n µ criiitttiiicalll valllue of the test statistic Y – 0 . S/ n If y“C but ç“Ç 0, we have committed a Type I error. -
Trial Sequential Analysis: Novel Approach for Meta-Analysis
Anesth Pain Med 2021;16:138-150 https://doi.org/10.17085/apm.21038 Review pISSN 1975-5171 • eISSN 2383-7977 Trial sequential analysis: novel approach for meta-analysis Hyun Kang Received April 19, 2021 Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Accepted April 25, 2021 Medicine, Seoul, Korea Systematic reviews and meta-analyses rank the highest in the evidence hierarchy. However, they still have the risk of spurious results because they include too few studies and partici- pants. The use of trial sequential analysis (TSA) has increased recently, providing more infor- mation on the precision and uncertainty of meta-analysis results. This makes it a powerful tool for clinicians to assess the conclusiveness of meta-analysis. TSA provides monitoring boundaries or futility boundaries, helping clinicians prevent unnecessary trials. The use and Corresponding author Hyun Kang, M.D., Ph.D. interpretation of TSA should be based on an understanding of the principles and assump- Department of Anesthesiology and tions behind TSA, which may provide more accurate, precise, and unbiased information to Pain Medicine, Chung-Ang University clinicians, patients, and policymakers. In this article, the history, background, principles, and College of Medicine, 84 Heukseok-ro, assumptions behind TSA are described, which would lead to its better understanding, imple- Dongjak-gu, Seoul 06974, Korea mentation, and interpretation. Tel: 82-2-6299-2586 Fax: 82-2-6299-2585 E-mail: [email protected] Keywords: Interim analysis; Meta-analysis; Statistics; Trial sequential analysis. INTRODUCTION termined number of patients was reached [2]. A systematic review is a research method that attempts Sequential analysis is a statistical method in which the fi- to collect all empirical evidence according to predefined nal number of patients analyzed is not predetermined, but inclusion and exclusion criteria to answer specific and fo- sampling or enrollment of patients is decided by a prede- cused questions [3]. -
Detecting Reinforcement Patterns in the Stream of Naturalistic Observations of Social Interactions
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 7-14-2020 Detecting Reinforcement Patterns in the Stream of Naturalistic Observations of Social Interactions James Lamar DeLaney 3rd Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Developmental Psychology Commons Let us know how access to this document benefits ou.y Recommended Citation DeLaney 3rd, James Lamar, "Detecting Reinforcement Patterns in the Stream of Naturalistic Observations of Social Interactions" (2020). Dissertations and Theses. Paper 5553. https://doi.org/10.15760/etd.7427 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Detecting Reinforcement Patterns in the Stream of Naturalistic Observations of Social Interactions by James Lamar DeLaney 3rd A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Psychology Thesis Committee: Thomas Kindermann, Chair Jason Newsom Ellen A. Skinner Portland State University i Abstract How do consequences affect future behaviors in real-world social interactions? The term positive reinforcer refers to those consequences that are associated with an increase in probability of an antecedent behavior (Skinner, 1938). To explore whether reinforcement occurs under naturally occuring conditions, many studies use sequential analysis methods to detect contingency patterns (see Quera & Bakeman, 1998). This study argues that these methods do not look at behavior change following putative reinforcers, and thus, are not sufficient for declaring reinforcement effects arising in naturally occuring interactions, according to the Skinner’s (1938) operational definition of reinforcers. -
This Is Dr. Chumney. the Focus of This Lecture Is Hypothesis Testing –Both What It Is, How Hypothesis Tests Are Used, and How to Conduct Hypothesis Tests
TRANSCRIPT: This is Dr. Chumney. The focus of this lecture is hypothesis testing –both what it is, how hypothesis tests are used, and how to conduct hypothesis tests. 1 TRANSCRIPT: In this lecture, we will talk about both theoretical and applied concepts related to hypothesis testing. 2 TRANSCRIPT: Let’s being the lecture with a summary of the logic process that underlies hypothesis testing. 3 TRANSCRIPT: It is often impossible or otherwise not feasible to collect data on every individual within a population. Therefore, researchers rely on samples to help answer questions about populations. Hypothesis testing is a statistical procedure that allows researchers to use sample data to draw inferences about the population of interest. Hypothesis testing is one of the most commonly used inferential procedures. Hypothesis testing will combine many of the concepts we have already covered, including z‐scores, probability, and the distribution of sample means. To conduct a hypothesis test, we first state a hypothesis about a population, predict the characteristics of a sample of that population (that is, we predict that a sample will be representative of the population), obtain a sample, then collect data from that sample and analyze the data to see if it is consistent with our hypotheses. 4 TRANSCRIPT: The process of hypothesis testing begins by stating a hypothesis about the unknown population. Actually we state two opposing hypotheses. The first hypothesis we state –the most important one –is the null hypothesis. The null hypothesis states that the treatment has no effect. In general the null hypothesis states that there is no change, no difference, no effect, and otherwise no relationship between the independent and dependent variables. -
The Scientific Method: Hypothesis Testing and Experimental Design
Appendix I The Scientific Method The study of science is different from other disciplines in many ways. Perhaps the most important aspect of “hard” science is its adherence to the principle of the scientific method: the posing of questions and the use of rigorous methods to answer those questions. I. Our Friend, the Null Hypothesis As a science major, you are probably no stranger to curiosity. It is the beginning of all scientific discovery. As you walk through the campus arboretum, you might wonder, “Why are trees green?” As you observe your peers in social groups at the cafeteria, you might ask yourself, “What subtle kinds of body language are those people using to communicate?” As you read an article about a new drug which promises to be an effective treatment for male pattern baldness, you think, “But how do they know it will work?” Asking such questions is the first step towards hypothesis formation. A scientific investigator does not begin the study of a biological phenomenon in a vacuum. If an investigator observes something interesting, s/he first asks a question about it, and then uses inductive reasoning (from the specific to the general) to generate an hypothesis based upon a logical set of expectations. To test the hypothesis, the investigator systematically collects data, either with field observations or a series of carefully designed experiments. By analyzing the data, the investigator uses deductive reasoning (from the general to the specific) to state a second hypothesis (it may be the same as or different from the original) about the observations. -
Hypothesis Testing – Examples and Case Studies
Hypothesis Testing – Chapter 23 Examples and Case Studies Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 23.1 How Hypothesis Tests Are Reported in the News 1. Determine the null hypothesis and the alternative hypothesis. 2. Collect and summarize the data into a test statistic. 3. Use the test statistic to determine the p-value. 4. The result is statistically significant if the p-value is less than or equal to the level of significance. Often media only presents results of step 4. Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 2 23.2 Testing Hypotheses About Proportions and Means If the null and alternative hypotheses are expressed in terms of a population proportion, mean, or difference between two means and if the sample sizes are large … … the test statistic is simply the corresponding standardized score computed assuming the null hypothesis is true; and the p-value is found from a table of percentiles for standardized scores. Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 3 Example 2: Weight Loss for Diet vs Exercise Did dieters lose more fat than the exercisers? Diet Only: sample mean = 5.9 kg sample standard deviation = 4.1 kg sample size = n = 42 standard error = SEM1 = 4.1/ √42 = 0.633 Exercise Only: sample mean = 4.1 kg sample standard deviation = 3.7 kg sample size = n = 47 standard error = SEM2 = 3.7/ √47 = 0.540 measure of variability = [(0.633)2 + (0.540)2] = 0.83 Copyright ©2005 Brooks/Cole, a division of Thomson Learning, Inc. 4 Example 2: Weight Loss for Diet vs Exercise Step 1. -
Sequential Analysis Exercises
Sequential analysis Exercises : 1. What is the practical idea at origin of sequential analysis ? 2. In which cases sequential analysis is appropriate ? 3. What are the supposed advantages of sequential analysis ? 4. What does the values from a three steps sequential analysis in the following table are for ? nb accept refuse grains e xamined 20 0 5 40 2 7 60 6 7 5. Do I have alpha and beta risks when I use sequential analysis ? ______________________________________________ 1 5th ISTA seminar on statistics S Grégoire August 1999 SEQUENTIAL ANALYSIS.DOC PRINCIPLE OF THE SEQUENTIAL ANALYSIS METHOD The method originates from a practical observation. Some objects are so good or so bad that with a quick look we are able to accept or reject them. For other objects we need more information to know if they are good enough or not. In other words, we do not need to put the same effort on all the objects we control. As a result of this we may save time or money if we decide for some objects at an early stage. The general basis of sequential analysis is to define, -before the studies-, sampling schemes which permit to take consistent decisions at different stages of examination. The aim is to compare the results of examinations made on an object to control <-- to --> decisional limits in order to take a decision. At each stage of examination the decision is to accept the object if it is good enough with a chosen probability or to reject the object if it is too bad (at a chosen probability) or to continue the study if we need more information before to fall in one of the two above categories. -
Tests of Hypotheses Using Statistics
Tests of Hypotheses Using Statistics Adam Massey¤and Steven J. Millery Mathematics Department Brown University Providence, RI 02912 Abstract We present the various methods of hypothesis testing that one typically encounters in a mathematical statistics course. The focus will be on conditions for using each test, the hypothesis tested by each test, and the appropriate (and inappropriate) ways of using each test. We conclude by summarizing the di®erent tests (what conditions must be met to use them, what the test statistic is, and what the critical region is). Contents 1 Types of Hypotheses and Test Statistics 2 1.1 Introduction . 2 1.2 Types of Hypotheses . 3 1.3 Types of Statistics . 3 2 z-Tests and t-Tests 5 2.1 Testing Means I: Large Sample Size or Known Variance . 5 2.2 Testing Means II: Small Sample Size and Unknown Variance . 9 3 Testing the Variance 12 4 Testing Proportions 13 4.1 Testing Proportions I: One Proportion . 13 4.2 Testing Proportions II: K Proportions . 15 4.3 Testing r £ c Contingency Tables . 17 4.4 Incomplete r £ c Contingency Tables Tables . 18 5 Normal Regression Analysis 19 6 Non-parametric Tests 21 6.1 Tests of Signs . 21 6.2 Tests of Ranked Signs . 22 6.3 Tests Based on Runs . 23 ¤E-mail: [email protected] yE-mail: [email protected] 1 7 Summary 26 7.1 z-tests . 26 7.2 t-tests . 27 7.3 Tests comparing means . 27 7.4 Variance Test . 28 7.5 Proportions . 28 7.6 Contingency Tables . -
Understanding Statistical Hypothesis Testing: the Logic of Statistical Inference
Review Understanding Statistical Hypothesis Testing: The Logic of Statistical Inference Frank Emmert-Streib 1,2,* and Matthias Dehmer 3,4,5 1 Predictive Society and Data Analytics Lab, Faculty of Information Technology and Communication Sciences, Tampere University, 33100 Tampere, Finland 2 Institute of Biosciences and Medical Technology, Tampere University, 33520 Tampere, Finland 3 Institute for Intelligent Production, Faculty for Management, University of Applied Sciences Upper Austria, Steyr Campus, 4040 Steyr, Austria 4 Department of Mechatronics and Biomedical Computer Science, University for Health Sciences, Medical Informatics and Technology (UMIT), 6060 Hall, Tyrol, Austria 5 College of Computer and Control Engineering, Nankai University, Tianjin 300000, China * Correspondence: [email protected]; Tel.: +358-50-301-5353 Received: 27 July 2019; Accepted: 9 August 2019; Published: 12 August 2019 Abstract: Statistical hypothesis testing is among the most misunderstood quantitative analysis methods from data science. Despite its seeming simplicity, it has complex interdependencies between its procedural components. In this paper, we discuss the underlying logic behind statistical hypothesis testing, the formal meaning of its components and their connections. Our presentation is applicable to all statistical hypothesis tests as generic backbone and, hence, useful across all application domains in data science and artificial intelligence. Keywords: hypothesis testing; machine learning; statistics; data science; statistical inference 1. Introduction We are living in an era that is characterized by the availability of big data. In order to emphasize the importance of this, data have been called the ‘oil of the 21st Century’ [1]. However, for dealing with the challenges posed by such data, advanced analysis methods are needed. -
Sequential and Multiple Testing for Dose-Response Analysis
Drug Information Journal, Vol. 34, pp. 591±597, 2000 0092-8615/2000 Printed in the USA. All rights reserved. Copyright 2000 Drug Information Association Inc. SEQUENTIAL AND MULTIPLE TESTING FOR DOSE-RESPONSE ANALYSIS WALTER LEHMACHER,PHD Professor, Institute for Medical Statistics, Informatics and Epidemiology, University of Cologne, Germany MEINHARD KIESER,PHD Head, Department of Biometry, Dr. Willmar Schwabe Pharmaceuticals, Karlsruhe, Germany LUDWIG HOTHORN,PHD Professor, Department of Bioinformatics, University of Hannover, Germany For the analysis of dose-response relationship under the assumption of ordered alterna- tives several global trend tests are available. Furthermore, there are multiple test proce- dures which can identify doses as effective or even as minimally effective. In this paper it is shown that the principles of multiple comparisons and interim analyses can be combined in flexible and adaptive strategies for dose-response analyses; these procedures control the experimentwise error rate. Key Words: Dose-response; Interim analysis; Multiple testing INTRODUCTION rate in a strong sense) are necessary. The global and multiplicity aspects are also re- THE FIRST QUESTION in dose-response flected by the actual International Confer- analysis is whether a monotone trend across ence for Harmonization Guidelines (1) for dose groups exists. This leads to global trend dose-response analysis. Appropriate order tests, where the global level (familywise er- restricted tests can be confirmatory for dem- ror rate in a weak sense) is controlled. In onstrating a global trend and suitable multi- clinical research, one is additionally inter- ple procedures can identify a recommended ested in which doses are effective, which dose. minimal dose is effective, or which dose For the global hypothesis, there are sev- steps are effective, in order to substantiate eral suitable trend tests. -
Dataset Decay and the Problem of Sequential Analyses on Open Datasets
FEATURE ARTICLE META-RESEARCH Dataset decay and the problem of sequential analyses on open datasets Abstract Open data allows researchers to explore pre-existing datasets in new ways. However, if many researchers reuse the same dataset, multiple statistical testing may increase false positives. Here we demonstrate that sequential hypothesis testing on the same dataset by multiple researchers can inflate error rates. We go on to discuss a number of correction procedures that can reduce the number of false positives, and the challenges associated with these correction procedures. WILLIAM HEDLEY THOMPSON*, JESSEY WRIGHT, PATRICK G BISSETT AND RUSSELL A POLDRACK Introduction sequential procedures correct for the latest in a In recent years, there has been a push to make non-simultaneous series of tests. There are sev- the scientific datasets associated with published eral proposed solutions to address multiple papers openly available to other researchers sequential analyses, namely a-spending and a- (Nosek et al., 2015). Making data open will investing procedures (Aharoni and Rosset, allow other researchers to both reproduce pub- 2014; Foster and Stine, 2008), which strictly lished analyses and ask new questions of existing control false positive rate. Here we will also pro- datasets (Molloy, 2011; Pisani et al., 2016). pose a third, a-debt, which does not maintain a The ability to explore pre-existing datasets in constant false positive rate but allows it to grow new ways should make research more efficient controllably. and has the potential to yield new discoveries Sequential correction procedures are harder *For correspondence: william. (Weston et al., 2019). to implement than simultaneous procedures as [email protected] The availability of open datasets will increase they require keeping track of the total number over time as funders mandate and reward data Competing interests: The of tests that have been performed by others.