Vertebrate Pests Committee List of Exotic Vertebrate Animals in Australia, May 2003……………………………………………………

Total Page:16

File Type:pdf, Size:1020Kb

Vertebrate Pests Committee List of Exotic Vertebrate Animals in Australia, May 2003…………………………………………………… Vertebrate Pests Committee List of Exotic Vertebrate Animals in Australia May 2003 Contact Details Background Vertebrate Pests Committee Secretary All species on this list (excluding those with B or C c\o Land Protection annotations) form a definitive record of the non- Department of Natural Resources & Mines indigenous vertebrate mammals, birds, amphibians GPO Box 2454 and reptiles held in Australia under State and Territory BRISBANE QLD 4001 legislation. (It is the responsibility of the holder of an Tel. 07 3405 5540 individual animal to ensure that they are also Fax. 07 3405 5551 compliant with Commonwealth legislation relating to Mobile. the possession and quarantine of exotic animals.) Email. [email protected] This list should be used as a reference by the Vertebrate Pests Committee and Commonwealth, Sustainable Wildlife Industries State and Territory agencies in controlling the entry, Environment Australia movement and keeping of exotic vertebrate animals. GPO Box 787 CANBERRA ACT 2601 This list may be subject to change from time to time Tel. 02 6274 2880 (with VPC approval), to incorporate changes in the Fax. 02 6274 1921Email. [email protected] taxonomic name of species. It may also be changed where additions have been made through the legal importation of new exotic species into Australia under References the provisions of the Environmental Protection and Biodiversity Conservation Act 1999 and the Christidis, L. and Boles, W. E. 1994. The Taxonomy Quarantine Act 1908. and Species of Birds of Australia and its Territories. RAOU Monograph 2. Each species, unless otherwise stated, has so far only be subjected to a general assessment of the risk it Frost, N.C. 1985. Amphibian Species of the World: a poses. Specific and thorough risk assessments will taxonomic and geographic reference. Kansas: Allen be indicated in the comments section. Press Inc. & Association of Systematics Collections. The attached list is ordered in Classes; Mammals, Golay, P., Smith, H.M., Broadley, D.G., Dixon, J.R., Aves, Reptilia, Amphibia. McCarthy, C., Rage, J.C., Schatti, B. & M. Toriba. 1993. Endoglyphs and other major venomous snakes This list is maintained by the Secretary, Vertebrate of the world: a checklist. Geneva: AZEMIOPS. Pests Committee and should be updated on a regular basis. All changes to this list should be made in Howard, R. and Moore, A. 1991. A Complete accordance with current VPC policy and must be Checklist of the Birds of the World. Academic Press, accepted unanimously by all VPC member agencies. London. Please contact Environment Australia for further Kingston, R. 1998. Keeping and Breeding Finches information about importation of exotic animals and Seed-eaters. Indruss Productions, New Farm. into Australia. Please note however, that animals imported under Environment Australia legislation Mehrtens, J.M. 1987. Living Snakes of the World. will usually also be subject to State and Territory New York: Sterling Publishing. legislative controls. i. e. the species must also appear on this VPC list. Sibley, C. and Monroe, B. 1990. Distribution and Taxonomy of Birds of the World. Yale University Please Note: This VPC List includes all exotic Press, New Haven. vertebrate animals in Australia on the basis of their pest potential down to a taxonomic level of species. Sokolov, V.E. 1988. Dictionary of Animal Names in Individual sub-species are not listed. Five Languages: Amphibians and Reptiles. Moscow: Russky Yazyk. Acknowledgment: VPC acknowledges the assistance Tortoises and Freshwater Turtles: An Action Plan for and advice of Paul Andrew, Curator, Taronga Zoo, their Conservation. IUCN/SSC Tortoise and NSW Agriculture, ARAZPA and the Department of Freshwater Turtle Specialist Group Agriculture in Western Australia in the preparation of this list. Wilson, D.E. & D.M. Reeder 1996. Mammal Species of the World: a taxonomic and geographic reference. 2nd ed. Washington & London : Smithsonian Institution Press. KEY TO TABLES DEFINITION OF PROPOSED NEW VPC OTHER INFORMATION CATEGORIES A Those species currently held in statutory zoos in (from Guidelines on the Entry, Movement and Australia as a result of seizures by Customs or Keeping of Exotic Vertebrate Animals in Australia legal importations, but which were not previously – Draft Report 2003). categorised by VPC before January 1st 1998. These species have been considered by VPC To assign an exotic species to a threat category, three and have been placed in Category 2, without a risk scores are calculated: the risk that (1) an escaped full review of pest potential, as of January 1st or released individual would harm people, (2) escaped 1998. A condition of this decision is that VPC will or released individuals would establish a wild free- not permit Approved Collection Status to be living population (3) the species would be a pest if a given to private zoos for any of the species listed wild population did establish. These three risk scores in red without a full review of pest potential being are then used to assign the exotic species to one of conducted by an independent VPC consultant, as four threat categories: extreme, serious, moderate or part of any application for approved collection low (see table below). For further information about status. However these species can be the risk assessment method used, please see transferred between Statutory Zoos subject to Bomford, M. (2003) Risk Assessment for the Import normal commonwealth and state requirements. and Keeping of Exotic Vertebrates in Australia. Bureau of Rural Sciences, Canberra. (in Press). B Species held in Australia in “List of Animals (Aves, Mammalia, Reptilia, Amphibia)” compiled E – Extreme Threat Category by the WORKING PARTY ON INTRODUCTION These animals should not be allowed to enter, nor be AND CONTROL OF NON-INDIGENOUS PEST kept in any State or Territory. (Special consideration SPECIES for the VERTEBRATE PESTS may be given to scientific institutions on a case by COMMITTEE 1980, but is no longer held in case basis.) Any species that has not been assessed Australia. NB: (will remain on the VPC list and previously should be considered to be in the Extreme will retain the category assigned by VPC Threat Category and should be treated accordingly, previously, but it is not recommended to be listed until a risk assessment is conducted. under state or territory legislation controlling the entry, movement and keeping of exotic animals). S – Serious Threat Category C Species in Class 1a that have been imported into These animals may be introduced and/or should be Australia for research purposes in accordance kept only in collections approved by the relevant with VPC policy and the Wildlife Protection State/Territory authority as being primarily kept for (1) (Regulation of Exports and Imports) Act and can public display and education purposes, and/or for (2) only be kept by specific “Approved Scientific genuine scientific research approved by the relevant Institutions”. Statutory or private zoos cannot State/Territory authority, and as meeting Best Practice keep species. for the purposes of keeping the species concerned. M – Moderate Threat Category These animals should be restricted to collections approved and registered by the relevant State/Territory authority for the keeping of Moderate Threat Species. States/Territories may continue to impose any additional restrictions on acquisition and keeping of Moderate Threat Species. L – Low Threat Category Animals which, relative to other species, have a low risk of becoming a problem for the environment, primary industry or public safety. Vertebrate Pests Committee List of Exotic Vertebrate Animals in Australia, May 2003……………………………………………………. page 4 ASSIGNING SPECIES TO THREAT CATEGORIES Danger posed by Establishment likelihood Establishment VPC Threat Implication for Implication for individual animals (risk (risk that a particular consequence (Risk an category any proposed keeping and escaped individual species will establish a established population import into movement in animals would harm wild population in would cause harm) Australia1,2 Australia people) Australia) Highly Dangerous, Extreme Extreme Extreme Prohibited Limited to those Moderately Dangerous or collections approved Not Dangerous for keeping particular Extreme Highly Dangerous, Extreme High Extreme Threat species Moderately Dangerous or Not Dangerous Highly Dangerous, Extreme Moderate Extreme Moderately Dangerous or Not Dangerous Highly Dangerous, Extreme Low Extreme Moderately Dangerous or Not Dangerous Highly Dangerous, High Extreme Extreme Moderately Dangerous or Not Dangerous Highly Dangerous, High High Extreme Moderately Dangerous or Not Dangerous Highly Dangerous, Moderate Extreme Extreme Moderately Dangerous or Not Dangerous Highly Dangerous, High Moderate Serious Import restricted to Limited to those Moderately Dangerous or those collections collections approved Not Dangerous approved for for keeping keeping Serious particular Serious Highly Dangerous, High Low Serious Threat species Threat species Moderately Dangerous or Not Dangerous Highly Dangerous, Moderate High Serious Moderately Dangerous or Not Dangerous Highly Dangerous Moderate Moderate Serious Highly Dangerous Moderate Low Serious Highly Dangerous, Low Extreme Serious Moderately Dangerous or Not Dangerous Highly Dangerous, Low High Serious Moderately Dangerous or Not Dangerous Highly Dangerous Low Moderate Serious Highly Dangerous Low Low Serious Moderately Dangerous or Moderate Moderate Moderate Import restricted to
Recommended publications
  • 13914444D46c0aa91d02e31218
    2 Breeding of wild and some domestic animals at regional zoological institutions in 2013 3 РЫБЫ P I S C E S ВОББЕЛОНГООБРАЗНЫЕ ORECTOLOBIFORMES Сем. Азиатские кошачьи акулы (Бамбуковые акулы) – Hemiscyllidae Коричневополосая бамбуковая акула – Chiloscyllium punctatum Brownbanded bambooshark IUCN (NT) Sevastopol 20 ХВОСТОКОЛООБРАЗНЫЕ DASYATIFORMES Сем. Речные хвостоколы – Potamotrygonidae Глазчатый хвостокол (Моторо) – Potamotrygon motoro IUCN (DD) Ocellate river stingray Sevastopol - ? КАРПООБРАЗНЫЕ CYPRINIFORMES Сем. Цитариновые – Citharinidae Серебристый дистиход – Distichodusaffinis (noboli) Silver distichodus Novosibirsk 40 Сем. Пираньевые – Serrasalmidae Серебристый метиннис – Metynnis argenteus Silver dollar Yaroslavl 10 Обыкновенный метиннис – Metynnis schreitmuelleri (hypsauchen) Plainsilver dollar Nikolaev 4; Novosibirsk 100; Kharkov 20 Пятнистый метиннис – Metynnis maculatus Spotted metynnis Novosibirsk 50 Пиранья Наттерера – Serrasalmus nattereri Red piranha Novosibirsk 80; Kharkov 30 4 Сем. Харацидовые – Characidae Красноплавничный афиохаракс – Aphyocharax anisitsi (rubripinnis) Bloodfin tetra Киев 5; Perm 10 Парагвайский афиохаракс – Aphyocharax paraquayensis Whitespot tetra Perm 11 Рубиновый афиохаракс Рэтбина – Aphyocharax rathbuni Redflank bloodfin Perm 10 Эквадорская тетра – Astyanax sp. Tetra Perm 17 Слепая рыбка – Astyanax fasciatus mexicanus (Anoptichthys jordani) Mexican tetra Kharkov 10 Рублик-монетка – Ctenobrycon spilurus (+ С. spilurusvar. albino) Silver tetra Kharkov 20 Тернеция (Траурная тетра) – Gymnocorymbus
    [Show full text]
  • (Testudines: Geoemydidae) from the Azov Sea Coast in the Crimea
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2) [General Section]: 27–29 (e129). Short Communication A record of the Balkan Stripe-necked Terrapin, Mauremys rivulata (Testudines: Geoemydidae) from the Azov Sea Coast in the Crimea 1Oleg V. Kukushkin and 2Daniel Jablonski 1Department of Herpetology, Zoological Institute of Russian Academy of Sciences, Universitetskaya Emb. 1, 199034 Saint Pe- tersburg, RUSSIA 2Department of Zoology, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, SLOVAKIA Keywords. Mauremys rivulata, first record, Crimea, Kerch peninsula, Azov Sea, overseas dispersal, occasional relocation Citation: Kukushkin O V, Jablonski D. 2016. A record of the Balkan Stripe-necked Terrapin, Mauremys rivulata (Testudines: Geomydidae) from the Azov Sea Coast in Crimea. Amphibian & Reptile Conservation 10(2) [General Section]: 27–29 (e129). Copyright: © 2016 Kukushkin and Jablonski. This is an open-access article distributed under the terms of the Creative Commons Attribution- NonCommercialNoDerivatives 4.0 International License, which permits unrestricted use for non-commercial and education purposes only, in any medium, provided the original author and the official and authorized publication sources are recognized and properly credited. The official and authorized publication credit sources, which will be duly enforced, are as follows: official journal titleAmphibian & Reptile Conservation; official journal website <amphibian-reptile-conservation.org>. Received: 03 September 2016; Accepted: 7 November 2016; Published: 30 November 2016 The Crimean herpetofauna comprises such true Eastern- limestone rocks on the abrasion-accumulative sea coast Mediterranean species as Mediodactylus kotschyi and below the lake (Fig. 1B). In general, the locality remains Zamenis situla (Sillero et al. 2014). The occurrence of typical of habitats of M.
    [Show full text]
  • Chelonian Perivitelline Membrane-Bound Sperm Detection: a New Breeding Management Tool
    Zoo Biology 35: 95–103 (2016) RESEARCH ARTICLE Chelonian Perivitelline Membrane-Bound Sperm Detection: A New Breeding Management Tool Kaitlin Croyle,1,2 Paul Gibbons,3 Christine Light,3 Eric Goode,3 Barbara Durrant,1 and Thomas Jensen1* 1San Diego Zoo Institute for Conservation Research, Escondido, California 2Department of Biological Sciences, California State University San Marcos, San Marcos, California 3Turtle Conservancy, New York, New York Perivitelline membrane (PVM)-bound sperm detection has recently been incorporated into avian breeding programs to assess egg fertility, confirm successful copulation, and to evaluate male reproductive status and pair compatibility. Due to the similarities between avian and chelonian egg structure and development, and because fertility determination in chelonian eggs lacking embryonic growth is equally challenging, PVM-bound sperm detection may also be a promising tool for the reproductive management of turtles and tortoises. This study is the first to successfully demonstrate the use of PVM-bound sperm detection in chelonian eggs. Recovered membranes were stained with Hoechst 33342 and examined for sperm presence using fluorescence microscopy. Sperm were positively identified for up to 206 days post-oviposition, following storage, diapause, and/or incubation, in 52 opportunistically collected eggs representing 12 species. However, advanced microbial infection frequently hindered the ability to detect membrane-bound sperm. Fertile Centrochelys sulcata, Manouria emys,andStigmochelys pardalis eggs were used to evaluate the impact of incubation and storage on the ability to detect sperm. Storage at À20°C or in formalin were found to be the best methods for egg preservation prior to sperm detection. Additionally, sperm-derived mtDNA was isolated and PCR amplified from Astrochelys radiata, C.
    [Show full text]
  • Using Molecular Tools to Guide Management of Invasive Alien
    Diversity and Distributions, (Diversity Distrib.) (2015) 1–14 BIODIVERSITY Using molecular tools to guide RESEARCH management of invasive alien species: assessing the genetic impact of a recently introduced island bird population J. van de Crommenacker1,2*, Y. X. C. Bourgeois3, B. H. Warren4, H. Jackson2, F. Fleischer-Dogley1, J. Groombridge2 and N. Bunbury1 1Seychelles Islands Foundation, La Ciotat ABSTRACT Building, Mont Fleuri, Mahe, Victoria, Aim Biological invasions are a major threat to island biodiversity and are Seychelles, 2Durrell Institute of Conservation responsible for a large proportion of species declines and extinctions world- and Ecology (DICE), School of Anthropology and Conservation, University of Kent, wide. The process of hybridization between invasive and native species is a Marlowe Building, Canterbury, Kent, UK, major factor that contributes to the loss of endemic genetic diversity. The issue 3Zoologisches Institut, Evolutionsbiologie, of hybridization is often overlooked in the management of introduced species A Journal of Conservation Biogeography University of Basel, Vesalgasse 1, 4051 Basel, because morphological evidence of hybridization may be difficult to recognize Switzerland, 4Institute of Systematic Botany, in the field. Molecular techniques, however, facilitate identification of specific University of Zurich, Zollikerstrasse 107, hybridization events and assessment of the direction and timing of introgres- 8008 Zurich, Switzerland sion. We use molecular markers to track hybridization in a population of an island endemic bird, the Aldabra fody (Foudia aldabrana), following the recent discovery of a co-occurring population of non-native Madagascar fodies (Foudia madagascariensis). Location Aldabra Atoll, Seychelles. Methods We combine phylogenetic analyses of mitochondrial and nuclear markers to assess whether hybridization has occurred between F.
    [Show full text]
  • Checklist of the Mammals of Indonesia
    CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation i ii CHECKLIST OF THE MAMMALS OF INDONESIA Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation By Ibnu Maryanto Maharadatunkamsi Anang Setiawan Achmadi Sigit Wiantoro Eko Sulistyadi Masaaki Yoneda Agustinus Suyanto Jito Sugardjito RESEARCH CENTER FOR BIOLOGY INDONESIAN INSTITUTE OF SCIENCES (LIPI) iii © 2019 RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI) Cataloging in Publication Data. CHECKLIST OF THE MAMMALS OF INDONESIA: Scientific, English, Indonesia Name and Distribution Area Table in Indonesia Including CITES, IUCN and Indonesian Category for Conservation/ Ibnu Maryanto, Maharadatunkamsi, Anang Setiawan Achmadi, Sigit Wiantoro, Eko Sulistyadi, Masaaki Yoneda, Agustinus Suyanto, & Jito Sugardjito. ix+ 66 pp; 21 x 29,7 cm ISBN: 978-979-579-108-9 1. Checklist of mammals 2. Indonesia Cover Desain : Eko Harsono Photo : I. Maryanto Third Edition : December 2019 Published by: RESEARCH CENTER FOR BIOLOGY, INDONESIAN INSTITUTE OF SCIENCES (LIPI). Jl Raya Jakarta-Bogor, Km 46, Cibinong, Bogor, Jawa Barat 16911 Telp: 021-87907604/87907636; Fax: 021-87907612 Email: [email protected] . iv PREFACE TO THIRD EDITION This book is a third edition of checklist of the Mammals of Indonesia. The new edition provides remarkable information in several ways compare to the first and second editions, the remarks column contain the abbreviation of the specific island distributions, synonym and specific location. Thus, in this edition we are also corrected the distribution of some species including some new additional species in accordance with the discovery of new species in Indonesia.
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • Phylogeography of Finches and Sparrows
    In: Animal Genetics ISBN: 978-1-60741-844-3 Editor: Leopold J. Rechi © 2009 Nova Science Publishers, Inc. Chapter 1 PHYLOGEOGRAPHY OF FINCHES AND SPARROWS Antonio Arnaiz-Villena*, Pablo Gomez-Prieto and Valentin Ruiz-del-Valle Department of Immunology, University Complutense, The Madrid Regional Blood Center, Madrid, Spain. ABSTRACT Fringillidae finches form a subfamily of songbirds (Passeriformes), which are presently distributed around the world. This subfamily includes canaries, goldfinches, greenfinches, rosefinches, and grosbeaks, among others. Molecular phylogenies obtained with mitochondrial DNA sequences show that these groups of finches are put together, but with some polytomies that have apparently evolved or radiated in parallel. The time of appearance on Earth of all studied groups is suggested to start after Middle Miocene Epoch, around 10 million years ago. Greenfinches (genus Carduelis) may have originated at Eurasian desert margins coming from Rhodopechys obsoleta (dessert finch) or an extinct pale plumage ancestor; it later acquired green plumage suitable for the greenfinch ecological niche, i.e.: woods. Multicolored Eurasian goldfinch (Carduelis carduelis) has a genetic extant ancestor, the green-feathered Carduelis citrinella (citril finch); this was thought to be a canary on phonotypical bases, but it is now included within goldfinches by our molecular genetics phylograms. Speciation events between citril finch and Eurasian goldfinch are related with the Mediterranean Messinian salinity crisis (5 million years ago). Linurgus olivaceus (oriole finch) is presently thriving in Equatorial Africa and was included in a separate genus (Linurgus) by itself on phenotypical bases. Our phylograms demonstrate that it is and old canary. Proposed genus Acanthis does not exist. Twite and linnet form a separate radiation from redpolls.
    [Show full text]
  • A Species-Level Phylogenetic Supertree of Marsupials
    J. Zool., Lond. (2004) 264, 11–31 C 2004 The Zoological Society of London Printed in the United Kingdom DOI:10.1017/S0952836904005539 A species-level phylogenetic supertree of marsupials Marcel Cardillo1,2*, Olaf R. P. Bininda-Emonds3, Elizabeth Boakes1,2 and Andy Purvis1 1 Department of Biological Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, U.K. 2 Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, U.K. 3 Lehrstuhl fur¨ Tierzucht, Technical University of Munich, Alte Akademie 12, 85354 Freising-Weihenstephan, Germany (Accepted 26 January 2004) Abstract Comparative studies require information on phylogenetic relationships, but complete species-level phylogenetic trees of large clades are difficult to produce. One solution is to combine algorithmically many small trees into a single, larger supertree. Here we present a virtually complete, species-level phylogeny of the marsupials (Mammalia: Metatheria), built by combining 158 phylogenetic estimates published since 1980, using matrix representation with parsimony. The supertree is well resolved overall (73.7%), although resolution varies across the tree, indicating variation both in the amount of phylogenetic information available for different taxa, and the degree of conflict among phylogenetic estimates. In particular, the supertree shows poor resolution within the American marsupial taxa, reflecting a relative lack of systematic effort compared to the Australasian taxa. There are also important differences in supertrees based on source phylogenies published before 1995 and those published more recently. The supertree can be viewed as a meta-analysis of marsupial phylogenetic studies, and should be useful as a framework for phylogenetically explicit comparative studies of marsupial evolution and ecology.
    [Show full text]
  • Solomon Islands
    Solomon Islands By Tan"a LearY Local RETA Consultant fuIomonldands 1993 v(ff#**frffifm@& Leary Tanla SolomonlsLurds : state of lhe enrii.roiqen:t reporrt / Tanya Leary. l. Erlvlionrnerrtal audittng Z, M:arihe re,sorsce-s- $olomon lsJan& g. Environmetrtiil Folicy-961"*ort Islands tr South Paciflc. Regional Environrnenr Programm€- IL Tltle 33,71 ISBN Itepared for publtaarioh by the S-ou h Faeifiq,Rqional Environment hogfamme. Apia Westenr Sarnoa @ copyriEht South Faelfic ReElonal Environmenr ftogrammq 1992, The Solltb Fac|,fte Regrqnal Environmerrl progpannre aulhorises the reproduction of tagtual materiial, wlnle of Bart, ln any form, provtded appropriate aeknowledgemcnt is glven Illustralive natertal qanrrot b-e reproduced wlrhour permisslon of the ar$st. Solomon Islands stote of the environment repott t ,-*.-- a f,\r \^al-) IUCN : !zE s5 MONOO SOtrOm:On ISIA1dS wEsrRN ''bo VELIA l-trVALlA I t6'8. RANoNTA 'eO;- fr rom*rrl '.LordEANGA*^ ffk ^," f $o'rorf@Al s.E.A r.EDon,,m\ 0 J| y'*" i" /r\fGoRGtA e- vANc,tNDU S'U'g i CR.{TR.AL RUssELL.g/ frr* D //: ffi,^,^ o "u*+aosAvo(4:p#. (/ r60t o {**u V^"ktr-A|/w^'n e f /uxxre y'), 4*ru *ro PActFIc ocEAN x".pl ucr F ur,n** f, DlAKIRA s[irc.lANA dl TEI{OTU ooE*rq4 $ oEo Latu\f 0 o u'rupuA ,g 20 4g 60 80 l0o ft vaulono f"DUFF @ NeUonatceplot a Trowrtt Noneo; ln bold ere ltKoptA a grorprovinccs FATAKA- r'.AN!JTA 'lojs Ira Foreword This document represents a concise report on the state of the Environment for solomon Islands.
    [Show full text]
  • Helminth Parasites (Trematoda, Cestoda, Nematoda, Acanthocephala) of Herpetofauna from Southeastern Oklahoma: New Host and Geographic Records
    125 Helminth Parasites (Trematoda, Cestoda, Nematoda, Acanthocephala) of Herpetofauna from Southeastern Oklahoma: New Host and Geographic Records Chris T. McAllister Science and Mathematics Division, Eastern Oklahoma State College, Idabel, OK 74745 Charles R. Bursey Department of Biology, Pennsylvania State University-Shenango, Sharon, PA 16146 Matthew B. Connior Life Sciences, Northwest Arkansas Community College, Bentonville, AR 72712 Abstract: Between May 2013 and September 2015, two amphibian and eight reptilian species/ subspecies were collected from Atoka (n = 1) and McCurtain (n = 31) counties, Oklahoma, and examined for helminth parasites. Twelve helminths, including a monogenean, six digeneans, a cestode, three nematodes and two acanthocephalans was found to be infecting these hosts. We document nine new host and three new distributional records for these helminths. Although we provide new records, additional surveys are needed for some of the 257 species of amphibians and reptiles of the state, particularly those in the western and panhandle regions who remain to be examined for helminths. ©2015 Oklahoma Academy of Science Introduction Methods In the last two decades, several papers from Between May 2013 and September 2015, our laboratories have appeared in the literature 11 Sequoyah slimy salamander (Plethodon that has helped increase our knowledge of sequoyah), nine Blanchard’s cricket frog the helminth parasites of Oklahoma’s diverse (Acris blanchardii), two eastern cooter herpetofauna (McAllister and Bursey 2004, (Pseudemys concinna concinna), two common 2007, 2012; McAllister et al. 1995, 2002, snapping turtle (Chelydra serpentina), two 2005, 2010, 2011, 2013, 2014a, b, c; Bonett Mississippi mud turtle (Kinosternon subrubrum et al. 2011). However, there still remains a hippocrepis), two western cottonmouth lack of information on helminths of some of (Agkistrodon piscivorus leucostoma), one the 257 species of amphibians and reptiles southern black racer (Coluber constrictor of the state (Sievert and Sievert 2011).
    [Show full text]
  • Species Boundaries, Biogeography, and Intra-Archipelago Genetic Variation Within the Emoia Samoensis Species Group in the Vanuatu Archipelago and Oceania" (2008)
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2008 Species boundaries, biogeography, and intra- archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania Alison Madeline Hamilton Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Hamilton, Alison Madeline, "Species boundaries, biogeography, and intra-archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania" (2008). LSU Doctoral Dissertations. 3940. https://digitalcommons.lsu.edu/gradschool_dissertations/3940 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SPECIES BOUNDARIES, BIOGEOGRAPHY, AND INTRA-ARCHIPELAGO GENETIC VARIATION WITHIN THE EMOIA SAMOENSIS SPECIES GROUP IN THE VANUATU ARCHIPELAGO AND OCEANIA A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Alison M. Hamilton B.A., Simon’s Rock College of Bard, 1993 M.S., University of Florida, 2000 December 2008 ACKNOWLEDGMENTS I thank my graduate advisor, Dr. Christopher C. Austin, for sharing his enthusiasm for reptile diversity in Oceania with me, and for encouraging me to pursue research in Vanuatu. His knowledge of the logistics of conducting research in the Pacific has been invaluable to me during this process.
    [Show full text]
  • Trade in Live Reptiles, Its Impact on Wild Populations, and the Role of the European Market
    BIOC-06813; No of Pages 17 Biological Conservation xxx (2016) xxx–xxx Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/bioc Review Trade in live reptiles, its impact on wild populations, and the role of the European market Mark Auliya a,⁎,SandraAltherrb, Daniel Ariano-Sanchez c, Ernst H. Baard d,CarlBrownd,RafeM.Browne, Juan-Carlos Cantu f,GabrieleGentileg, Paul Gildenhuys d, Evert Henningheim h, Jürgen Hintzmann i, Kahoru Kanari j, Milivoje Krvavac k, Marieke Lettink l, Jörg Lippert m, Luca Luiselli n,o, Göran Nilson p, Truong Quang Nguyen q, Vincent Nijman r, James F. Parham s, Stesha A. Pasachnik t,MiguelPedronou, Anna Rauhaus v,DannyRuedaCórdovaw, Maria-Elena Sanchez x,UlrichScheppy, Mona van Schingen z,v, Norbert Schneeweiss aa, Gabriel H. Segniagbeto ab, Ruchira Somaweera ac, Emerson Y. Sy ad,OguzTürkozanae, Sabine Vinke af, Thomas Vinke af,RajuVyasag, Stuart Williamson ah,1,ThomasZieglerai,aj a Department Conservation Biology, Helmholtz Centre for Environmental Conservation (UFZ), Permoserstrasse 15, 04318 Leipzig, Germany b Pro Wildlife, Kidlerstrasse 2, 81371 Munich, Germany c Departamento de Biología, Universidad del Valle de, Guatemala d Western Cape Nature Conservation Board, South Africa e Department of Ecology and Evolutionary Biology,University of Kansas Biodiversity Institute, 1345 Jayhawk Blvd, Lawrence, KS 66045, USA f Bosques de Cerezos 112, C.P. 11700 México D.F., Mexico g Dipartimento di Biologia, Universitá Tor Vergata, Roma, Italy h Amsterdam, The Netherlands
    [Show full text]