25Th Latin-American Colloquium of Geosciences

Total Page:16

File Type:pdf, Size:1020Kb

25Th Latin-American Colloquium of Geosciences th 25 Latin-American Colloquium of Geosciences Program: Thursday, 19.09.2019 - morning sessions 8:30 - 9:15 Welcome address (Lecture hall H2) Lecture hall H2 Lecture hall H3 Lecture hall H4 Subduction zone seismotectonics Ocean, sediment, and climate dynamics Crustal evolution of ancient terranes Hosted by IPOC and PICTURES Conveners: H. Kopp, O. Oncken Conveners: S. Kasemann, G. Schmiedl Conveners: B. Weber, W. Teixeira 9:20 - Structure and geodynamics of the collision zones of the Nazca 9:20 - Tipping elements of the climate system and marine 9:20 - The Paleoproterozoic Minas Orogen, São Francisco Craton 9:50 and Juan Fernández Ridges with South America 9:50 sediments: The western tropical Atlantic and the adjacent 9:50 reviewed: insights into an evolving accretionary-collision Keynote E. Contreras-Reyes Keynote South America Keynote orogenic system and global implications C. Chiessi, S. Mulitza, S. Crivellari, C. Häggi, N. Höppner, S. W. Teixeira Kasemann, H. Kuhnert, R. Portilho-Ramos, M. Prange, G. Sampaio, A. Sawakuchi, E. Schefuß, I. Voigt, Y. Zhang 9:50 - Upper plate stress field in the northern Chile forearc from 9:50 - The sediment archive of the western Campeche Bank: From 9:50 - Multi-chronometer thermochronological modelling of the 10:10 earthquake source mechanisms 10:10 Chicxulub impact to Loop Current evolution 10:10 Late Neoproterozoic to recent t-T-evolution of the SE coastal B. Schurr, L. Lehmann, C. Sippl, W. Bloch C. Hübscher, D. Nürnberg region of Brazil U. A. Glasmacher, F. Krob, M. Karl, M. Perner, P. C. Hackspacher, D. F. Stockli 10:10 - 3D seismic tomography and seismotectonics of the 10:10 - "The present is the key to the past": An actualistic study on 10:10 - Coeval Early Ediacaran Breakup of Amazonia, Baltica, and 10:30 Ecuadorian margin inferred from the 2016 Mw 7.8 Pedernales 10:30 the foraminiferal assemblages of Albuquerque Cay 10:30 Laurentia: Evidence for a large igneous province from SIMS U- aftershock sequence (Colombian Caribbean) Pb dating of mafic dykes from Mexico. S. Leon-Rios, A. Rietbrock, H. Agurto-Detzel, A. Alvarado, A. G. D. Patarroyo Camargo, D. F. Gómez González B. Weber, A. Schmitt, A. Cisneros de León, R. González- Meltzer, B. Edwards, C. Lynner, F. Rolandone, J. M. Nocquet, Guzmán L. Soto-Cordero, M. Regnier, M. Hoskins, M. Ruiz, P. Charvis, S. Beck, Y. Font 10:30 – 11:00 Coffee break (Museum) 11:00 - Present Status and Future Plans for the Chilean Seismic 11:00 - Upper Cretaceous palaeosols as basin analysis proxies: Bauru 11:10 - Uranium zonation refined U-Pb thermochronology – 11:30 Network 11:30 group (SE Brazil) and Los Llanos formation (NW Argentina) 11:30 application to the Northern Andes of South America Keynote S. Barrientos Parras Keynote G. Basilici, M. V. Soares Theodoro , F. R. Abrantes Júnior, A. A. Paul, R. A. Spikings, D. Chew, S. J. Daly Cardoso Ribeiro 11:30 - Structure of and dynamic processes within the crust of 11:30 - Autogenic controls on the distribution of sediments and 11:30 - Extension of the Ordovician pre-Andean Famatinian arc in 11:50 Northern Chile (IPOC area) based on ambient seismic noise 11:50 palaeosols in ancient distributive fluvial systems (Bauru basin, 11:50 northeastern Mexico: Peregrina tonalite correlations and repeating Earthquakes Brazil) J. A. Ramirez-Fernandez, E. A. Alemán-Gallardo, F. Velasco- C. Sens-Schönfelder, F. Tilmann, B. Heit, R. Green M. V. Theodoro Soares, G. Basilici, T. da Silva Marinho , A. Tapia, U. Jenchen, R. Becchio Guillermo Martinelli, A. Marconato, F. Romério Abrantes Júnior, R. Vásconez Garcia 11:50 - Filling the gap in a double seismic zone: Intraslab seismicity in 11:50 - Evidences of early Holocene glacial advance in Lachman 11:50 - PTt-paths of high pressure metamorphic rocks in the Sierra 12:10 Northern Chile 12:10 Beach, James Ross Island, Antarctica; and high latitude 12:10 Pie Palo (W-Argentina): evolution of a flat collisional wedge C. Sippl, B. Schurr, T. John, S. Hainzl linkages in southern hemisphere during a "hard" continent-arc collision M. Romero, J. A. Strelin, M. R. Kaplan A. Willner, R. Anczkiewicz,, J. Glodny, J. Pohlner, M. Sudo, C. R. van Staal, G. Vujovich 12:10 - The Central Andean double seismic zone: seismological 12:10 - Evidences of permafrost degradation in the Arid Andes and its 12:10 - Multi-chronometer thermochronological modelling of the 12:30 constraints on the processes within 12:30 potential effect on hydrological resources 12:30 Late Neoproterozoic to recent t-T-evolution of the Argentine W. Bloch, T. John, J. Kummerow, B. Schurr, P. Salazar, P. J. P. Milana, L. Schrott, S. Wohnlich passive continental margin Wigger, S. A. Shapiro U. A. Glasmacher, S. Kollenz, E. A. Rossello, D. F. Stockli, R. E. Pereyra Program: Thursday, 19.09.2019 - afternoon sessions 12:30 - 13:30 Lunch break Subduction earthquake dynamics Crustal evolution of ancient terranes Hosted by IPOC and PICTURES Conveners: B. Schurr, D. Lange Conveners: B. Weber, W. Teixeira 13:30 - Understanding seismic and tsunami hazards in the Chilean 13:40 - Ages and internal structure of plutons in the Dominican 14:00 subduction zone: lessons and perspectives from the 14:00 segment of the Caribbean Island Arc Keynote framework of interdisciplinary studies B. Härtel, O. Frei, K. P. Stanek G. González L. 14:00 - Unveiling giant tsunamigenic earthquakes along the hyperarid 14:00 - 3D density structure of the Caribbean lithosphere derived 14:20 Atacama Desert in the major Northern Chile Seismic Gap at 14:20 from Vertical Gravity Gradients: Implications for regional multimillennial timescales tectonic boundaries and the characterisation of geohazards G. Vargas, D. Salazar, J. Goff A. M. Gomez Garcia, C. Meeßen, M. Scheck-Wenderoth, Á. González, G. Monsalve, J. Bott, A. Bernhardt, G. Bernal 14:20 - Multi-Array Back-Projection: Rupture complexities due to 14:20 - Paleomagnetism of Middle-Late Jurassic Bahía Laura Group 14:40 asperities along-dip barriers during the 2007 Mw 7.7 Tocopilla 14:40 (Patagonia, southern Argentina) earthquake V. Ruiz González, C. G. Puigdomenech, E. M. Renda, B. F. Vera, F. Tilmann, J. Saul Boltshauser, C. B. Zaffarana, H. Vizán 14:40 - Earthquake scaling models applied to seismicity analysis in 14:40 – Regional depocenter geometry and subsurface frontal 15:00 Chile 15:00 structural features in the foothills and western foreland llanos C. Siegel, J. Campos, B. Derode, P. Toledo Sub-Andean basin (Colombia) based on gravimetric modeling P. N. Morales Hernandez, A. Kammer, J. C. Alzate, M. Garcia 15:00 - Role of Continental Lower Crust Following the 2010 Mw 8.8 15:20 Maule Earthquake: Insights from a Power-Law Rheology Model with Dislocation Creep C. Peña, O. Heidbach, M. Moreno, J. Bedford, M. Ziegler, A. Tassara, O. Oncken 15:20 - 17:30 Coffee & posters day 1 (Museum) 17:30 - 18:30 Evening lecture (Lecture hall H1) Program: Friday, 20.09.2019 - morning sessions Lecture hall H2 Lecture hall H3 Lecture hall H4 Climate and erosion in the Andes Volcanism and tectonics Subduction earthquake dynamics Hosted by IRTG-StRATEGy Hosted by IPOC and PICTURES Conveners: M. Scheck-Wenderoth, M. Strecker Conveners: J. Behrmann, M. Rosenau Conveners: B. Schurr, D. Lange 8:30 - Paleoclimate reconstructions from fluvial sedimentary deposits in 8:30 - The Central and Southern Volcanic Zones of the Andes, what 8:30 - Seismic imaging of the source region of great megathrust 9:00 an intermontane basin in the southern Central Andes - A case 9:00 we know and what we do not know 9:00 earthquakes offshore Chile: an overview of recent results Keynote study from the Quebrada del Toro, NW Argentina Keynote I. Petrinovic Keynote A. Tréhu S. Tofelde, T. Schildgen, M. Strecker, B. Bookhagen, A. Wickert, S. Savi, H. Pingel, H. Wittmann, R. Alonso 9:00 - Paleoclimate, Paleoenvironment, and Paleoecology of Neogene 9:00 - The Quaternary Payún Matrú caldera, andean back-arc of the 9:00 - Slab hydration: combining constraints from oceanic plate 9:20 Central America: Bridging Continents and Oceans (NICA-BRIDGE) 9:20 Southern Volcanic Zone: insights into its caldera-forming 9:20 structure and intraslab seismicity S. Kutterolf, M. Brenner, A. Freundt, J. Kallmeyer, S. Krastel, S. eruption deposits J. Geersen, C. Sippl Katsev, A. Meyer, L. Pérez, J. Rausch, A. Saballos, A. Schwalb, W. I. Hernando, I. Petrinovic, D. Gutiérrez, J. Bucher, T. Fuentes, Strauch E. Aragón 9:20 - Deciphering a steep erosional gradient in the hyperarid core of 9:20 - Distributed transpressive deformation in the Southern Andes: 9:20 - Instrumental monitoring of shallow slip events on active 9:40 the Atacama Desert, northern Chile 9:40 Insights from low-temperature geochronology and DEM- 9:40 faults reveals the ability of velocity weakening behaviour at J. Mohren, S. A. Binnie, B. Ritter, D. A. Lopez, T. J. Dunai analysis shallow crustal levels P. Victor P. Göllner, J. O. Eisermann, U. Riller P. Victor, A. Müting, G. González L., O. Oncken 9:40 - Impacts of climate and humans on vegetation in northeastern 9:40 - Volcano-tectonic analysis at the northern terminus of the 9:40 - Seafloor geodesy to monitor deformation offshore Northern 10:00 Brazil during the late Holocene 10:00 Liquiñe-Ofqui Fault Zone (38°S): The Copahue Volcano, 10:00 Chile (GeoSEA) C. Alves de Moraes, H. Behling, M. Accioly Teixeira de Oliveira Argentina D. Lange, H. Kopp, K. Hannemann, F. Petersen, J. Bedford, S. E. Pitzke, P. Göllner, J. O. Eisermann, I. Petrinovic, U. Riller Barrientos, E. Contreras-Reyes 10:00 - 10:30 Coffee break (Museum) Mountain building and deformation in the Andes Volcanism and tectonics Natural resources Hosted by IRTG-StRATEGy Hosted by Wintershall-DEA Conveners: M. Scheck-Wenderoth, M. Strecker Conveners: J. Behrmann, M. Rosenau Conveners: M. Mohr, N. Buurman 10:30 - Interplay between constructive deep mechanisms building the 10:40 - Processes culminating in the 2015 phreatic explosion at 10:40 - Multistage evolution of a Neoproterozoic quartz-gold vein 11:00 Central Andes and the stress field 11:00 Lascar volcano, Chile, monitored by multiparametric data 11:00 mineralization, Dom Feliciano orogenic belt, Uruguay Keynote L.
Recommended publications
  • Appendix A. Supplementary Material to the Manuscript
    Appendix A. Supplementary material to the manuscript: The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas 1. Continental crust beneath the CVZ Country Rock The basement beneath the sampled portion of the CVZ belongs to the Paleozoic Arequipa- Antofalla terrain – a high temperature metamorphic terrain with abundant granitoid intrusions that formed in response to Paleozoic subduction (Lucassen et al., 2000; Ramos et al., 1986). In Northern Chile and Northwestern Argentina this Paleozoic metamorphic-magmatic basement is largely homogeneous and felsic in composition, consistent with the thick, weak, and felsic properties of the crust beneath the CVZ (Beck et al., 1996; Fig. A.1). Neodymium model ages of exposed Paleozoic metamorphic-magmatic basement and sediments suggest a uniform Proterozoic protolith, itself derived from intrusions and sedimentary rock (Lucassen et al., 2001). AFC Model Parameters Pervasive assimilation of continental crust in the Central Andean ignimbrite magmas is well established (Hildreth and Moorbath, 1988; Klerkx et al., 1977; Fig. A.1) and has been verified by detailed analysis of radiogenic isotopes (e.g. 87Sr/86Sr and 143Nd/144Nd) on specific systems within the CVZ (Kay et al., 2011; Lindsay et al., 2001; Schmitt et al., 2001; Soler et al., 2007). Isotopic results indicate that the CVZ magmas are the result of mixing between a crustal endmember, mainly gneisses and plutonics that have a characteristic crustal signature of high 87Sr/86Sr and low 145Nd/144Nd, and the asthenospheric mantle (low 87Sr/86Sr and high 145Nd/144Nd; Fig. 2). In Figure 2, we model the amount of crustal assimilation required to produce the CVZ magmas that are targeted in this study.
    [Show full text]
  • Volcán Lascar
    Volcán Lascar Región: Antofagasta Provincia: El Loa Comuna: San Pedro de Atacama Coordenadas: 21°22’S – 67°44’O Poblados más cercanos: Talabre – Camar – Socaire Tipo: Estratovolcán Altura: 5.592 m s.n.m. Diámetro basal: 8.9 km Área basal: 62.2 km2 Volumen estimado: 28.5 km3 Última actividad: 2015 Última erupción mayor: 1993 Volcán Lascar. Vista desde el norte Ranking de riesgo (Fotografía: Gabriela Jara, SERNAGEOMIN) 14 específico: Generalidades El volcán Láscar corresponde a un estratovolcán compuesto, elongado en dirección este-oeste, activo desde hace unos 240 ka y emplazado en el margen oeste de la planicie altiplánica. Está conformado por lavas andesíticas, que alcanzan más de 10 km de longitud, y por potentes lavas dacíticas que se extienden hasta 5 km, las que fueron emitidas desde los flancos NO a SO. La lava más reciente se estima en 7 mil años de antigüedad. En los alrededores del volcán se reconocen depósitos de flujo y caída piroclástica, además de numerosos cráteres de impacto asociados a la eyección de bombas durante erupciones plinianas y subplinianas. El principal evento eruptivo durante su evolución se denomina Ignimbrita Soncor, generado hace unos 27 ka al oeste del volcán y con un volumen estimado cercano a los 10 km3. En la cima de este volcán se observan seis cráteres, algunos anidados, y el central de estos se encuentra activo. Registro eruptivo Este volcán ha presentado alrededor de 30 erupciones explosivas desde el siglo XIX, lo que lo convierte en el volcán más activo del norte de Chile. Estos eventos han consistido típicamente en erupciones vulcanianas de corta duración, con emisión de ceniza fina y proyecciones balísticas en un radio de 5 km, donde el último evento de este tipo ocurrió el 30 de octubre del 2015.
    [Show full text]
  • Scale Deformation of Volcanic Centres in the Central Andes
    letters to nature 14. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides of 1–1.5 cm yr21 (Fig. 2). An area in southern Peru about 2.5 km and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). east of the volcano Hualca Hualca and 7 km north of the active 15. Hansen, M. (ed.) Constitution of Binary Alloys (McGraw-Hill, New York, 1958). 21 16. Emsley, J. (ed.) The Elements (Clarendon, Oxford, 1994). volcano Sabancaya is inflating with U LOS of about 2 cm yr . A third 21 17. Tanaka, H., Takahashi, I., Kimura, M. & Sobukawa, H. in Science and Technology in Catalysts 1994 (eds inflationary source (with ULOS ¼ 1cmyr ) is not associated with Izumi, Y., Arai, H. & Iwamoto, M.) 457–460 (Kodansya-Elsevier, Tokyo, 1994). a volcanic edifice. This third source is located 11.5 km south of 18. Tanaka, H., Tan, I., Uenishi, M., Kimura, M. & Dohmae, K. in Topics in Catalysts (eds Kruse, N., Frennet, A. & Bastin, J.-M.) Vols 16/17, 63–70 (Kluwer Academic, New York, 2001). Lastarria and 6.8 km north of Cordon del Azufre on the border between Chile and Argentina, and is hereafter called ‘Lazufre’. Supplementary Information accompanies the paper on Nature’s website Robledo caldera, in northwest Argentina, is subsiding with U (http://www.nature.com/nature). LOS of 2–2.5 cm yr21. Because the inferred sources are more than a few kilometres deep, any complexities in the source region are damped Acknowledgements such that the observed surface deformation pattern is smooth.
    [Show full text]
  • Volcanes Cercanos Volcanes Cercanos
    Localidades al interior de un radio de 30 km respecto de volcanes activos Volcanes cercanos Localidad Comuna Provincia Región Olca, Irruputuncu Collaguasi Pica Iquique Tarapacá Taapaca, Parinacota Putre Putre Parinacota Tarapacá Callaqui, Copahue Ralco Santa Bárbara Bio Bio Bio Bio Nevados de Chillán Recinto Los Lleuques Pinto Ñuble Bio Bio Villarrica, Quetrupillán, Lanín, Sollipulli Curarrehue Curarrehue Cautín La Araucanía Llaima, Sollipulli Mellipeuco Melipeuco Cautín La Araucanía Villarrica, Quetrupillán, Lanín Pucón Pucón Cautín La Araucanía Llaima Cherquenco Vilcún Cautín La Araucanía Villarrica Lican Ray Villarrica Cautín La Araucanía Villarrica Villarrica Villarrica Cautín La Araucanía Llaima, Lonquimay Curacautín Curacautín Malleco La Araucanía Llaima, Lonquimay Lonquimay Lonquimay Malleco La Araucanía Villarrica, Quetrupillán, Lanín, Mocho Coñaripe Panguipulli Valdivia Los Rios Calbuco, Osorno Alerce Puerto Montt Llanquihue Los Lagos Calbuco, Osorno Las Cascadas Puerto Octay Osorno Los Lagos Chaitén, Michinmahuida, Corcovado Chaitén Chaitén Palena Los Lagos Hornopirén, Yate, Apagado, Huequi Rio Negro Hualaihue Palena Los Lagos Localidades al interior de un radio de 50 km respecto de volcanes activos Volcanes cercanos Localidad Comuna Provincia Región Olca, Irruputuncu Collaguasi Pica Iquique Tarapacá Taapaca, Parinacota Putre Putre Parinacota Tarapacá San José San Alfonso San José de Maipo Cordillera Metropolitana San José San José de Maipo San José de Maipo Cordillera Metropolitana Tupungatito La Parva Lo Barnechea Santiago
    [Show full text]
  • International Civil Aviation Organization South
    INTERNATIONAL CIVIL AVIATION ORGANIZATION SOUTH AMERICAN REGIONAL OFFICE ICAO SOUTH AMERICAN REGION VOLCANIC ASH CONTINGENCY PLAN (VACP/SAM) Version 1.1 (First Edition) August 2015 PAGE LEFT BLANK INTENTIONALLY SAM Volcanic Ash Contingency Plan (VACP/SAM) 1 TABLE OF CONTENTS Foreword Registry of amendments and corrigenda Acronyms and abbreviations Definitions applicable to the VACP/SAM 1. Foreword 2. General 2.1 Declaration of a danger area 2.2 Phases of an event 3. Pre-eruption phase 3.1 General 3.2 Action by the originating ACC 3.3 Action by adjacent ACCs 3.4 Action by the ATFM unit 4. Start of the eruption phase 4.1 General 4.2 Action by the originating ACC 4.3 Action by adjacent ACCs 4.4 Action by the ATFM unit 5. On-going eruption phase 5.1 General 5.2 Action by the ACC 5.3 Action by ATFM units 6. Recovery phase 7. Volcanic ash emergency response at aerodromes 8. Reference documents Appendix A General guidance for the development of ATS volcanic ash contingency plans Appendix B Recognition of a volcanic ash encounter in flight Appendix C Communication and dissemination of pilots’ reports of volcanic activity Appendix D Action to be taken by Meteorological Watch Offices (MWOs) in the event of a volcanic eruption Appendix E Action to be taken by Volcanic Ash Advisory Centres (VAACs) in the event of a volcanic eruption 2 SAM Volcanic Ash Contingency Plan (VACP/SAM) Appendix F Recommended action by the States of the Operator/Registry with regards to aircraft operations in the event of a volcanic eruption Appendix G Example of a safety
    [Show full text]
  • Along Arc Petrochemical Variations in the Southernmost Andean SVZ (43.5-46°S): Implications for Magma Genesis
    O EOL GIC G A D D A E D C E I H C I L E O S F u n 2 d 6 la serena octubre 2015 ada en 19 Along Arc Petrochemical Variations in the Southernmost Andean SVZ (43.5-46°S): Implications for Magma Genesis Charles R Stern* Department of Geological Sciences, University of Colorado, Boulder, Colorado 80309-0399, USA José Antonio Naranjo SERNAGEOMIN, Av. Santa María 0104, Santiago, Chile *Contact email: [email protected] Abstract. The southernmost Andean SVZ (43.5-46°S) (Sellés et al., 2004) further to the north. Among the smaller consists of six stratovolcanoes (Yanteles, Melimoyu, MEC, the Puyuhuapi group are HA type basalts (Fig. 2; Mentolat, Macá, Cay, Hudson). Hudson and Melimoyu are Lopéz et al. 1995a). In contrast, the Palena group just to high-K (K2O>1 wt% at 50 wt% SiO2), high incompatible the north of are LA type basalts (Fig. 2; Watt et al., 2013), element abundance (HA) types. Macá and Cay are low-K, as are all other MEC cones further to the south in the low incompatible element abundance (LA) centers, while Mentolat has very low K, Rb and other incompatible SSVZ. This paper addresses these regional variations in element contents (VLA), similar to Huequi, Calbuco and magma types along and across the SSVZ arc. Nevados de Longaví further north. Such differences have been attributed to differences in degree of mantle partial melting due to variability in the extent of contamination of the mantle source region by hydrous fluids and/or melts derived from subducted oceanic lithosphere, possibly as a result in down-dip temperature changes at the top of the subducted slab.
    [Show full text]
  • Processes Culminating in the 2015 Phreatic Explosion at Lascar Volcano, Chile, Monitored by Multiparametric Data Ayleen Gaete1, Thomas R
    https://doi.org/10.5194/nhess-2019-189 Preprint. Discussion started: 25 June 2019 c Author(s) 2019. CC BY 4.0 License. Processes culminating in the 2015 phreatic explosion at Lascar volcano, Chile, monitored by multiparametric data Ayleen Gaete1, Thomas R. Walter1, Stefan Bredemeyer1,2, Martin Zimmer1, Christian Kujawa1, Luis Franco3, Juan San Martin4, Claudia Bucarey Parra3 5 1 GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany 2 GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany 3 Observatorio Volcanológico de Los Andes del Sur (OVDAS), Servicio Nacional de Geología y Minería (SERNAGEOMIN), Temuco, Chile. 4 Physics Science Department, Universidad de la Frontera, Casilla 54-D, Temuco, Chile. 10 Correspondence to: Ayleen Gaete ([email protected]) Abstract. Small steam-driven volcanic explosions are common at volcanoes worldwide but are rarely documented or monitored; therefore, these events still put residents and tourists at risk every year. Steam-driven explosions also occur frequently (once every 2-5 years on average) at Lascar volcano, Chile, where they are often spontaneous and lack any identifiable precursor activity. Here, for the first time at Lascar, we describe the processes culminating in such a sudden 15 volcanic explosion that occurred on October 30, 2015, which was thoroughly monitored by cameras, a seismic network, and gas (SO2 and CO2) and temperature sensors. Prior to the eruption, we retrospectively identified unrest manifesting as a gradual increase in the number of long-period (LP) seismic events in 2014, indicating an augmented level of activity at the volcano. Additionally, SO2 flux and thermal anomalies were detected before the eruption.
    [Show full text]
  • Application of INSAR Interferometry and Geodetic Surveys for Monitoring Andean Volcanic Activity : First Results from ASAR-ENVISAT Data
    6th International Symposi um on Andean Geodynamics (ISAG 2005, Barcelona), Extended Abstracts: 115-118 Application of INSAR interferometry and geodetic surveys for monitoring Andean volcanic activity : First results from ASAR-ENVISAT data S. Bonvalot (1,2,4), J.-L. Froger (1,3,4), D. Rémy (1,2,4), K. Bataille (5), V. Cayol (3), J. Clavera (6), D. Comte (4), G. Gabalda (1,2,4), K. Gonzales (7), L. Lara (6), D. Legrand (4), O. Macedo (8), J. Naranjo (6), P. Mothes (9), A. Pavez (1,10), & C. Robin (1,3,4) (1) IRD (Institut de Recherche pour le Développement) - [email protected], [email protected], [email protected] ; (2) UMR5563 Toulouse, France; (3) UMR6524 Clermont-Ferrand, France; (4) Deptos de Geofisica / Geologia, Facultad de Ciensas y Matematicas, Universidad de Chile , Blanco Encalada 2002, Santiago, Chile ; (5) Universidad de Concepcion, Chile; (6) SERNAGEOMIN, Santiago, Chile ; (7) CON IDA, Lima, Perù, (8) Instituto Geofisico dei Perù, Arequipa, Perù ; (9) Instituto Geofisico, Escuela Politecnica Nacional, Quito, Ecuador ; (10) Institut de Physique du Globe de Paris, Lab. de Gravimétrie et Géodynamique KEYWORDS : Radar interferometry, geodetic surveys, ground deformations, Andes, volcanoes INTRODUCTION Within the last few years, several SAR interferometry studies mostly based on ERS-IIERS-2 radar data have been conducted to monitor the volcanic deformations along the South American volcanic arc. They allowed a first evaluation of the potentialities of INSAR imaging in the northern, central and southern volcanic zones (respectively NVZ, CVZ and SVZ) as weil as the first quantitative satellite measurements of volcanic unrest since the initial launch of ERS-l satellite (1992) to nowdays.
    [Show full text]
  • Indirect Tephra Volume Estimations Using Theorical Models for Some Chilean Historical Volcanic Eruptions with Sustained Columns J.E
    Indirect tephra volume estimations using theorical models for some Chilean historical volcanic eruptions with sustained columns J.E. Romero*1,2 , J.G. Viramonte 3 & R. A. Scasso 4 (1) Universidad de Atacama, Departamento de Geología. Copayapu 485, Copiapó. (2) Proyecto Archivo Nacional de Volcanes, www.archivonacionaldevolcanes.cl (3) INENCO – GEONORTE Universidad Nacional de Salta-CONICET, Av. Bolivia 5150–4400, Salta , Argentina (4)IGeBA-CONICET, Universidad de Buenos Aires, Departamento de Ciencias Geológicas, Int. Guiraldes 2160, C1428EHA, Ciudad Universitaria, Pab. II, Buenos Aires, Argentina. * Presenting Author’s email: [email protected] Introduction During explosive volcanic eruptions, diverse pyroclastic products are discharged from an eruptive column. Those columns are divided into three zones; 1) a basal gas thrust one, 2) medial convective and 3) a top umbrella region (Sparks, 1986) as is indicated in figure 1a. In this last one, where the column is dispersed laterally and radially forming a dispersion cloud or volcanic plume, the column reaches an Ht region due its momentum (Fig.1a). There has been defined two types of eruptive columns in relation with the time between single explosions. If the time between explosions exceeds the time of ascension of a column until its Ht height, the column is thermal, and in the opposite case, if the ascension time is smaller than the separation between explosions, this column is sustained (Sparks, 1986; Carey and Bursik, 2000). A good agreement has been found in the prediction of column heights and field observations for the case of columns which extends higher than the tropopause (Settle, 1978; Wilson et al, 1978; Sparks and Wilson, 1982; Sparks, 1986).
    [Show full text]
  • Geochemistry and Tectonics of the Chilean 80Uthern Andes Basaltic Quaternary Volcanism (37-46°8)
    Geochemistry and tectonics of the Chilean 80uthern Andes basaltic Quaternary volcanism (37-46°8) Leopoldo López-Escobar José Cembrano Departamento de Geologla, Universidad de Chile, Casilla 13518, Santiago 21 , Chile Hugo Moreno ABSTRACT Between latitudes 37° and 46°S 01 the Andes, the Nazca-South America Plate convergen ce Is currently slightly oblique, Postglacial volcanism has been continuous and intense, being expressed as numerous composite stratovolcanoes (SV) and hundreds 01 minoreruptive centers (MEC). The overall trend 01 the volcanic are is NNE (- N100E), and its main structural leature is Ihe 1,000 km long, also NNE-trending, Uquiñe-Olqui lault zone (lOFZ). Some MEC are spatially associated wilh the main NNE-trending lineaments 01 the lOFZ; others, such as Ihe Carrán-los Venados volcanic group (40.3°S), lorm N50-700E clusters, oblique to the overall trend 01 the volcanic are. Between 37° a,d 41.5°S, Central Southem Volcanic Zone (CSVZ), the SV lorm either N50-600W or N50-700E alignments. Between 41.5° and 46°S, South Southem Volcanic Zone (SSVZ), Ihe distribution 01 SV is similar. The alignment 01 parasitic vents, MEC and SV suggests that the direction O'H .. in Ihe CSVZ and SSVZ is roughly N50-700E, which may rellect a transpressional tectonic regime, 01 m resulting lrom a combination 01 dextral strike-slip and shortening across the are. Most young extensional NE-trending volcanic chains (late Pleistocene-Holocene), including SV ± MEC contain mainly basal tic rocks. This is consistent with a short residen ce time 01 magmas in the crust. Older volcanic complexes (Eariy Pleistocene) and volcanic edil ices controlled by NW-trending contractional Iractures and laults present not only basaltic rocks, but also medium andesites, dacites and even rhyolites.
    [Show full text]
  • Late Holocene Eruptive Activity at Nevado Cayambe Volcano, Ecuador
    1; . II Bull Volcano1 (1998) 59:451459 O Springer-Verlag 1998 P. Samaniego * M. Monzier . C. Robin M. L. HaII- Late Holocene eruptive activity at Nevado Cayambe Volcano, Ecuador Received: 5 July 1997 I Accepted: 21 October 1997 Abstract Four Late Holocene pyroclastic units com- Ecuador, 60 km northeast of Quito (Fig. 1). During the posed of block and ash flows, surges, ashfalls of silicic last centuries, the only signs of activity on this large andesite and dacite composition, and associated lahar edifice have been strong sulphur smells reported by deposits represent the recent products emitted by mountaineers. However, in a paper summarizing the domes on the upper part of Nevado Cayambe, a large Holocene tephrostratigraphy of the principal Ecuado- ice-capped volcano 60 km northeast of Quito. These rian volcanoes, Hall and Mothes (1994) report six re- units are correlated stratigraphically with fallout depos- gional fallout deposits probably related to recent activi- its (ash and lapilli) exposed in a peat bog. Based on I4C ty of Nevado Cayambe (i.e., < 10000 years BP). More- dating of the peat and charcoal, the following ages were over, a letter written in 1802 to A. Von Humboldt, re- obtained: - 910 years BP for the oldest unit, lating a volcanic event at Nevado Cayambe in 1785- 680-650 years BP for the second, and 400-360 years BP 1786, has recently been published (Ascásubi, 1802, in for the two youngest units. Moreover, the detailed "Briefe aus Amerika" by Ulrike Moheit, 1993). This tephrochronology observed in the peat bog and in oth- event, previously unknown to the volcanological com- er sections implies at least 21 volcanic events during the munity, seems to be the only historic eruption of the last 4000 years, comprising three principal eruptive volcano.
    [Show full text]
  • Volcano Fact Sheet
    Fire & Rain: An Exploration of Volcanoes and Rainforests in Latin America Selected Volcanoes of Latin America FACT SHEET 1 Ojos del Salado Ojos del Salado is a stratovolcano in the Andes on the Argentina–Chile border and the highest active volcano in the world at 6,893 meters. Elevation: 22,615′ (feet); First ascent: February 26, 1937 Sabancaya Sabancaya is an active 5,976-meter stratovolcano in the Andes of southern Peru, about 100 kilometers northwest of Arequipa. Elevation: 19,606′; Last eruption: 2003 Cotopaxi Cotopaxi is an active stratovolcano in the Andes Mountains, located near the capital of the Cotopaxi Province. Cotopaxi is about 50 kilometers south of Quito, and 33 kilometers northeast of the city of Latacunga, Ecuador. Elevation: 19,347′; Last eruption: August 2015; First ascent: Nov. 28, 1872 Ubinas Ubinas is an active 5,672-metre stratovolcano in the Andes of southern Peru. Until 2006, this stratovolcano had not erupted for about 40 years. Elevation: 18,609′; Last eruption: February 2014 Lascar Lascar, a stratovolcano, is the most active volcano of the northern Chilean Andes. Elevation: 18,346′; Last eruption: 2007; First ascent: October 30, 2015 Popocatépetl Popocatépetl is an active volcano, located in the states of Puebla, Mexico, and Morelos, in Central Mexico, and lies in the eastern half of the Trans-Mexican volcanic belt. Elevation: 17,802’; Last eruption: 2016; First ascent: 1519 Note: “First Ascent” is the first successful, documented attainment of the top of a mountain or volcano. In Latin America, the first ascent is often associated with colonialism, as they may be little or no physical evidence/documentation about the climbing activities of indigenous peoples living nearby.
    [Show full text]