The Feeding Biology of Tintinnid Protozoa and Some

Total Page:16

File Type:pdf, Size:1020Kb

The Feeding Biology of Tintinnid Protozoa and Some THE FEEDING BIOLOGY OF TINTINNID PROTOZOA AND SOME OTHER INSHORE MICROZOOPLANKTON by David John Blackbourn A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of Zoology and Institute of Oceanography We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA September, 1974 > In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of ^OoCoG Y The University of British Columbia Vancouver 8, Canada . Date i ABSTRACT Tintinnids are among the largest and most abundant of the marine cillate microzooplankton but there is very little published information on their feeding rates and abilities. The feeding of Tintinnopsis subacuta (and to a lesser extent, that of 12 other species) was investigated with three methods 1) direct observation 2) counts of accumulated food cells and 3) Coulter Counts of the particles in the experimental medium. There was reasonable quali• tative agreement between the results obtained by the three methods but quantitative agreement was poor. Many of the results showed no signi• ficant differences due to very great variability in the results for a single tintinnid species within and between experiments. Much of this variability may be due to the methods used but it also reflects the vari• ability of tintinnids in natural populations. A wide variety of items was eaten by tintinnids, including smaller tintinnids; and the maximum food size can be related to tintinnid cell volume over a wide range but is dissimilar in tintinnid species of similar cell size. Several tintinnid species showed differential pre• dation on various types of laboratory phytoplankton. This differential predation was based upon the ability of the predator to handle prey, or on prey size or prey type depending upon the particular tintinnid species. 'Negative' selection of some types of laboratory phytoplankton in mixed- prey samples was also shown for some tintinnid species, particularly Tintinnopsis subacuta on members of the Cryptophyceae. Feeding rates measured with the accumulation method were equivalent ii to 0.65% ml/hr/tintinnid for T_. subacuta and usually much less. Feeding rates for this species measured with the Coulter Counter technique ranged from 0.33 to 3.8% ml/hr/tintinnid. Very little feeding was observed directly but feeding rates estimated with this method were somewhat higher than those estimated for the same species from accumulation experiments. Tintinnids apparently both consumed, and caused the production of particles during experiments. Correlations between feeding rate and 9 other experimental variables were such that it would be impossible to predict the feeding rate of a tintinnid species using only the size dis• tribution of avaifeble particulate biomass of less than 20 um diameter. There were large differences between the apparent feeding rate asymptotes of T_. subacuta and _S_. ventricosa as measured with the Coulter Counter and the accumulation method. The latter method gave lower asymptotes than did the former. Ivlev electivity indices for T_. subacuta were most consistently positive in those middle Coulter size classes which also showed the greatest growth in controls. Increased temperature had little effect on the rate of food accumu• lation by four tintinnid species, but there was some evidence of a faster rate of disappearance of ingested food at very high temperatures. The relationship between the gain of new food and the loss of old food in in• dividual T. subacuta and Stenosomella ventricosa was highly variable and may strongly reflect the physiological history of the cell. The rate of gain of new food may be largely independent of the amount of old food in a tintinnid, but the average rate of loss of old food is faster in cells given new food than in starved cells. iii It was shown that natural concentrations of T_. sub acuta can apparently control the growth of natural populations of phytoplankton of less than 20 um dia. in under 24 hours. From a comparison with some other types of microzooplankton it was concluded that the larger species of tintinnid could probably have a potentially predominant effect upon the highly pro• ductive phytoplankton of less than 10 um diameter in English Bay and other coastal localities. iv TABLE OF CONTENTS Page ABSTRACT i TABLE OF CONTENTS iv LIST OF TABLES vi LIST OF FIGURES ix ACKNOWLEDGEMENTS xi 1. INTRODUCTION 1 2. TINTINNID BIOLOGY . 5 3. MATERIALS AND METHODS a) Sampling and initial treatment 32 b) Experimental methods (i) General comments 35 (ii) Counts of accumulated food 38 (iii) Observations of feeding behaviour 39 (iv) Coulter Counter experiments 41 Glossary 49 4. RESULTS AND DISCUSSION a) Accumulation experiments (i) Qualitative results 51 (ii) Quantitative results 60 b) Observations of tintinnid motions and feeding behaviour 117 c) The effect of microzooplankton on natural and laboratory phytoplankton populations (Coulter Counter experiments) 127 5. GENERAL DISCUSSION 163 Table of Contents (Cont'd) Page 6. SUMMARY 179 REFERENCES 182 APPENDICES 187 vi LIST OF TABLES Page TABLE 1, List of tintinnid species and their measurements. 52 TABLE 2. Food eaten by microzooplankton. 56 TABLE 3. Eutintinnus tubulosus feeding on Isochrysis 62 galbana at two concentrations. TABLE 4. Eutintinnus tubulosus feeding on Monochrysis- 62 lutheri at two concentrations. TABLE 5. Eutintinnus tubulosus feeding on Monochrysis 64 lutheri at three concentrations. TABLE 6. Tintinnopsis parvula feeding on Monochrysis 64 lutheri at three concentrations. TABLE 7. Tintinnopsis subacuta feeding on Dunaliella 66 tertiolecta at three temperatures and three food levels. TABLE 8. Tintinnopsis parvula and Tintinnopsis 68 cylindrica feeding on Monochrysis lutheri in dim light and in darkness. TABLE 9. Eutintinnus tubulosus and Helicostomella 69 kiliensis feeding on Monochrysis lutheri at three concentrations TABLE 10. Various tintinnid species feeding on 'new' 71 and 'old' cultures of Dunaliella tertiolecta at four concentrations. TABLE 11. Tintinnopsis parvula feeding on Isoselmis ssp. 73 and Monochrysis lutheri. TABLE 12. Tintinnopsis subacuta feeding on Etitreptiella 73 sp. and Isochrysis galbana. List of Tables (cont'd) Tintinnopsis subacuta feeding on Eutreptiella sp.,Isochrysis galbana and Dunaliella tertiolecta. Tintinnopsis subacuta and Tintinnidium mucicola feeding on Eutreptiella sp. and Isoselmis sp. Various tintinnid species feeding on Monochrysis lutheri and Dunaliella tertiolecta. Tintinnopsis subacuta and Stenosomella ventricosa feeding on Eutreptiella sp., Monochrysis lutheri and Isoselmis sp. singly and in combination. Tintinnopsis subacuta (etc.) starved for various periods in filtered seawater feeding on Dunaliella tertiolecta at unknown, but dense, concentrations. Tintinnopsis subacuta and other predators starved for various periods and feeding on Eutreptiella sp. Loss rate of Stenosomella nivalis at two levels of dilution of medium with filtered seawater. Change of food contents of -T-intinnidium mucicola with time at four levels of dilution o of medium with filtered seawater. Tintinnopsis subacuta, T_. parvula, _T. rapa and Tintinnidium mucicola feeding on new food - Monochrysis lutheri and Cryptomonas sp., and loss rate of old food of various types at four temperatures. viii List of Tables (cont'd) Page TABLE 22. Feeding and loss rates of Tintinnopsis 99 subacuta; losing Monochrysis lutheri and Plagioselmis sp. and either starved or gaining Eutreptiella sp. and Isoselmis sp. TABLE 23. Accumulation and loss rates of Tintinnopsis 101 cylindrica, Helicostomella kiliensis, Tintinnidium mucicola and Eutintinnus latus, feeding oh Monochrysis lutheri or Isoselmis sp., or starved; and losing M. lutheri, Isoselmis sp. or Dunaliella tertiolecta. TABLE 23A. Summary of accumulation experiments with 103A Tintinnopsis subacuta. TABLE 24. The relationship between tintinnid cell 115 length and number of accumulated food items in two species taken from different experiments. TABLE 25. The effect of immobilization by sonication 121 on the successful ingestion of algal flagel• lates by the tintinnid, Eutintinnus latus. TABLE 26. Observed contact rates of various tintinnid 124 species on natural and laboratory food items. TABLE 27. Multiple correlation coefficients from Coulter 129 Counter experiments. TABLE 28. Microzooplankton lower threshold feeding values 136 and regression coefficients of Logmean E (variable 3) when food consumption rate (variable 1) is zero. TABLE 29. Results of Coulter Counter experiments with 159 Synchaeta littoralis and Synchaeta sp. eating Dunaliella tertiolecta. TABLE 30. Approximate relative sizes and feeding rates 177 of various types of marine microzooplankton. ix LIST OF FIGURES Page FIGURE 1. Diagram of Favella sp. (modified from 7 Campbell, 1927). FIGURE 2. Possible theoretical relationships be- 15 tween tintinnid lorica length and frequency. FIGURE 3. Lorica length-frequency data for Tintinnopsis 18 subacuta from three successive field samples. FIGURE 4. Seasonal abundance and lorica lengths of 100
Recommended publications
  • Supplementary Figure 1. Tintinnid Ciliates (A, B, C, D) and Radiolaria (E, F, G) Collected by the Bottle Net Between 2,000-4,000 M
    a) b) c) d) 20 µm e) f) g) 40 µm Supplementary Figure 1. Tintinnid ciliates (A, B, C, D) and radiolaria (E, F, G) collected by the bottle net between 2,000-4,000 m. 1 Supplementary Figure 2. Cytograms of some selected surface and deep ocean samples. The samples were stained with SybrGreen I, a DNA stain that targets nucleic acids and, thus, stain all microbes, phototroph or autotroph. However, those microbes that have red autofluorescence from the chlorophyll a, appear in a different diagonal when plotting red vs. green (SybrGreen) fluorescence. They are indicated as “pa”, while the bacteria and archaea are labelled as “bt”. Reference 1 µm Yellow-Green Polysciences beads were added as internal standards (labelled “b”). A) A surface sample, Station 40 at 70 m, ratio bt/pa= 11.8; B) Station 110, at 2000 m, ratio bt/pa= 6.1; C) Station 126, at 2200 m ratio bt/pa= 6.2; and D) Stn 113, at 3850 m, ratio bt/pa= 9.1. 2 A B C ) -1 D E F Ln Alive cell concentration (cells L (cells cell concentration Alive Ln Time (days) Supplementary Figure 3. Mortality of surface phytoplankton cells in the dark. The decline in the number of alive cells of phytoplankton sampled at the surface layer declined with time when maintained in the dark and at cold temperature, conditions encountered during their possible sinking transient from the surface to the deep ocean. (A) Trichodesmium sp. (p <0.001); (B) centric diatom (p <0.05); (C) Ceratium sp. (p <0.01); (D) Ceratium spp.
    [Show full text]
  • Molecular Phylogeny of Tintinnid Ciliates (Tintinnida, Ciliophora)
    Protist, Vol. 163, 873–887, November 2012 http://www.elsevier.de/protis Published online date 9 February 2012 ORIGINAL PAPER Molecular Phylogeny of Tintinnid Ciliates (Tintinnida, Ciliophora) a b a c Charles Bachy , Fernando Gómez , Purificación López-García , John R. Dolan , and a,1 David Moreira a Unité d’Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Bâtiment 360, 91405 Orsay Cedex, France b Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia, PO Box 22085, 46071 Valencia, Spain c Université Pierre et Marie Curie and Centre National de la Recherche Scientifique (CNRS), UMR 7093, Laboratoire d’Océanographie de Villefranche, Marine Microbial Ecology, Station Zoologique, B.P. 28, 06230 Villefranche-sur-Mer, France Submitted October 6, 2011; Accepted January 4, 2012 Monitoring Editor: Hervé Philippe We investigated the phylogeny of tintinnids (Ciliophora, Tintinnida) with 62 new SSU-rDNA sequences from single cells of 32 marine and freshwater species in 20 genera, including the first SSU-rDNA sequences for Amphorides, Climacocylis, Codonaria, Cyttarocylis, Parundella, Petalotricha, Undella and Xystonella, and 23 ITS sequences of 17 species in 15 genera. SSU-rDNA phylogenies sug- gested a basal position for Eutintinnus, distant to other Tintinnidae. We propose Eutintinnidae fam. nov. for this divergent genus, keeping the family Tintinnidae for Amphorellopsis, Amphorides and Steenstrupiella. Tintinnopsis species branched in at least two separate groups and, unexpectedly, Climacocylis branched among Tintinnopsis sensu stricto species. Tintinnopsis does not belong to the family Codonellidae, which is restricted to Codonella, Codonaria, and also Dictyocysta (formerly in the family Dictyocystidae). The oceanic genus Undella branched close to an undescribed fresh- water species.
    [Show full text]
  • Growth Rates of Natural Tintinnid Populations in Narragansett Bay
    MARINE ECOLOGY PROGRESS SERIES Vol. 29: 117-126, 1986 - Published February 27 Mar. Ecol. Prog. Ser. I Growth rates of natural tintinnid populations in Narragansett Bay Peter G.Verity Graduate School of Oceanography. University of Rhode Island. Kingston, Rhode Island 02882. USA ABSTRACT: Natural microzooplankton populations were pre-screened through 202 pm mesh to remove larger predators and incubated in situ for 24 h in lower Narragansett Bay. Growth rates of tintinnid ciliates were calculated from changes in abundance; experiments were conducted at weekly intervals for 2 yr. Growth rates ranged from 0 to 3.3 doublings d-l; annual minima and maxima in growth rates occurred during the summer. Temperature regulated maximum species growth rates, while net community growth rates were primarily influenced by food quality and availability. Growth rates were depressed during blooms of small, solitary centric diatoms (Thalassiosira) and the antagonistic flagellate Olisthodiscus luteus, in agreement with previous laboratory studies. Excluding experiments when these phytoplankton were abundant, tintinnid growth rates increased asymptotic- ally with nanoplankton (< 10 pm and < 5 wm) biornass and production rates. Smaller tintinnid species showed higher maximum growth rates. Nine species exhibited maximum growth rates which equalled or exceeded 2.0 doublings d-l, and 11 other species exceeded 1.0 doubling d-l. Their high abundance and rapid growth suggest that tintinnids were important grazers of nanoplankton and rapidly entered food webs in Narragansett Bay. plankton populations while permitting water exchange with the environment, obviate these prob- One of the major problems in plankton ecology is lems and have been used successfully to measure graz- estimation of growth rates and secondary production of ing and growth rates of natural microzooplankton zooplankton.
    [Show full text]
  • Phylogeny of the Order Tintinnida (Ciliophora, Spirotrichea) Inferred from Small- and Large-Subunit Rrna Genes
    The Journal of Published by the International Society of Eukaryotic Microbiology Protistologists J. Eukaryot. Microbiol., 0(0), 2012 pp. 1–4 © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists DOI: 10.1111/j.1550-7408.2012.00627.x Phylogeny of the Order Tintinnida (Ciliophora, Spirotrichea) Inferred from Small- and Large-Subunit rRNA Genes LUCIANA F. SANTOFERRARA,a,b GEORGE B. McMANUSa and VIVIANA A. ALDERb,c,d aDepartment of Marine Sciences, University of Connecticut, Groton, Connecticut, 06340, USA, and bDepartamento de Ecologı´a, Gene´tica y Evolucio´n, FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina, and cCONICET, Buenos Aires, Argentina and dInstituto Anta´rtico Argentino, Buenos Aires, Argentina ABSTRACT. Concatenated sequences of small- and large-subunit rRNA genes were used to infer the phylogeny of 29 species in six genera of Tintinnida. We confirmed previous results on the positions of major clusters and the grouping of various genera, including Stenosemella, the paraphyletic Tintinnopsis, the newly investigated Helicostomella, and some species of the polyphyletic Favella. Tintinnidium and Eutintinnus were found to be monophyletic. This study contributes to tintinnid phylogenetic reconstruc­ tion by increasing both the number of species and the range of genetic markers analyzed. Key Words. Ciliate, concatenated phylogeny, LSU rDNA, SSU rDNA, tintinnid. INTINNID ciliates play a key role as trophic link in (Santoferrara et al. 2012). Strombidinopsis sp. and Strombidi­ T planktonic food webs of estuarine and marine environ­ um rassoulzadegani were isolated from Long Island Sound ments (Lynn 2008). They are characterized by the presence of (USA; 41º16′N, 72º36′W), cultured as described by McManus a lorica, which has been the basis for taxonomy (Alder 1999; et al.
    [Show full text]
  • Responses of Marine Planktonic Protists to Amino Acids: Feeding Inhibition and Swimming Behavior in the Ciliate Favella Sp
    AQUATIC MICROBIAL ECOLOGY Vol. 47: 107–121, 2007 Published May 16 Aquat Microb Ecol OPENPEN ACCESSCCESS FEATURE ARTICLE Responses of marine planktonic protists to amino acids: feeding inhibition and swimming behavior in the ciliate Favella sp. Suzanne L. Strom1,*, Gordon V. Wolfe2, Kelley J. Bright1 1Shannon Point Marine Center, Western Washington University, 1900 Shannon Point Rd., Anacortes, Washington 98221, USA 2Department of Biological Sciences, California State University Chico, Chico, California 95929-0515, USA ABSTRACT: Feeding rates of the tintinnid Favella sp. on the dinoflagellate Heterocapsa triquetra were inhibited by a number of dissolved free amino acids (DFAAs), with inhibition inversely proportional to the size of the amino acid side chain. The most inhibitory compounds (valine, cysteine, proline, alanine, and ser- ine) reduced feeding to <20% of the control rate at a concentration of 20 µM. Inhibition was dose-depen- dent, with a threshold of ca. 200 nM for proline, and did not depend on ciliate feeding history (well-fed ver- sus starved). Inhibition occurred rapidly (<5 min after exposure) and was partially reversible upon removal of DFAAs. Detailed analysis of swimming did not reveal consistent changes in Favella sp. behavior upon Feeding by the tintinnid Favella sp., a common coastal planktonic ciliate, is strongly inhibited by certain dissolved exposure to inhibitory amino acids. In contrast to free amino acids. Feeding responses and swimming behavior Favella sp., the heterotrophic dinoflagellate Gyro- indicate a signaling function for the inhibitory amino acids. dinium dominans showed no feeding response to Chemical signaling of this type affects predator–prey inter- 20 µM DFAAs, while the tintinnid Coxliella sp.
    [Show full text]
  • The Horizontal Distribution of Siliceous Planktonic Radiolarian Community in the Eastern Indian Ocean
    water Article The Horizontal Distribution of Siliceous Planktonic Radiolarian Community in the Eastern Indian Ocean Sonia Munir 1 , John Rogers 2 , Xiaodong Zhang 1,3, Changling Ding 1,4 and Jun Sun 1,5,* 1 Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China; [email protected] (S.M.); [email protected] (X.Z.); [email protected] (C.D.) 2 Research School of Earth Sciences, Australian National University, Acton 2601, Australia; [email protected] 3 Department of Ocean Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong 4 College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China 5 College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China * Correspondence: [email protected]; Tel.: +86-606-011-16 Received: 9 October 2020; Accepted: 3 December 2020; Published: 13 December 2020 Abstract: The plankton radiolarian community was investigated in the spring season during the two-month cruise ‘Shiyan1’ (10 April–13 May 2014) in the Eastern Indian Ocean. This is the first comprehensive plankton tow study to be carried out from 44 sampling stations across the entire area (80.00◦–96.10◦ E, 10.08◦ N–6.00◦ S) of the Eastern Indian Ocean. The plankton tow samples were collected from a vertical haul from a depth 200 m to the surface. During the cruise, conductivity–temperature–depth (CTD) measurements were taken of temperature, salinity and chlorophyll a from the surface to 200 m depth. Shannon–Wiener’s diversity index (H’) and the dominance index (Y) were used to analyze community structure.
    [Show full text]
  • Morphological Versus Molecular Data – Phylogeny of Tintinnid Ciliates (Ciliophora, Choreotrichia) Inferred from Small Subunit Rrna Gene Sequences*
    ©Biologiezentrum Linz/Austria, download unter www.biologiezentrum.at Morphological versus molecular data – Phylogeny of tintinnid ciliates (Ciliophora, Choreotrichia) inferred from small subunit rRNA gene sequences* M i c h a e l a C . S TR ÜDER -K Y P KE & D e n i s H. L Y N N Abstract: Tintinnid ciliates are an abundant and important component of marine planktonic food webs. Traditionally classified together based on lorica morphology and the arrangement of the oral ciliature, they include 76 recent genera in 15 families. In- fraciliary data are still rare for tintinnids. Therefore, lorica morphology is the primary, but very disputed, character for species de- termination. Previous sequence analyses of 16 representative species of the major oligotrich orders showed that the subclasses Oli- gotrichia (excluding Halteria) and Choreotrichia form a monophyletic group and that tintinnids are indeed monophyletic cho- reotrichs, a sistergroup to the order Choreotrichida. We collected 12 additional tintinnid species, representing five families to re- fine the phylogenetic analyses: Amphorellopsis acuta, Codonella apicata, Dictyocysta reticulata, Eutintinnus fraknoi, Eutintinnus sp., Favella sp., Salpingella acuminata, Steenstrupiella steenstrupii, Stenosemella ventricosa, Tintinnopsis radix, T. subacuta, and T. uru- guayensis. Our data clearly refute the idea of inference of phylogenetic relationships based on lorica characteristics. Key words: Gulf Stream, lorica variation, paraphyly, Tintinnida, Tintinnopsis. Introduction & WILBERT 1989; BLATTERER & FOISSNER 1990, FOISS- NER & O’DONOGHUE 1990; SNIEZEK et al. 1991; SNYDER The generalized tintinnid cell is conical or funnel- & BROWNLEE 1991; CHOI et al. 1992; PETZ & FOISSNER shaped, attached with a peduncle to a lorica that is en- 1993; SONG 1993; WASIK & MIKOLAJCZYK 1994; PETZ et dogenously produced.
    [Show full text]
  • Diversity and Distribution of Tintinnid Ciliates Along Salinity Gradient in The
    Diversity and distribution of tintinnid ciliates along salinity gradient in the Pearl River Estuary in southern China Haibo Li, Chaofeng Wang, Chen Liang, Yuan Zhao, Wuchang Zhang, Gérald Grégori, Tian Xiao To cite this version: Haibo Li, Chaofeng Wang, Chen Liang, Yuan Zhao, Wuchang Zhang, et al.. Diversity and distribution of tintinnid ciliates along salinity gradient in the Pearl River Estuary in southern China. Estuarine, Coastal and Shelf Science, Elsevier, 2019, 226, pp.106268. 10.1016/j.ecss.2019.106268. hal-02185988 HAL Id: hal-02185988 https://hal-amu.archives-ouvertes.fr/hal-02185988 Submitted on 17 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Diversity and distribution of tintinnid ciliates along salinity gradient in the Pearl River Estuary in southern China ∗ ∗∗, Haibo Lia,b,d,1, Chaofeng Wanga,b,c,d,1, Chen Lianga,b,c,d, Yuan Zhaoa,b,d, , Wuchang Zhanga,b,d, Gérald Grégorie, Tian Xiaoa,b,d a CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071,
    [Show full text]
  • Global Biogeography of Marine Tintinnids
    MARINE ECOLOGY PROGRESS SERIES Published March 31 Mar. Ecol. Prog. Ser. l Global biogeography of marine tintinnids Richard W. Pierce *, Jefferson T. Turner Biology Department, and Center for Marine Science and Technology, University of Massachusetts Dartmouth, North Dartmouth, Massachusetts 02747, USA ABSTRACT: Literature records of tintinnid distributions (272 references, 1899 to 1992) were plotted with a computer. Distributions at the genus level revealed several distinct biogeographic patterns: cosmopolitan, neritic, warm-water, boreal, and austral. Some of the factors that may account for these patterns are examined. At the species level, certain disjunct distributions are examined, including the bipolar distribution of Acanthostornella norvegica and the interoceanic distributions of tropical tintinnids. Endemicism of species within certain genera, such as Codonellopsis, was also found. INTRODUCTION taxonomy is based upon morphology of the lorica, or shell. Because tintinnid loricae are relatively sturdy, Tintinnids (Protozoa, Ciliata) have been known to preserve well and are captured in flne-meshed marine biologists since the beginnings of plankton plankton nets, there are many records of tintinnid study (Haeckel 1873, Daday 1887), and records for occurrences scattered throughout the literature. In tintinnid occurrences appear from all the oceans of the addition to studies on tintinnids or microzooplankton, world (Pierce & Turner 1992). Tintinnid biogeographic many such records come from collection in phyto- distributions in relation to hydrography are well- plankton samples. Tintinnid loricae have also left a known for certain areas including the North Atlantic fossil record dating back to the Ordovician (Tappan & (Campbell 1942, Gaarder 1946, Zeitzschel 1966, 1967, Loeblich 1973). Unfortunately, from a taxonomic point Lindley 1975), South Atlantic (Balech 1971, Souto of view, sizes and shapes of tintinnid loricae are highly 1981), Pacific (Kofoid & Campbell 1939, Campbell variable within species.
    [Show full text]
  • Functional Diversity of Marine Protists in Coastal Ecosystems Pierre Ramond
    Functional Diversity of Marine Protists in Coastal Ecosystems Pierre Ramond To cite this version: Pierre Ramond. Functional Diversity of Marine Protists in Coastal Ecosystems. Oceanography. Sorbonne Université, 2018. English. NNT : 2018SORUS210. tel-02495684 HAL Id: tel-02495684 https://tel.archives-ouvertes.fr/tel-02495684 Submitted on 2 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Sorbonne Université Ecole doctorale 227 Sciences de la Nature et de l'Homme - Evolution et Ecologie UPMC-CNRS Adaptation et Diversité en Milieu Marin - (UMR 7144), équipe EPEP, Station Biologique de Roscoff Ifremer – Centre de Brest, équipe DYNECO/PELAGOS Diversité Fonctionnelle des Protistes Marins dans l’Ecosystème Côtier Par Pierre Ramond Thèse de doctorat d’Ecologie et Evolution Dirigée par Colomban de Vargas, Raffaele Siano et Marc Sourisseau Dans le but d’obtenir le grade de Docteur de Sorbonne Université Présentée et soutenue publiquement le 19 Octobre 2018, devant un jury composé de : Pr. Elena Litchman Michigan State University, USA Rapporteur Pr. Christine Paillard Institut universitaire européen de la mer, Brest, France Rapporteur Dr. Ramiro Logares Institut de Ciències del Mar, CSIC, Barcelona, Espagne Examinateur Dr. Valérie David Université de Bordeaux, France Examinateur Pr.
    [Show full text]
  • Morphology and Ecology in Tintinnid Ciliates of the Marine Plankton: 4 Correlates of Lorica Dimensions
    in press in ACTA PROTOZOOLOGICA vol 49, issue 3 Morphology and Ecology in Tintinnid Ciliates of the Marine Plankton: 4 Correlates of Lorica Dimensions John R. Dolan Marine Microbial Ecology 8 Laboratoire d'Océanographie de Villefranche-sur-Mer UMR 7093 CNRS Université Pierre et Marie Curie Station Zoologique Observatoire Océanologique de Villefranche-sur-Mer 12 B.P. 28 06230 Villefranche-sur-Mer France [email protected] 16 Summary. Tintinnid ciliates, characterized by the possession of a lorica into which the ciliate cell can contract, are a common component of the marine microzooplankton. Lorica 20 architecture and size range widely and classically distinguishes species. Here relationships between ecological parameters and lorica dimensions (lorica oral diameter (LOD), lorica length (LL) and lorica volume (LV) are examined using data from literature reports. The relationships between lorica dimensions and reproductive potential, using maximum reported 24 growth rates of natural populations (n = 52 species) are assessed. Susceptibility to copepod predation and lorica dimensions are considered based on reports of clearance rates of Acartia species feeding on tintinnid ciliates (n = 7 species). Diet and lorica dimension is analyzed using data on mean maximum food size contained in field-caught cells (n = 20 species), and 28 preferred food size based on prey size associated with maximal reported clearance rates (n = 15 species). Overall, LOD is closely related to most of the ecological parameters. Maximum growth rate is related to LOD with smaller LODs corresponding to higher growth rates, in contrast to LL and LV. Maximum prey size is positively related to both LOD and LL but 32 more tightly with LOD.
    [Show full text]
  • Ciliates — Protists with Complex Morphologies and Ambiguous Early Fossil Record
    Marine Micropaleontology 119 (2015) 1–6 Contents lists available at ScienceDirect Marine Micropaleontology journal homepage: www.elsevier.com/locate/marmicro Ciliates — Protists with complex morphologies and ambiguous early fossil record Micah Dunthorn a,⁎,JereH.Lippsb,c,JohnR.Doland, Marie Abboud-Abi Saab e,ErnaAeschtf, Charles Bachy g, María Sonia Barría de Cao h,HelmutBergeri, William A. Bourland j, Joong Ki Choi k,JohnClampl, Mary Doherty m,FengGaon, Eleni Gentekaki o,JunGongp, Xiaozhong Hu q, Jie Huang r, Takashi Kamiyama s, Matthew D. Johnson t, Barbara Kammerlander u,v,SunYoungKimw,Young-OkKimx, Antonietta la Terza y, Michèle Laval-Peuto z, Diana Lipscomb aa, Christopher S. Lobban ab, Hongan Long ac, Pierangelo Luporini y, Denis H. Lynn ad, Miroslav Macek ae, Robert I. Mansergh af, Mercedes Martín-Cereceda ag, George G. McManus ah, David J.S. Montagnes ai, Geoffrey O. Ong'ondo aj, David J. Patterson ak, Blanca Pérez-Uz ag, Pablo Quintela-Alonso al,ag, Lúcia S.L. Safi am, Luciana F. Santoferrara ah, Bettina Sonntag u, Weibo Song n, Thorsten Stoeck a, Diane K. Stoecker an, Michaela C. Strüder-Kypke ao, Isabelle Trautmann a, Laura R.P. Utz ap, Adriana Vallesi y, Peter Vd'ačný aq, Alan Warren ar,ThomasWeisseu,as, Stephen A. Wickham at, Zhenzhen Yi au, Wuchang Zhang av, Zifeng Zhan av,RebeccaZufallaw, Sabine Agatha at,⁎ a Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany b University of California Museum of Paleontology, Berkeley, CA, USA c John D. Cooper Archaeological and Paleontological Center, Santa Ana,
    [Show full text]